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Theory of bianisotropic crystal lattices
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Faculty of Engineering, Department of Electrical Engineering–Physical Electronics, Tel Aviv University, Tel-Aviv 69978, Israel

~Received 30 June 1997!

Bianisotropic media may be characterized as a general class of linear media which exhibit so-called mag-
netoelectric coupling between the electric and magnetic fields. Bianisotropic composites are attracting consid-
erable attention in view of their potential usefulness and new fundamental problems. A bianisotropic crystal
lattice is one of the interesting structures of such materials. In this paper, we developed approaches for an
analysis of static and dynamical models of bianisotropic crystal lattices. The static model is based on the
Lorenz-Lorentz theory. The dynamical theory is based on the use of the so-called sampling theorem similar to
the approach developed by the author for dielectric crystals.@S1063-651X~98!08303-2#

PACS number~s!: 41.20.2q, 03.50.De, 81.05.Zx, 61.10.Dp
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I. INTRODUCTION

Currently, in electromagnetics and material sciences,
macroscopic magnetoelectric interaction of fields and m
rials is one of the most interesting topics. Bianisotropic m
terials may be characterized as a general class of m
which exhibit magnetoelectric coupling between the elec
and magnetic fields. This class of materials usually inclu
chiral ~or reciprocal biisotropic! media, the so-called Telle
gen~or nonreciprocal biisotropic! medium, and natural mag
netoelectric crystals@1–4#. Artificial chiral materials have
been developed to demonstrate the phenomenon of ele
magnetic activity at microwave frequencies, analogous
optical activity. Together with artificial chiral material
~based on the composition of small helices!, an idea of mi-
crowave bianisotropic materials based onV and chiro-V par-
ticles has been introduced@5,6#.

General properties of a large variety of known bianisot
pic materials may be analyzed on the basis of effective c
stitutive parameters. A special feature of continuous ch
media is that we introduce constitutive relationships wh
connect the macroscopic field vectors, but not separa
from macroscopic Maxwell equations. It becomes clear if
consider the so-called Drude-Born-Fedorov constitutive re
tions for chiral media

DW 5e@EW 1b¹W 3EW #, BW 5m@HW 1b¹W 3HW #. ~1!

One can see that the polarization depends not only onEW but
also on¹W 3EW , likewise, the magnetization depends onHW as
well as on¹W 3HW . The chirality parameterb is, at the same
time, a measure of nonlocal effects. Obviously, constitut
parameters of chiral media are not described by quasis
functions@1–3#.

To analyze particulate chiral orV composites, it is sup-
posed that the maximum scale of material nonhomogen
has to be much less than distances of macroscopic
variations. Thus, the medium resembles a continuum ra
than a diffraction grating. Let us consider a separate ch
particle immersed into a dielectric host material. It w
shown in @7# that for the far-zone scattered fields and lo
frequency approximation, a small chiral sphere may be c
571063-651X/98/57~3!/3563~11!/$15.00
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sidered as a combination of an electric dipole and a magn
dipole. But, what do we have in the near field zone? Let
now take such a chiral particle as a helix@2,3#. Can one
separate and show where are the regions of electric pola
tion and magnetization? It is impossible, since a chiral p
ticle is described by electrodynamical~not quasistatic! mod-
els. An analysis of tiny point-polarizable spheres strung
helical strands, made in@8# shows that ‘‘the microstructure
size should be large enough that the electromagnetic~EM!
wave in the matrix can appreciate the handedness of the
crostructure.’’ We have the same situation forV particles.
To analyze smallV scatterers, wire-and-loop antenna mod
can be used. Such particles demonstrate properties of p
izabilities only for the far-zone fields@9#. In the quasistatic
limit, chiral andV particle composites do not exhibit mag
netoelectric coupling between the electric and magn
fields and demonstrate properties of dielectric or magnet
electric media.

Macroscopic electrodynamics of dielectric or magne
continuous media is based on the fact that phenomenol
cally defined specific properties of a medium may be
scribed separately from macroscopic Maxwell’s equatio
There are constitutive relations based on, for example,
motion equations of charges in plasma, the motion equat
of magnetization in ferromagnetics, and the Lorenz-Lore
model for dielectrics@1,10,11#. These relations, in fact, ar
quasistatic relations which may be described as integral-f
constitutive relations. For dielectric media, we have@1#

Di~rW,t !5E
2`

t

dt8E drW8e i j ~ t,rW,t8,rW8!Ej~ t8,rW8!, ~2!

Here, only the causality principle~that the electric displace
mentDW at the timet is defined by the electric fieldEW at the
time t8,t! is taken into account. For a time-invariant an
spatially homogeneous medium, the kernele i j (t8,rW8) may be
interpreted as a ‘‘response’’ of a medium to the field acti
described by the Diracd function.

Integral-form constitutive relations, similar to relation~2!,
were introduced recently for bianisotropic media@12,13#.
These integral-form relations have, however, a formal ch
3563 © 1998 The American Physical Society
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3564 57E. O. KAMENETSKII
acter, until one can show that bianisotropic media with q
sistatic constitutive relations really do exist.

A class of bianisotropic composites with quasista
constitutive relations was recently conceptualized in Re
@14, 15# „Lakhtakia suggested naming media described
@14# magnetostatically controlled bianisotropic materia
~MCBMs! @16#…. The MCBMs are particulate composite
based on magnetostatic-wave~MSW! resonators. Each MSW
resonator with surface metallization may be considered
bianisotropic particle. Induced electric and magnetic dip
momentspW andmW of the particle are related to the extern
electric and magnetic fields. A mutual orientation of vecto
pW and mW depends on geometries of the ferromagnetic re
nator and the region of metallization and depends on or
tation of the bias magnetic field as well@14,15#. The main
point is that dyadic polarizabilities of a bianisotropic partic
in MCBMs are obtained on the basis of the solution of qu
sistatic problems. Each particle may be considered as a g
pair of two ~magnetic and electric! dipoles: the magnetic
dipole is due to the ferrite body and the electric dipole is d
to the metallization region.

