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Theory of bianisotropic crystal lattices
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Bianisotropic media may be characterized as a general class of linear media which exhibit so-called mag-
netoelectric coupling between the electric and magnetic fields. Bianisotropic composites are attracting consid-
erable attention in view of their potential usefulness and new fundamental problems. A bianisotropic crystal
lattice is one of the interesting structures of such materials. In this paper, we developed approaches for an
analysis of static and dynamical models of bianisotropic crystal lattices. The static model is based on the
Lorenz-Lorentz theory. The dynamical theory is based on the use of the so-called sampling theorem similar to
the approach developed by the author for dielectric cryst8k063-651X98)08303-3

PACS numbgs): 41.20—-q, 03.50.De, 81.05.Zx, 61.10.Dp

[. INTRODUCTION sidered as a combination of an electric dipole and a magnetic
dipole. But, what do we have in the near field zone? Let us
Currently, in electromagnetics and material sciences, theaow take such a chiral particle as a he[,3]. Can one
macroscopic magnetoelectric interaction of fields and mateseparate and show where are the regions of electric polariza-
rials is one of the most interesting topics. Bianisotropic mation and magnetization? It is impossible, since a chiral par-
terials may be characterized as a general class of mediicle is described by electrodynamidaiot quasistaticmod-
which exhibit magnetoelectric coupling between the electricels. An analysis of tiny point-polarizable spheres strung on
and magnetic fields. This class of materials usually includeselical strands, made if8] shows that “the microstructure
chiral (or reciprocal biisotropicmedia, the so-called Telle- size should be large enough that the electromagri&tit)
gen(or nonreciprocal biisotropjanedium, and natural mag- wave in the matrix can appreciate the handedness of the mi-
netoelectric crystal$1—4]. Artificial chiral materials have crostructure.” We have the same situation farparticles.
been developed to demonstrate the phenomenon of electrdo analyze small) scatterers, wire-and-loop antenna models
magnetic activity at microwave frequencies, analogous tean be used. Such particles demonstrate properties of polar-
optical activity. Together with artificial chiral materials izabilities only for the far-zone fieldf9]. In the quasistatic

(based on the composition of small heligesn idea of mi-  limit, chiral and () particle composites do not exhibit mag-
crowave bianisotropic materials based@mand chirof) par-  netoelectric coupling between the electric and magnetic
ticles has been introducé8,6]. fields and demonstrate properties of dielectric or magnetodi-

General properties of a large variety of known bianisotro-electric media.
pic materials may be analyzed on the basis of effective con- Macroscopic electrodynamics of dielectric or magnetic
stitutive parameters. A special feature of continuous chiratontinuous media is based on the fact that phenomenologi-
media is that we introduce constitutive relationships whichcally defined specific properties of a medium may be de-
connect the macroscopic field vectors, but not separatelgcribed separately from macroscopic Maxwell's equations.
from macroscopic Maxwell equations. It becomes clear if weThere are constitutive relations based on, for example, the
consider the so-called Drude-Born-Fedorov constitutive relamotion equations of charges in plasma, the motion equations

tions for chiral media of magnetization in ferromagnetics, and the Lorenz-Lorentz
model for dielectric§1,10,11. These relations, in fact, are
D= E[EJFIBV*X E] I§=,u[ﬁ +Bﬁ > ﬁ]_ 1) guasistatic relations which may be described as integral-form

constitutive relations. For dielectric media, we haté¢

One can see that the polarization depends not onIE ot

> = . o = N t . . . R
also onV xlE, ILkeW|se, the r_nagneﬂzaﬂon _depends laras Di(r,t)=f dt’j di e (LIt PO, (2)
well as onV X H. The chirality parameteg is, at the same —o

time, a measure of nonlocal effects. Obviously, constitutive

?uanr?trigitse[rls_cg chiral media are not described by quaSIStat'ﬁere, only the causality principlghat the electric displace-

posed that the maximum scale of material nonhomogeneitfjme t'<t) is taken into account. For a time-invariant and
has to be much less than distances of macroscopic fielgpatially homogeneous medium, the kerge{t’,r’) may be
variations. Thus, the medium resembles a continuum rathénterpreted as a “response” of a medium to the field action
than a diffraction grating. Let us consider a separate chiratlescribed by the Diraé function.