In macroscopic electrodynamics of dielectric crystal l
tices, the quasistatic Lorenz-Lorentz theory is used. T
main idea of this theory is that the actual Coulomb field
the crystal lattice is different than the macroscopic field@10#.
The Lorenz-Lorentz theory is also used to describe artifi
dielectrics which are modeled as a triple infinite period
array of identical dipolar scattering elements in some hom
geneous and isotropic host media. Every dipolar scattere
considered as ad-function source@17#. Now a question
arises: may one use the Lorenz-Lorentz theory in mac
scopic electrodynamics of artificial bianisotropic crysta
Obviously, it may be possible when every bianisotropic p
ticle is described quasistatically and is considered as ad-
functional dipolar scatterer. One can see that in the MCB
we have bianisotropic particles which satisfy these con
tions.

It is usually supposed that to use macroscopic Maxw
equations, one has to get over the discrete structure
medium by the averaging procedure. In their dynami
theory of dielectric crystal lattices, Born and Huang us
Ewald’s method in providing a way of separating the ma
roscopic field from the actual Coulomb field@18#. It was
supposed that due to dipole-dipole interaction, the lat
could be imagined as a polarized continuum with a sm
perturbation of dielectric polarization. In this paper, we w
develop another approach for the dynamical model of
anisotropic crystal lattices.

Because of the limiting cutoff wave numbers, all variab
in macroscopic electrodynamics are finite-spectrum fu
tions @19#. This makes it possible to discretize the fields a
to use the so-called sampling theorem for a dielectric m
dium modeled as a triple infinite periodic array of identic
d-functional scattering elements@20#. Taking into account
the Lorenz-Lorentz theory, the dynamical theory of stro
field fluctuations in dielectric crystal lattices was develop
in the preceding paper@20#. The method used in@20# also
becomes important for the dynamical model of bianisotro
crystal lattices when every bianisotropic particle may be c
sidered asd-functional dipolar scatterer. To develop the d
namical theory of bianisotropic crystal lattices, we will reje
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the continuum model of bianisotropic materials. The theo
will be based on field discretization taking into account t
discrete structure of media.

The paper is organized as follows. In Sec. II, we give
brief description of MCBMs with the objective of showin
that this kind of bianisotropic material may be describ
quasistatically. We also describe some examples of bianis
tropic particles based on MSW resonators and show w
kind of constitutive dyadics may be obtained for particula
bianisotropic composites. In Sec. III, we use the Loren
Lorentz model for bianisotropic crystal lattices as a mate
continuum. In Secs. IV, V, and VI we show how the theo
in @20# may be extended to bianisotropic materials. The
sections are devoted to the use of the sampling theorem
macroscopic electrodynamics of bianisotropic crystal l
tices. Section VII contains concluding remarks.

II. MAGNETOSTATISICALLY CONTROLLED
BIANISOTROPIC MATERIALS

Electromagnetics of bianisotropic materials hold the k
to many important technologies. On microwaves, these
anisotropic materials are composite materials. The main
ture of the known bianisotropic composites~based on helices
or V particles! is the first order role played by the size p
rametersqa in the emergence of the magnetoelectric pro
erties~herea is the particle size andq is the wave number in
the host material!. For this reason, the electric and magne
fields are not curl free away from the particle and the qua
static effective-medium theories may be applicable only
dilute composites. In other words, such media are mode
as a gas of scatterers. Much needs to be done, howe
before these bianisotropic composites come to be use
microwave applications@2,3,5#.

Since in a class of bianisotropic composite materials—
MCBMs—every particle is described quasistatically, t
effective-medium theories for dense homogenized mater
may be successfully used. In this case, we have ‘‘solid s
matter’’ in comparison with ‘‘gas matter’’ based on a com
position of helices orV particles. A vast number of applica
tions is emerging from future theoretical and experimen
works based on these composites. Manufacturing compo
materials is based on modern planar technology of ferrom
netic devices@14,15#.

The MCBMs are particulate composites based on MS
resonators with surface metallization. Because of esse
temporal dispersion of the permeability in ferromagneti
quasistatic oscillations of magnetization take place in a c
tain frequency region. One can use a quasimagnetostatic
proximation (hW .2¹W c) to describe these oscillations. In o
der to obtain magnetostatic oscillations at certain frequen
in the microwave regime, the characteristic linear dime
sions of a ferromagnetic body have to be much less than
free-space wavelength at the same frequency@1,11,21#.

Magnetostatic oscillations may be described by two fir
order-differential-operator equations@22#. The first equation
is

LV5O, ~3!

where



lds

a
f

la
or
ti
r

b
ce
re

-

i

rg

ic

-

s

-

-

ic

s.

57 3565THEORY OF BIANISOTROPIC CRYSTAL LATTICES
L5S ~m0mJ !21 ¹W

2¹W • 0
D ~4!

is the differential-matrix operator,

V5S bW

c D ~5!

is the vector-function of magnetic flux density

bW 52m0mJ¹W c ~6!

and magnetostatic potentialc, and mJ is the tensor of the
permeability.

The second equation has the form

MUW 50, ~7!

where

M5S 06 2¹W 3

¹W 3 im0mJ
D ~8!

is Maxwell’s operator for the magnetostatic limit,

UW 5S eW

hW
D ~9!

is the vector-function of the electric and magnetic fie
~here hW is the potential magnetic field andeW is the vortex
electric field!.

It was shown in@22# that Eqs.~3! and~7! describe eigen-
value problems for the magnetostatic waves and, on the b
of these equations, one obtains the excitation equations
magnetostatic modes in ferromagnetic films. In particu
the inhomogeneous differential equation based on operatL
gives the excitation of the MSW by the external magne
field, and the excitation equation based on differential ope
torM gives the excitation~in ferromagnetic films with sur-
face metallization! by the external electric field.

Each MSW resonator with surface metallization may
considered as a quasistatic bianisotropic particle. Indu
electric and magnetic dipole moments of the particle are
lated to the external electricEW and magneticHW fields as
follows:

pW 5aJee•EW 1aJem•HW ; mW 5aJme•EW 1aJmm•HW . ~10!