particle immersed into a dielectric host material. It was Integral-form constitutive relations, similar to relati@@),
shown in[7] that for the far-zone scattered fields and lowwere introduced recently for bianisotropic medit2,13.
frequency approximation, a small chiral sphere may be conThese integral-form relations have, however, a formal char-
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acter, until one can show that bianisotropic media with quathe continuum model of bianisotropic materials. The theory
sistatic constitutive relations really do exist. will be based on field discretization taking into account the
A class of bianisotropic composites with quasistaticdiscrete structure of media.

constitutive relations was recently conceptualized in Refs. The paper is organized as follows. In Sec. Il, we give a
[14, 15 (Lakhtakia suggested naming media described irbrief description of MCBMs with the objective of showing

[14] magnetostatically controlled bianisotropic materials that this kind of bianisotropic material may be described
(MCBMs) [16]). The MCBMs are particulate composites gquasistatically We also describe some examples of bianiso-
based on magnetostatic-walldSW) resonators. Each MSW tropic particles based on MSW resonators and show what
resonator with surface metallization may be considered as kind of constitutive dyadics may be obtained for particulate
bianisotropic particle. Induced electric and magnetic dipolebianisotropic composites. In Sec. lll, we use the Lorenz-

momentsp andm of the particle are related to the external Lorentz model for bianisotropic crystal lattices as a material
electric and magnetic fields. A mutual orientation of vectorscontinuum. In Secs. IV, V, and VI we show how the theory

5 andm depends on geometries of the ferromagnetic reson [20] may be extended to bianisotropic materials. These

nator and the region of metallization and depends on orien3€ctions are devoted to the use of the sampling theorem in

tation of the bias magnetic field as w¢ll4,15. The main r_nacroscopic electrodynamics of _bianisotropic crystal lat-
point is that dyadic polarizabilities of a bianisotropic particlet'ces' Section VI contains concluding remarks.

in MCBMs are obtained on the basis of the solution of qua-

sistatic problems. Each particle may be considered as a glued  Il. MAGNETOSTATISICALLY CONTROLLED

pair of two (magnetic and electrjcdipoles: the magnetic BIANISOTROPIC MATERIALS

dipole is due to the ferrite body and the electric dipole is due
to the metallization region.

In macroscopic electrodynamics of dielectric crystal lat-
tices, the quasistatic Lorenz-Lorentz theory is used. Th
main idea of this theory is that the actual Coulomb field in
the crystal lattice is different than the macroscopic f{dld].
The Lorenz-Lorentz theory is also used to describe artificia

dielectrics which are modeled as a triple infinite periodicth host material For thi the electri q i
array of identical dipolar scattering elements in some homo:. € nost materia’ For this reason, the electric and magnetic
fields are not curl free away from the particle and the quasi-

geneous and isotropic host media. Every dipolar scatterer ieee : . . |
considered as a-function source[17]. Now a question static effective-medium theories may be applicable only for

arises: may one use the Lorenz-Lorentz theory in macrodilute composites. In other words, such media are modeled

scopic eleqtrodynamics o_f artificial bianisqtro_pic cry_stals’?‘;’)lzf(‘;"reg‘i‘ﬁe;’:e Sb(;:g;l;)etl;’f). i'\éluccohmniiﬁZst%ot;ﬁedg)n%ehl?své%v?r:,
Obviously, it may be possible when every bianisotropic par‘microwave application§2p3 5 P

ticle is described quasistatically and is considered a% a . ; AN . .
functional dipolar scatterer. One can see that in the MCBM% Since in a class of bianisotropic composite materials—the

we have bianisotropic particles which satisfy these condi- CBMs—evgry partlclg is described qua3|sFat|caIIy, the
tions. effective-medium theories for dense homogenized materials

It is usually supposed that to use macroscopic Maxwelf"2Y be successfully used. In this case, we have "solid state
equations, one has to get over the discrete structure of atter” in comparison W'th gas matter” based on a com-
medium by the averaging procedure. In their dynamicapos't'on of helices of) patrticles. A vast number of applica-

theory of dielectric crystal lattices, Born and Huang useOlions is emerging from future theoretical and experimental

Ewald’s method in providing a way of separating the mac-WorkS based on these composites. Manufacturing composite

roscopic field from the actual Coulomb fie[d8]. It was

) ) : . ._netic deviceg14,15.
supposed that due to dipole-dipole interaction, the latticd" ' . .
could be imagined as a polarized continuum with a small The MCBMs are particulate composites based on MSW

perturbation of dielectric polarization. In this paper, we wil resonators with surface metallization. Because of essential

develop another approach for the dynamical model of pilemporal dispersion of the permeability in ferromagnetics,
anisotropic crystal lattices guasistatic oscillations of magnetization take place in a cer-

Because of the limiting cutoff wave numbers, all variablest@" frequency region. One can use a quasimagnetostatic ap-

in macroscopic electrodynamics are finite-spectrum funcProximation fi=—Vy) to describe these oscillations. In or-
tions[19]. This makes it possible to discretize the fields andder to obtain magnetostatic oscillations at certain frequencies
to use the so-called sampling theorem for a dielectric mel the microwave regime, the characteristic linear dimen-
dium modeled as a triple infinite periodic array of identical Sions of a ferromagnetic body have to be much less than the
sfunctional scattering elemenf®0]. Taking into account free-space wavelength at the same frequeicyl,21.

the Lorenz-Lorentz theory, the dynamical theory of strong Magnetostatic oscillations may be described by two first-
field fluctuations in dielectric crystal lattices was developedorder-differential-operator equatiop82]. The first equation

in the preceding papd20]. The method used if20] also IS

becomes important for the dynamical model of bianisotropic

crystal lattices when every bianisotropic particle may be con- LV=0, (©)
sidered ass-functional dipolar scatterer. To develop the dy-

namical theory of bianisotropic crystal lattices, we will reject where

Electromagnetics of bianisotropic materials hold the key

to many important technologies. On microwaves, these bi-
nisotropic materials are composite materials. The main fea-
ure of the known bianisotropic compositgssed on helices

or () particles is the first order role played by the size pa-

rametersqa in the emergence of the magnetoelectric prop-

erties(herea is the particle size and is the wave number in

materials is based on modern planar technology of ferromag-
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(IU“OIZZ) -1 ﬁ ) (4) Metallic strip Surface metallization
-V. 0 Ferromagnetic
film
is the differential-matrix operator, Dielectric
substrate
b
v-(®) ©
v (@) ®)
is the vector-function of magnetic flux density
b=~ poiVy ©®) @
and magnetostatic potentigl, and i is the tensor of the
permeability.
The second equation has the form © )
MU=0, ™ FIG. 1. MSW resonators with surface metallization regions.
where

density 75 over the surface of the region of metallization.

0 —Vx The electric charge density is related to the surface electric
M=\ _ . (8)  current as
VX Tuom R
| . Vs jg=—lors, (12
is Maxwell’'s operator for the magnetostatic limit,
- whereﬁs- is the two-dimensionafon the plane of surface
J= ( ?) (9) metallization) divergence. The surface current density is de-
h fined by the equatiofi22]

is the vector-function of the electric and magnetic fields
(hereh is the potential magnetic field anel is the vortex

electric field. . . . where ﬁc is the unit normal vector to the contodr—the

It was shown in22] that Egs.(3) and(7) describe eigen-  .,ntqur of the region of metallization on the resonator cross
value problems for the magnetostatic waves and, on the basis . NG, di £ th ialab
of these equations, one obtains the excitation equations fcc.recuon—an Vy) are gra |en_ts 0 t € potentigia ove
magnetostatic modes in ferromagnetic films. In particular,and k?e'OV.V. ;he pontOLﬂ:. The main point is that the_ dyadic
the inhomogeneous differential equation based on opetator polarizabilities in Eq.(10) are obtained on the bas:s of the
gives the excitation of the MSW by the external magneticsolution of quasistatic problems: the magnetizatioris a
field, and the excitation equation based on differential operafinction of the magnetostatic potentigl and the surface
tor M gives the excitatiorin ferromagnetic films with sur- €lectric charge densitys is also controlled by the MSW
face metallizationby the external electric field. process In a resonator. R R