One obtains the dyadic polarizabilitiesaJme andaJmm ~and,
thus, the magnetic dipole momentmW ! as a result of integra
tion of magnetization of ferritemW F over the volume of the
ferrite body of the resonator. The magnetization of ferrite
related to the magnetostatic potential as@11,21#

mW F52~mJ2IJ!¹W c, ~11!

where IJ is the unit matrix. The dyadic polarizabilitiesaJee

andaJem and, as a result, the electric dipole momentpW , are
found on the basis of an integration of the surface cha
sis
or
r,

c
a-

e
d
-

s

e

density tS over the surface of the region of metallization.
The electric charge density is related to the surface electr
current as

¹W S• jWS
e52 ivtS , ~12!

where¹W S• is the two-dimensional~on the plane of surface
metallization! divergence. The surface current density is de
fined by the equation@22#

nW C3@~¹W c!~1 !2~¹W c!~2 !#5 jWS
e , ~13!

where nW C is the unit normal vector to the contourC—the
contour of the region of metallization on the resonator cros
section—and (¹W c)(6) are gradients of the potentialc above
and below the contourC. The main point is that the dyadic
polarizabilities in Eq.~10! are obtained on the basis of the
solution of quasistatic problems: the magnetizationmW is a
function of the magnetostatic potentialc and the surface
electric charge densitytS is also controlled by the MSW
process in a resonator.

A mutual orientation of the dipole momentspW andmW de-
pends on the geometry of a ferromagnetic resonator, geom
etry of the region of metallization, and also on the orientation
of the bias magnetic fieldHW 0 . When a parallelepiped-form
MSW resonator withL@d, w and a narrow metallic strip
@Fig. 1~a!# is used, we have a parallel orientation of induced
electric and magnetic dipole moments (pW imW ). For a cylindri-
cal MSW resonator with a circular form of the metallization
region@Fig. 1~b!#, one obtains a perpendicular orientation of
the vectors (pW'mW ) if the bias fieldHW 0 is oriented normally
with respect to the plane of a ferromagnetic film. MSW reso
nators shown in Figs. 1~c! and 1~d! exhibit structures with a
lack of symmetry due to the geometry of metallization.
These resonators may be obtained with two enantiomorph
forms of metallization@15#.

Artificial materials based on thin-film MSW resonators
have planar structures exhibiting magnetoelectric propertie
Since components of the permeability tensormJ in ferrites
depend on the fieldHW 0 , magnetoelectric properties of bi-

FIG. 1. MSW resonators with surface metallization regions.
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3566 57E. O. KAMENETSKII
anisotropic materials may be tuned via the bias field va
tion. Figure 2 shows an example of the proposed MCB
with randomly distributed MSW resonators. The MCBM
are conceived as a pile of dielectric substrates with thin-fi
ferromagnetic objects. The MSW resonators are depic
schematically without concrete delineation of the resona
shape and the metallization configuration. The particu
composite shown can be homogenized into a material c
tinuum. When noninteracting MSW resonators in a mate
are assumed, the Maxwell-Garnett approach can be use
estimating the effective constitutive parameters of
MCBM @23–25#:

DW 5eJ•EW 1jJ•HW ,

BW 5mJ•HW 1zJ•EW . ~14!

The constitutive dyadics are frequency dependent. Le
restrict ourselves here to the qualitative description of so
special MCBMs with randomly distributed resonators@15#.

~i! Suppose that the MCBM is made by randomly distr
uting very elongated parallelepiped resonators@Fig. 1~a!#,
with HW 0 parallel to they axis ~Fig. 2!. Assuming the MCBM
to be nondissipative and reciprocal bianisotropic media@26#,
we get

eJ5F e1 0 0

0 e2 0

0 0 e1

G , mJ5F m1 0 0

0 m2 0

0 0 m1

G ,

jJ5 iF j1 0 0

0 0 0

0 0 j1

G , zJ52jJ. ~15!

~ii ! Let us consider the cylindrical MSW resonators
Fig. 1~b! instead, withHW 0 still parallel to they axis. When
nonhomogeneous magnetostatic oscillations take place in
resonators@11,21#, the constitutive dyadics of the MCBM
take the form

jJ5 iF 0 0 jc

0 0 0

jc 0 0
G , zJ52jJ. ~16!

eJ andmJ have the same form as shown in Eq.~15!.

FIG. 2. Bianisotropic composite with randomly distribute
MSW resonators.
-
s
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~iii ! Finally, suppose that anisotropic resonators depicte
in Figs. 1~c! and 1~d! are randomly distributed in thexz
planes withHW 0 parallel to they axis ~Fig. 2!. Let the MCBM
be nondissipative. The constitutive dyadics have the follow
ing forms:

eJ5F e18 0 i ea

0 e28 0

2 i ea 0 e18
G , mJ5F m18 0 imb

0 m28 0

2 imb 0 m18
G ,

jJ5F j18 0 jd

0 0 0

jd 0 j18
G , zJ5jJ* , ~17!

where the asterisk denotes the complex conjugate.
MCBMs made of MSW structures with lack of symmetry

@Figs. 1~c! and 1~d!# may be characterized as planar
gyrotropic-chiralmaterials. In these materials, gyrotropic ef-
fects are combined with geometric effects caused by the la
of reflection symmetry of surface metallization. Such struc
tures are essentially different from the chiroferrite or chiro
plasma medium conceived by Enghetaet al. @27#.

We have carried out the qualitative description of som
special MCBMs with randomly distributed resonators. Ou
further consideration will be devoted to quasistatic and dy
namical field theories of a three-dimensional regular array o
quasistatic bianisotropic particles. The analysis may be us
for the calculation of the constitutive parameters of MCBMs
with crystal-lattice structures. Figure 3 shows an example
such a structure.

III. THE LORENZ-LORENTZ MODEL
FOR BIANISOTROPIC CRYSTAL LATTICES

The Lorenz-Lorentz theory is a static field theory which
provides a solution that takes into account only the dipol
term in the induced field. The results of this theory are vali
only for obstacles with dimensions small compared with
their spacing. Being well developed for dielectric media
@10,17#, the Lorenz-Lorentz theory may be successfully ex
tended to bianisotropic crystal lattices when every bianiso
tropic particle is described quasistatically and is considere
as ad-functional dipolar scatterer. Crystal lattices based o
MSW resonators~or, in other words, the MCBM crystals!
show an example of such materials.