Each MSW resonator with surface metallization may be A mutual orientation of the dipole momentsandm de-
considered as a quasistatic bianisotropic particle. Inducedends on the geometry of a ferromagnetic resonator, geom-
electric and magnetic dipole moments of the particle are reetry of the region of metallization, and also on the orientation

lated to the external electriE and magneticH fields as  of the bias magnetic fiel#,. When a parallelepiped-form
follows: MSW resonator withL>d, w and a narrow metallic strip
[Fig. 1(@)] is used, we have a parallel orientation of induced

electric and magnetic dipole momentsin). For a cylindri-
cal MSW resonator with a circular form of the metallization
a region[Fig. 1(b)], one obtains a perpendicular orientation of
thus, the magnetic dipole momemd as a result of integra-  the vectors p.Lm) if the bias fieldH, is oriented normally
tion of magnetization of ferriten- over the volume of the with respect to the plane of a ferromagnetic film. MSW reso-
ferrite body of the resonator. The magnetization of ferrite isnators shown in Figs.(&t) and Xd) exhibit structures with a
related to the magnetostatic potential4%,21] lack of symmetry due to the geometry of metallization.
These resonators may be obtained with two enantiomorphic
forms of metallizatior{15].

Artificial materials based on thin-flm MSW resonators

neX[(Vi) = (V) D1=]E, (13

P=ee E+ demH; M=apeE+apyH. (10

One obtains the dyadic polarizabilitiés,, and a,, (and,

Me=—(Z— 1)V, (1D)

wherel is the unit matrix. The dyadic polarizabilitie®, .
and ., and, as a result, the electric dipole moméntare

have planar structures exhibiting magnetoelectric properties.
Since components of the permeability tengorin ferrites

found on the basis of an integration of the surface chargelepend on the field:IO, magnetoelectric properties of bi-
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MSW resonator
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FIG. 2. Bianisotropic composite with randomly distributed lax ] Dielectric substrates
MSW resonators. MSW resonator

anisotropic materials may be tuned via the bias field varia- FIG. 3. Bianisotropic composite with aligned MSW resonators
tion. Figure 2 shows an example of the proposed MCBMgbianisotropic crystal lattice

with randqmly distrib_uted MSW resonators. Th? MC.BMS (iii) Finally, suppose that anisotropic resonators depicted
are concelvgd as a pile of dielectric substrates with thm-_ﬂqu Figs. 1c) and Xd) are randomly distributed in thez
ferromagnetic objects. The MSW resonators are deplctec? s o

schematically without concrete delineation of the resonato lanes withH, parallel to they axis(Fig. 2). Let the MCBM

shape and the metallization configuration. The particulat(?neg rflgrrg;s.smatlve. The constitutive dyadics have the follow-
composite shown can be homogenized into a material con- ’
tinuum. When noninteracting MSW resonators in a material €7 0 e, ur 0 ipp
are assumed, the Maxwell-Garnett approach can be used for , - ,

e=| 0 e O w=| 0 my O

estimating the effective constitutive parameters of the

MCBM [23-25; —ie, 0 € —ipp 0 u}
P=c.E+£H, & 0 &
. L el &= 0 0 0], 7=¢, (17)
B=x-H+{-E. (14 g 0 &

The constitutive dyadics are frequency dependent. Let ugrhere the asterisk denotes the complex conjugate.
restrict ourselves here to the qualitative description of some MCBMs made of MSW structures with lack of symmetry
special MCBMs with randomly distributed resonatpts). [Figs. Xc) and 1d)] may be characterized as planar
(i) Suppose that the MCBM is made by randomly distrib-gyrotropic-chiralmaterials. In these materials, gyrotropic ef-
uting very elongated parallelepiped resonatfffiy. 1(a)],  fects are combined with geometric effects caused by the lack

with H, parallel to they axis (Fig. 2. Assuming the MCBM of reflection symmetry of surface metallization. Such struc-

T . o ; tures are essentially different from the chiroferrite or chiro-
webger:ondlssmatlve and reciprocal bianisotropic méag, plasma medium conceived by Enghetzal. [27].

We have carried out the qualitative description of some
special MCBMs with randomly distributed resonators. Our
further consideration will be devoted to quasistatic and dy-
e=| 0 e Of, =0 wu, O], namical field theories of a three-dimensional regular array of

0 0 o quasistatic bianisotropic particles. The analysis may be used
M1 for the calculation of the constitutive parameters of MCBMs
with crystal-lattice structures. Figure 3 shows an example of
& 0 0 such a structure.