Consider a three-dimensional regular array of identica

FIG. 3. Bianisotropic composite with aligned MSW resonator
~bianisotropic crystal lattice!.
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57 3567THEORY OF BIANISOTROPIC CRYSTAL LATTICES
dipolar bianisotropic scattering elements in some homo
neous and isotropic host media characterized by the per
tivity e ~in a particular casee5e0! and the permeabilitym0 .
The spacing between elements are denoted asDx, Dy, and
Dz. The elements are identified by the integer indic
k,n,l @2`,(k,n,l ),`#. Every dipolar scatter is considere
as ad source. LetEW (e) andHW (e) be the effective electric and
magnetic fields, respectively, acting to polarize and mag
tize the particle at the origin. For induced electric and m
netic dipole moments one can rewrite Eq.~10! as

pW 5aJee•EW ~e!1aJem•HW ~e!,

mW 5aJme•EW ~e!1aJmm•HW ~e!. ~18!

Let EW (0) andHW (0) be the electric and magnetic fields in th
host medium. These fields are considered as the exte
electric and magnetic fields applied to a condensed med
quasistatically modeled as a triple periodic array of dipol
The effective fieldsEW (e) andHW (e) are equal, respectively, t
EW (0)1EW ( i ) andHW (0)1HW ( i ), whereEW ( i ) andHW ( i ) are the inter-
action electric and magnetic fields. These interaction fie
are proportional, respectively, topW andmW :

EW ~ i !5CJ E•pW ,

HW ~ i !5CJ M•mW , ~19!

where tensorsCJ E andCJ M are the so-called interaction con
stants. Now we can write

pW 5aJee•~EW ~0!1CJ E•pW !1aJem•~HW ~0!1CJ M•mW !,
~20!

mW 5aJme•~EW ~0!1CJ E•pW !1aJmm•~HW ~0!1CJ M•mW !.

We obtain two vector equations linking induced dipo
momentspW and mW with the external applied electric an
magnetic fieldsEW (0) and HW (0). This linear system of two
vector equations may be inverted to yield

pW 5nJee•EW ~0!1nJem•HW ~0!,

mW 5nJme•EW ~0!1nJmm•HW ~0!, ~21!

where the dyadicsnJee, nJem, nJme, andnJmm are given by

nJee5AJ1
21

•@aJee1aJem•CJ M•~ IJ2aJmm•CJ M !21
•aJme#,

~22!

nJem5AJ1
21

•@aJem1aJem•CJ M•~ IJ2aJmm•CJ M !21
•aJmm#,

~23!

nJme5AJ2
21

•@aJme1aJme•CJ E•~ IJ2aJee•CJ E!21
•aJee#,

~24!

nJmm5AJ2
21

•@aJmm1aJme•CJ E•~ IJ2aJee•CJ E!21
•aJem#,

~25!

and
e-
it-

s

e-
-

al
m
.

s

AJ15IJ2aJee•CJ E2aJem•CJ M•~ IJ2aJmm•CJ M !21
•aJme•CJ E ,

~26!

AJ25IJ2aJmm•CJ M2aJme•CJ E•~ IJ2aJee•CJ E!21
•aJem•CJ M .

~27!

The interaction constantsCJ E andCJ M will be defined be-
low. Now we consider a material-continuum approach fo
three-dimensional array. Polarization and magnetization
unit volume are defined as

PW 5NpW 5N~nJee•EW ~0!1nJem•HW ~0!!,
~28!

MW 5NmW 5N~nJme•EW ~0!1nJmm•HW ~0!!,

where N51/DV51/(Dx)(Dy)(Dz) is the number of par-
ticles per unit volume.

The average electric displacement and the average m
netic flux density are defined by

DW 5eEW a
~ t !1PW ,

~29!

BW 5m0HW a
~ t !1MW ,

whereEW a
(t) andHW a

(t) are the average values of the total ele
tric and magnetic fields. These fields may be represente

EW a
~ t !5EW ~0!1EW a

~p! ,
~30!

HW a
~ t !5HW ~0!1HW a

~p! ,

whereEW a
(p) and HW a

(p) are the average values of the elect
and magnetic dipole field produced, respectively, by all el
tric and all magnetic dipoles.

For a bianisotropic particle that is symmetrical about t
coordinate planes passing through the center of the part
the average electric and magnetic fields produced by all
duced dipoles is zero. It becomes clear from electrostatic
magnetostatic points of view for the three-dimensional
anisotropic lattice. In each unit cell, the induced electrosta
potentialw and the induced magnetostatic potentialc may be
developed into three-dimensional Fourier series. For elec
dipoles, such an analysis was made in@17#. Let, for example,
an induced electric dipole have they component. The in-
duced electrostatic potentialw will be an odd function ofy
because of the symmetry involved. They component of the
induced electric field is given by derivative]w/]y and is
expressed by cosine terms that depend ony. In result, the
average induced electric field in the unit cell is zero. A sim
lar analysis will be made for thex andz components of an
induced electric dipole. It is clear that for induced magne
dipoles, one has a similar magnetostatic problem. If, for
ample, an induced magnetic dipole has they component, the
induced magnetostatic potentialc will be an odd function of
y. The y component of the induced magnetic field is giv
by derivative]c/]y and they component of the averag
induced magnetic field is zero. The same analysis is poss
for the x andz components.
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3568 57E. O. KAMENETSKII
In view of the above consideration and taking Eqs.~28!
and ~29! into account we can characterize the bianisotro
three-dimensional lattice by the effective constitutive re
tions

DW 5eJeff•EW ~0!1aJeff•HW ~0!,
~31!

BW 5bJeff•EW ~0!1mJ eff•HW ~0!,

where

eJeff5eIJ1NnJee, ~32!

aJeff5NnJem, ~33!

bJeff5NnJme, ~34!

mJ eff5m0IJ1NnJmm. ~35!

The condensed matter quasistatic theory based on the
that the actual~or, in other words, local! field causing polar-
ization of a particle is different from the macroscopic field,
known as the Clausius-Mossotti equation in connection w
electrostatics, or as the Lorenz-Lorentz equation in conn
tion with electromagnetic theory@10,18#. The same approac
is used in the Maxwell-Garnett model. The Maxwell-Garn
model originally introduced for simple isotropic spheric
scatterers was extended for isotropic chiral and biisotro
composites@7,28#. For bianisotropic composites with ran
domly dispersed electrically small uniaxial bianisotropic
clusions in the isotropic host material, the Maxwell-Garn
model is available in the literature@24,25#. Our model de-
scribes the effective constitutive parameters of bianisotro
crystal lattices with~as a general case! nonuniaxial bianiso-
tropic particles. The only assumptions made so far about
structure of the polarizability dyadics of every particle a
that all inverses in Eqs.~22!–~27! exist. An analysis of par-
ticular cases whether the necessary inverses exist or no
beyond the scope of the present consideration.

Another important question also arises in our analy
There is a question about the coefficientsCJ E andCJ M . The
calculation of these coefficients is far from straightforwa
We will evaluate the interaction constants below in Sec.
It will be shown, in particular, that because of symmetry, t
coefficientsCJ E andCJ M are diagonal tensors.

IV. SPATIAL DISPERSION AND FIELD DISCRETIZATION
IN BIANISOTROPIC MATERIALS

As a general description, one can formally introduce
integral-form constitutive relations for bianisotropic med
similarly to relations~2! for dielectrics@12,13#:
c
-

act

h
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t

ic

t

ic

e
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.

.
.
e

e
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Di~ t,rW !5E
2`

t

dt8E drW8e i j ~ t,rW,t8,rW8!Ej~ t8,rW8!

1E
2`

t

dt8E drW8j i j ~ t,rW,t8,rW8!H j~ t8,rW8!,

~36!

Bi~ t,rW !5E
2`

t

dt8E drW8z i j ~ t,rW,t8,rW8!Ej~ t8,rW8!

1E
2`

t

dt8E drW8m i j ~ t,rW,t8,rW8!H j~ t8,rW8!.

@It should be noted that heree i j is not the same as the kern
in Eq. ~2!.# For time-invariant and spatially homogeneo
bianisotropic media, we have

DW̃ ~v,kW !5eJ~v,kW !•EW̃ ~v,kW !1jJ~v,kW !•HW̃ ~v,kW !, ~37!

BW̃ ~v,kW !5zJ~v,kW !•EW̃ ~v,kW !1mJ ~v,kW !•HW̃ ~v,kW !, ~38!

where tildes denote the Fourier images.
Now the question arises of whether one can obtain

anisotropic media which are described by relations~36!–~38!
and for which the long-wavelength limit

eJ~v,kW !u ukW u→05eJ~v!, jJ~v,kW !u ukW u→05jJ~v!,

zJ~v,kW !u ukW u→05zJ~v!, mJ ~v,kW !u ukW u→05mJ ~v!, ~39!

exists. In such a case; the time-domain integral relations@29#
may be considered as a particular case of Eq.~36! for the
long-wavelength limit.

For a time-invariant and spatially homogeneous mediu
the kernelse i j (t8,rW8), j i j (t8,rW8), z i j (t8,rW8) andm i j (t8,rW8) in
Eq. ~36! may be interpreted as ‘‘responses’’ of the mediu
to the Diracd-functional electric and magnetic fields@30#.
The local character of these ‘‘response functions’’ shows t
constitutive parameters in Eq.~36! have to be obtained on
the basis of solution ofquasistaticproblems. As was dis-
cussed in Sec. I, not one of the known biisotropic and
anisotropic media~chiral, Tellegen, andV media! can be
described by local quasistatic parameters. There are, h
ever, the MCBMs which are describedquasistatically. When
the integral-form constitutive relations are not introduc
formally, but describe real bianisotropic materials, physi
effects, based on relations~36!, may be analyzed. It was
shown @12#, for example, that for the quasimonochroma
electromagnetic field, the energy transport in bianisotro
media is possible if components of complex envelopes
isfy certain differential relations.

When bianisotropic constitutive parameters have the lo
quasistatic limit, a dynamical model of bianisotropic crys
lattices may be realized. For such a purpose, an appro
based on the field discretization developed in@20# for dielec-
tric crystal lattices may be successfully used for bianisotro
crystal lattices.

Let us consider spatially homogeneous bianisotropic m
dia as a linear system of space signal processing~supposing
that the causality principle is taken into account!. We can
rewrite Eq.~36! as
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Di~rW !5L1F E drW8d~rW2rW8!Ej~rW8!G
1L2F E drW8d~rW2rW8!H j~rW8!G , ~40!

Bi~rW !5L3F E drW8d~rW2rW8!Ej~rW8!G
1L4F E drW8d~rW2rW8!H j~rW8!G , ~41!

whereLp ~p51, 2, 3, 4! are linear operators describing tran
formation of an input signal (Ej ,H j ) into an output signal
(Di ,Bi). Since operatorsLp are linear operators, one ca
consider constitutive tensors in Eq.~36! as the so-called ap
paratus functions or impulse-response functions@31,32#

e i j ~rW2rW8![L1@d~rW2rW8!#, j i j ~rW2rW8![L2@d~rW2rW8!#,

z i j ~rW2rW8![L3@d~rW2rW8!#, m i j ~rW2rW8![L4@d~rW2rW8!#.
~42!

When a bianisotropic medium is considered as a linear
tem of space signal processing and modeled as a triple
nite periodic array, components of continuous fields may
represented as sampling values on the basis of the proce
shown in@20#. One can correlate the polarization and ma
netization of every bianisotropic particle with sampling va
ues of the effective electric and magnetic fields and de
sampling values of the electric displacement and the m
netic flux density. All variables in the macroscopic electr
dynamics are finite-spectrum functions@19,20#. In our case,
this means that the Fourier images of all variables are e
to zero for

uqxu.Qx , uqyu.Qy , uqzu.Qz , ~43!

where qW is the wave vector in the host material an
Qx ,Qy ,Qz are the limiting cutoff numbers. If spacings b
tween nodes of a lattice are satisfied with the conditions

Dx<
1

2Qx
, Dy<

1

2Qy
, Dz<

1

2Qz
, ~44!

the sampling theorem enables us to reconstruct the full F
rier spectrum of the electromagnetic field on the basis
discrete field samplings@20,33#.