=il 0 0 0|, 7=-¢ (15
ll. THE LORENZ-LORENTZ MODEL
0 0 & FOR BIANISOTROPIC CRYSTAL LATTICES

(i) Let us consider the cylindrical MSW resonators of  The orenz-Lorentz theory is a static field theory which
Fig. 1(b) instead, withH still parallel to they axis. When provides a solution that takes into account only the dipole
nonhomogeneous magnetostatic oscillations take place in therm in the induced field. The results of this theory are valid
resonatorg11,21], the constitutive dyadics of the MCBM only for obstacles with dimensions small compared with
take the form their spacing. Being well developed for dielectric media

[10,17], the Lorenz-Lorentz theory may be successfully ex-
& tended to bianisotropic crystal lattices when every bianiso-
- o tropic particle is described quasistatically and is considered
0, ¢=-¢ (16) as ad-functional dipolar scatterer. Crystal lattices based on
0 MSW resonatorgor, in other words, the MCBM crystals
show an example of such materials.
€ and i have the same form as shown in Ef5). Consider a three-dimensional regular array of identical

o o o

0
g=i| 0
2
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dipolar bianisotropic scattering elements in some homoge- A =i— . .Cc— &em Cpr-(1 = @ Ct) ™ - @me- Ce

neous and isotropic host media characterized by the permit- (26)
tivity e (in a particular case= €y) and the permeability.

The spacing between elements are denoted»sAy, and Aml—g Co—a Coll—g..Cot.g. .C

Az. The elements are identified by the integer indices ' 2 = mm M~ @me™E (I~ aee Ce) - dem M('27)

k,n,I[ —oo<(k,n,l)<«]. Every dipolar scatter is considered
as ad source. LeE® andH® be the effective electric and  The interaction constanfg and Cy, will be defined be-

magnetic fields, respectively, acting to polarize and magnemw. Now we consider a material-continuum approach for a
tize the particle at the origin. For induced electric and magthree-dimensional array. Polarization and magnetization per

netic dipole moments one can rewrite Ef0) as unit volume are defined as
P=dee B+ dem H'®, B=Np=N(7.o E@+ 7, - H(©),
(28)
M= &pe E©+ &y H®. (18)

M=Nm=N(Vpe EQ+ pym H®),

Let E© andH(® be the electric and magnetic fields in the
host medium. These fields are considered as the extern L s per unit volume
electric and magnetic fields applied to a condensed mediu Thep average electr-ic displacement and the average mad-
quasistatically modeled as a triple periodic array of dipoles. . ge ISP 9 9

R - - i netic flux density are defined by
The effective fieldE® andH(® are equal, respectively, to

EO+EM andHO+H®, whereE® andH® are the inter-

here N=1/AV=1/(AX)(Ay)(Az) is the number of par-

) ( 1ere _ Inter: D=€eEV+P,
action electric and magnetic fields. These interaction fields (29
are proportional, respectively, fo andm: R -
prop p Yy, @ B:MOH(at)"'Ma
EO=Cg-p, A N
whereE{" andH{" are the average values of the total elec-
HO=C,,-m (19)  tric and magnetic fields. These fields may be represented as
where tensor€g andC,, are the so-called interaction con- EV=EQ+EP, 30
stants. Now we can write (30
e 5O — 5O 4 5P
P=dee (EV+Cg-p)+ dem (HO+Cy-m), 2

(20)
where E{” andH{® are the average values of the electric
and magnetic dipole field produced, respectively, by all elec-
We obtain two vector equations linking induced dipoletrIC and al[ mggnetp d'pOIE.’S' . .