One of the main purposes of the further analysis is
develop adynamical modelof bianisotropic crystal lattices
The sampling theorem will be a powerful tool for this pu
pose.

V. FIELD SAMPLINGS IN BIANISOTROPIC CRYSTAL
LATTICES

For the i components of the total electric and magne
fields, the field samplings are defined as@20#

Esi

~ t !~rW !5 (
l 52`

`

(
n52`

`

(
k52`

`

Eai

~ t !~kDx,nDy,lDz!
s-
fi-
e
ure
-

e
g-
-

al

u-
f

o

3d~x2kDx!d~y2nDy!d~z2 lDz!, ~45!

Hsi

~ t !~rW !5 (
l 52`

`

(
n52`

`

(
k52`

`

Hai

~ t !~kDx,nDy,lDz!

3d~x2kDx!d~y2nDy!d~z2 lDz!. ~46!

For the i components of electric fieldsEi
(0) ,Eai

(p) and the

magnetic fieldsHi
(0) and Hai

(p) in Eq. ~30! we have similar

expressions denoted, respectively, asEsi

(0),Esi

(p) and Hsi

(0) ,

Hsi

(p) . Because of the linearity of relationships, one has

Esi

~ t !5Esi

~0!1Esi

~p! ,
~47!

Hsi

~ t !5Hsi

~0!1Hsi

~p! .

The microscopic electric and magnetic dipole mome
densitiespW mic andmW mic are expressed as sequences ofd func-
tions @34# and, therefore, are represented as a series of s
plings. For thei component we have

~pmic! i5 (
l 52`

`

(
n52`

`

(
k52`

`

pi~kDx,nDy,lDz!d~x2kDx!

3d~y2nDy!d~z2 lDz!

[psi
, ~48!

~mmic! i5 (
l 52`

`

(
n52`

`

(
k52`

`

mi~kDx,nDy,lDz!d~x2kDx!

3d~y2nDy!d~z2 lDz!

[msi
, ~49!

where pW (kDx,nDy,lDz) and mW (kDx,nDy,lDz) are the
electric and magnetic dipole moments of the particle char
terized by the numbersk,n,l .

Now we define the sampling vectorsDW s andBW s as

DW s5eEW s
~ t !1PW s , ~50!

BW s5m0HW s
~ t !1MW s , ~51!

where

PW s5
pW s

DV
, ~52!

MW s5
mW s

DV
. ~53!

All components of vectors in Eqs.~50!, ~51! are defined
similarly to Eqs.~45!, ~46!, and ~48!, ~49!. Taking Eq.~47!
into account, one obtains

DW s5e@EW s
~0!1EW s

~p!#1PW s , ~54!

BW s5m0@HW s
~0!1HW s

~p!#1MW s . ~55!
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The induced dipole moments of every particle are
pressed by Eq.~18!. For the sampling functions we have

pW s5aJee•~EW s
~0!1EW s

~ i !!1aJem•~HW s
~0!1HW s

~ i !!,
~56!

mW s5aJme•~EW s
~0!1EW s

~ i !!1aJmm•~HW s
~0!1HW s

~ i !!.

In a static model of bianisotropic crystals, we suppos
that the interaction fieldsEW ( i ) and HW ( i ) are proportional, re-
spectively, to induced dipole momentspW and mW @see Eq.
~19!#. In a dynamical model, we have to suggest that a m
general type of relationships between the interaction fie
and induced dipole moments, takes place:

EW ~ i !5CJ ee•pW 1CJ em•mW ,
~57!

HW ~ i !5CJ me•pW 1CJ mm•mW ,

where coefficientsCJ ee, CJ em, CJ me, andCJ mm are dependable
on the wave vectorqW . For the long-wavelength limit, one ha

CJ eeuq→05CJ E , CJ emuq→050,

Cmeuq→050, Cmmuq→05CJ M .

It will be shown, however,~see the next section of th
paper! that because of symmetry,CJ em5CJ me50 for all val-
ues of the wave vectorqW . Taking this into account, we ca
rewrite Eq.~57! for the sampling functions

EW s
~ i !5CJ ee•pW s ,

~58!

HW s
~ i !5CJ mm•mW s .

Substitution of Eq.~58! into Eq. ~56! gives a system of two
vector equations linking the sampling functions of induc
dipole moments with the sampling functions of the exter
applied fields:

pW s5aJee•~EW s
~0!1CJ ee•pW s!1aJem•~HW s

~0!1CJ mm•mW s!,
~59!

mW s5aJme•~EW s
~0!1CJ ee•pW s!1aJmm•~HW s

~0!1CJ mm•mW s!.

This system of equations may be rewritten as

pW s5bJee•EW s
~0!1bJem•HW s

~0! ,

mW s5bJme•EW s
~0!1bJmm•HW s

~0! , ~60!

where

bJee5FJ1
21

•@aJee1aJem•CJ mm•~ IJ2aJmm•CJ mm!21
•aJme#,

~61!

bJem5FJ1
21

•@aJem1aJem•CJ mm•~ IJ2aJmm•CJ mm!21
•aJmm#,

~62!

bJme5FJ2
21

•@aJme1aJme•CJ ee•~ IJ2aJee•CJ ee!
21

•aJee#,
~63!
-

d

e
s

l

bJmm5FJ2
21

•@aJmm1aJme•CJ ee•~ IJ2aJee•CJ ee!
21

•aJem#,
~64!

and

FJ15IJ2aJee•CJ ee2aJem•CJ mm•~ IJ2aJmm•CJ mm!21
•aJme•CJ ee,

~65!

FJ25IJ2aJmm•CJ mm2aJme•CJ ee•~ IJ2aJee•CJ ee!
21

•aJem•CJ mm.
~66!

Expressions~59! and ~61!–~66! are the same form as ex
pressions~20! and ~22!–~27! of the static model. We have
however, different interaction constants for the static and
namical models.

The sampling functions of the polarization and magne
zation per unit volume are

PW s5NpW s5N~bJee•EW s
~0!1bJem•HW s

~0!!,
~67!

MW s5NmW s5N~bJme•EW s
~0!1bJmm•HW s

~0!!.

Now let us define the fieldsEW s
(p) andHW s

(p) in Eqs.~54! and

~55!. The dipole fieldsEW (p),HW (p) are equal, respectively, to
the sums of interaction fieldsEW ( i ),HW ( i ) and dipole fields, pro-
duced by the particle located at the originEW (1),HW (1). It was
shown in@20# that for an electric dipole the sampling func
tion EW s

(1) is equal to zero. Obviously, for a magnetic dipol
we have the same situation, that is, the sampling func
HW s

(1) is equal to zero as well. So, one can write thatEW s
(p) and

HW s
(p) are, respectively, equal toEW s

( i ) andHW s
( i ) . Keeping only

radiated~curl! parts ofEW s
(p) andHW s

(p) we have

EW s
~p!5DV~CJ ee2CJ E!•PW s ,

~68!

HW s
~p!5DV~CJ mm2CJ M !•MW s .

At the quasistatic limit (q→0), one hasEW s
(p)5HW s

(p)50.
Taking into account Eqs.~67! and~68!, we can represen

Eqs.~54! and ~55! as

DW s~rW !5kJee~qW !•EW s
~0!~rW !1kJem~qW !•HW s

~0!~rW !,
~69!

BW s~rW !5kJme~qW !•EW s
~0!~rW !1kJmm~qW !•HW s

~0!~rW !,

where

kJee~qW !5e@ IJ1~CJ ee2CJ E!•bJee#1NbJee, ~70!

kJem~qW !5e~CJ ee2CJ E!•bJem1NbJem, ~71!

kJme~qW !5m0~CJ mm2CJ em!•bJme1NbJme, ~72!

kJmm~qW !5m0@ IJ1~CJ mm2CJ M !•bJmm#1NbJmm. ~73!

HereqW is considered as a parameter. One can see tha
q50 tensorskJee,kJem,kJme,kJmm correspond, respectively, t

tensorseJeff ,aJeff ,bJeff ,mJeff in Eq. ~31!.
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When the sampling functionsDW s(rW) andBW s(rW) are known,
one can reconstruct the Fourier spectrum of the electric

placementDW̃ (qW ) and magnetic flux densityBW̃ (qW ). On the
basis of the sampling theorem, one has@20,31–33#

DW̃ ~qW !5@kJee~qW !•EW̃ s
~0!1kJem~qW !•HW̃ s

~0!~qW !#DV

3rS qx

2Qx
D rS qy

2Qy
D rS qz

2QzD
[DW̃ ~qW !DVrS qx

2QxD rS qy

2QyD rS qz

2QzD , ~74!

BW̃ ~qW !5@kJme~qW !•EW̃ s
~0!1kJmm~qW !•HW̃ s

~0!~qW !#DV

3rS qx

2Qx
D rS qy

2Qy
D rS qz

2QzD
[BW̃ ~qW !DVrS qx

2QxD rS qy

2QyD rS qz

2QzD , ~75!

wherer denotes the rectangle function.
These expressions may be rewritten as

DW̃ ~qW !5kJee~qW !•EW̃ ~0!~qW !1kJem~qW !•HW̃ ~0!~qW !,
~76!

BW̃ ~qW !5kJee~qW !•EW̃ ~0!~qW !1kJem~qW !•HW̃ ~0!~qW !.

The fieldsEW̃ (0)(qW ), HW̃ (0)(qW ), EW̃ s
(0)(qW ), andHW̃ s

(0)(qW ) in Eqs.

~74!–~76! are the Fourier images of the fieldsEW (0)(rW),
HW (0)(rW), EW s

(0)(rW), andHW s
(0)(rW), respectively.

Expression~76! may be considered as an analog of fo
mulas~37! and ~38! used for spatially dispersive continuou
bianisotropic media. In our case, however, the wave vectoqW

and the fieldsEW (0),HW (0) do not correspond to the wave vect
and the fields in the medium. There are the wave vector
the fields in the host material~vacuum, in a particular case!.
s-

d

When we consider tensorskJee(qW ), kJem(qW ), kJme(qW ), and
kJmm(qW ) as the Fourier images of certain original function
respectively, kJee(rW), kJem(rW), kJme(rW), and kJmm(rW), the
convolution-form expressions based on Eq.~76!, take place.
These expressions may be considered as an analog o
~36! for time-invariant and spatially homogeneous med
when the causality principle is taken into account.

VI. EVALUATION OF THE INTERACTION CONSTANTS

We have developed the static field theory of bianisotro
crystal lattices supposing that the interaction tensorsCJ E and
CJ M are known. Similarly, we have developed a dynami
model of bianisotropic crystal lattices supposing that the
teraction tensorsCJ ee(qW ), CJ em(qW ), CJ me(qW ), andCJ mm(qW ) are
known as well. Now the question about evaluation of t
interaction constants arises. In our further analysis, we
evaluate the interaction constants separately for static
dynamical models of bianisotropic crystal lattices.

A. The interaction constants for the static model

The interaction tensorsCJ E and CJ M are given, respec-
tively, from summations of the static electric and magne
fields due to the array of bianisotropic particles. Taking in
account the electric-dipole and the magnetic-dipole fields
the quasistatic limit@10#, one can rewrite Eq.~19! as

CJ E•pW 5
1

4pe (
l 52`

`

(
n52`

`

( 8
k52`

`
3uW ~uW •pW !2pW

r kml
3 , ~77!

CJ M•mW 5
1

4p (
l 52`

`

(
n52`

`

( 8
k52`

3uW ~uW •mW !2mW

r kml
3 , ~78!

where the primes indicate omission of the terms withk5n

5 l 50, uW is a unit vector directed along the radius-vect
rWknl , andr knl is a distance from the particle at the origin
the particle characterized by numbersk,n,l .

For the y component, for example, we can rewrite E
~77! as
~CJ E•pW !y5
1

4pe (
l 52`

`

(
n52`

`

( 8
k52`

`
3@~kDx!~nDy!px1~nDy!2py1~nDy!~ lDz!pz#2@~kDx!21~nDy!21~ lDz!2#py

@~kDx!21~nDy!21~ lDz!2#5/2 .

~79!

Since the indices in Eq.~79! run equally over positive and negative values, the cross terms involving (kDx)(nDy)px and
(nDy)( lDz)pz vanish. This gives in result the interaction constant as a diagonal tensor. One can rewrite Eq.~79! as

~CJ E!yy5
1

4pe (
l 52`

`

(
n52`

`

( 8
k52`

`
2~nDy!22~kDx!22~ lDz!2

@~kDx!21~nDy!21~ lDz!2#5/2, ~80!
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The similar series in the right-hand sides, one has
other components of the diagonal tensorCJ E and also for
components of the diagonal tensorCJ M . The calculation of
such series is far from straightforward and has been the
ject of many works. A detailed consideration and a list
relevant references concerning an analysis of the quasis
constants can be found in@17#.

For magnetostatically controlled bianisotropic media d
scribed in Sec. II, a useful approach may be used to avoid
difficulty of handling serieses of type~80!. This consists of
the assumption that the principal contribution to the inter
tion fields acting on the particle at the origin comes fro
those particles which lie in the same plane, i.e., thez
5const in Fig. 3. This assumption may be well satisfi
since the MCBMs are conceived as a pile of dielectric s
strates with planar ferromagnetic objects@14,15#. In particu-
lar cases of very elongated parallelepiped MSW resona
an
in

-

e
e

ad
n
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r

b-
f
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-
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-

-

rs

@Fig. 1~a!# or cylindrical MSW resonators@Fig. 1~b!#, one
can use an analysis of two-dimensional strip-type or di
type artificial dielectrics@17#. Thus, the calculation of the
quasistatic interaction constants in bianisotropic crystal
tice may sufficiently be based on the well-developed sta
theory of artificial dielectrics. Such a detailed analysis
concrete structures is beyond the scope of the present
sideration.

B. The interaction constants for the dynamical model

To obtain the interaction constants in the dynami
model of bianisotropic crystal lattices, one has to take f
expressions for the electric and magnetic fields radiated b
combination of electric and magnetic dipole sources. On
basis of known expressions for such fields@10#, we can re-
write ~57! as follows:
CJ ee•pW 1CJ em•mW 5
1

4pe (
l 52`

`

(
n52`

`

( 8
k52`

` H @3uW ~uW •pW !2pW #S 1

r knl
3 2

i2pg

r knl
D 2@uW ~uW •pW !2pW #

4p2q2

r knl
2Am0e~uW 3mW !

3S 11
i

2pqrknl
D 4p2q2

r knl
J exp~ i2pqrknl!, ~81!

CJ me•pW 1CJ mm•mW 5
1

4p (
l 52`

`

(
n52`

`

( 8
k52`

` HAm0e~uW 3pW !S 11
i

2pqrknl
D 4p2q2

r knl
1@3uW ~uW •mW !2mW #S 1

r knl
3 2

i2pq

r knl
D

2@uW ~uW •mW !2mW #
4p2q2

r knl
J exp~ i2pqrknl!, ~82!
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Obviously terms with vector productsuW 3mW anduW 3pW are
equal to zero since the indices run equally over positive
negative values. For this reason, the cross terms involv
terms (kDx)(nDy)px ,(nDy)( lDz)pz , etc., vanish. As a re

sult, we have thatCJ em5CJ me50 and thatCJ ee and CJ mm are
diagonal tensors.

In our consideration, the tensorsCJ ee(qW ) andCJ mm(qW ) are
the finite-spectrum functions. This means that foruqxu
.Qx , uqyu.Qy , uqz.Qz the interaction constants ar
equal to zero. Let the limiting cutoff wave numbers are d
fined as

Qx5
1

2Dx
, Qy5

1

2Dy
, Qz5

1

2Dz
. ~83!

One can carry out an analysis similar to the analysis m
in @20# for dielectric crystal lattices. The components of te
sorsCJ ee(qW ) and CJ mm(qW ) are described by expressions of
form similar to Eqs.~43! and~44! in @20#. Therefore, one can
see that in the dynamical model of bianisotropic crystal
tices, the components of the interaction tensors are the F
rier images of rapidly convergent series.
d
g

-

e
-

-
u-

VII. CONCLUSION

Among a number of known temporally dispersive b
anisotropic media, there are a class of bianisotro
composites—the MCBMs—which may be describedquas-
istatically. This makes it possible to realize homogeniz
dense materials with randomly distributed or aligned biani
tropic particles.

A bianisotropic crystal lattice is one of the interestin
structures of such materials. In this paper, we developed
proaches for an analysis of static and dynamical models
bianisotropic crystal lattices. The static model is based on
Lorenz-Lorentz theory and describes the effective const
tive parameters of bianisotropic crystal lattices with~as a
general case! nonuniaxial bianisotropic particles. In such
general consideration of the static model, however, a qu
tion regarding the convergence of series describing the in
action tensors arises. For same particular cases one ca
well-known results obtained in the theory of artificial diele
trics.

Two ways may be used for the description of the elect
magnetic field-condensed media interaction. One way is
get over a discrete structure of a medium by the averag
procedure and another way may be conceived as follows
discretize the fields on the basis of discrete structure o
medium. When initial restrictions to the wave number sp
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trum take place, one can use the so-called sampling theo
for a medium modeled as a triple infinite periodic array
identicald-functional scattering elements.

The dynamical theory of bianisotropic crystal lattices
based on the use of the sampling theorem similarly to
approach developed in@20# for dielectric crystals. As the
main results of our dynamical model, one has the effec
constitutive parameters of bianisotropic composites dep
dent on the wave vector in the host material. This make
possible to use this constitutive parameters for further an
-
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ses of spatially dispersive bianisotropic media.
Here we discussed only the electric and magnetic dip

fields. The vector multipole fields are beyond the scope
the present analysis and may be the subject of future in
tigations.
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