> S ; ) For a bianisotropic particle that is symmetrical about the
momentsp and m with the external applied electric and ¢qordinate planes passing through the center of the particle,
magnetic fieldsE® and H®. This linear system of two the average electric and magnetic fields produced by all in-

-

M= e (EQ+Cg- )+ Gmm (HO+Cyy - m).

vector equations may be inverted to yield duced dipoles is zero. It becomes clear from electrostatic and
magnetostatic points of view for the three-dimensional bi-
P=Vee E©Q+ Vg HO, anisotropic lattice. In each unit cell, the induced electrostatic
potentiale and the induced magnetostatic potenttahay be
M= Ve EQ+ oy H@, (21)  developed into three-dimensional Fourier series. For electric
dipoles, such an analysis was mad¢lid]. Let, for example,
where the dyadic%ee, Vem: Vme, and vy, are given by an induced electric dipole have tlyecomponent. The in-
~ . ~ duced electrostatic potential will be an odd function ofy
Vee=A; ' [ @eet @em C- (1 — @mm- Cw) "1+ @mel, because of the symmetry involved. Theeomponent of the

(22) induced electric field is given by derivativép/dy and is
~ . ~ expressed by cosine terms that dependyornn result, the
,Tem:Azl.[geer Tom Cm- (1 = @mm Cwm) ™ @mmls average induced electric field in the unit cell is zero. A simi-
(23 lar analysis will be made for the andz components of an
induced electric dipole. It is clear that for induced magnetic
ime=Ag L[ @met @me: Ce+ (1 — doe Ce) "L+ e dipoles, one has a similar magnetostatic problem. If, for ex-
(24) ample, an induced magnetic dipole has yheomponent, the
induced magnetostatic potentialwill be an odd function of
Trm= Ay L[ @mm+ @me: Ce+ (1 — Fee Cg) 1+ e y. They component of the induced magnetic field is given
(25) by derivative d¢//9dy and they component of the average
induced magnetic field is zero. The same analysis is possible
and for the x andz components.
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In view of the above consideration and taking E(8) . t . . R
and (29) into account we can characterize the bianisotropic ~ Di(t,r)= f_ dt'f dr'e;(t,r,t’,r")E;(t',r’)
three-dimensional lattice by the effective constitutive rela-

tions t - - - -
+f dt’fdr’gij(t,r,t’,r’)Hj(t’,r’),
o - (36
D= eo- EV+ 8- H?, ot ) o R
(32) Bi(t,r):f dt’f A’ g (LU T E (1)
éZEeﬁ'é(o)+ﬁeﬁ'ﬁ(0)v t - - -
+f dt’fdr’,uij(t,r,t’,r’)Hj(t’,r’).
where [It should be noted that hess; is not the same as the kernel
in Eq. (2).] For time-invariant and spatially homogeneous
- - bianisotropic media, we have
€cti= €l + Nvgg, (32 P
D(,K) = (@,K)-E(w,K) + Ew,K)-H(w,K), (37
5eff:N;em: (33 ~ . e L = N . = R
B(w,k)=(w,k)-E(w,k)+ i(w,k)-H(w,k), (38
B’eﬁ: N7 me, (34)  where tildes denote the Fourier images.
Now the question arises of whether one can obtain bi-
anisotropic media which are described by relati(8&—(38)
o ILLOTJF NP (35) and for which the long-wavelength limit
0,0 —0=ew), &wK|g-0=Ew),
The condensed matter quasistatic theory based on the fact - - .. .
that the actualor, in other words, localfield causing polar- {w,K)|K-0={(w), wlwk)|g_o=mw), (39

ization of a particle is different from the macroscopic field, is ) o
known as the Clausius-Mossotti equation in connection witfEXists. In such a case; the time-domain integral relatia@
electrostatics, or as the Lorenz-Lorentz equation in connecd@ be considered as a particular case of @6) for the
tion with electromagnetic theof0,1§. The same approach 0ng-wavelength limit. _ .
is used in the Maxwell-Garnett model. The Maxwell-Garett  FOr a time-invariant and spatially homogeneous medium,
model originally introduced for simple isotropic spherical the kernelse;; (t',r"), &;(t',r’), &;(t',r’') andu;;(t’,r’) in
scatterers was extended for isotropic chiral and biisotropi€&d. (36) may be interpreted as “responses” of the medium
composites|7,28]. For bianisotropic composites with ran- to the Dirac é-functional electric and magnetic field80].
domly dispersed electrically small uniaxial bianisotropic in- The local character of these “response functions” shows that
clusions in the isotropic host material, the Maxwell-Garnettconstitutive parameters in E¢36) have to be obtained on
model is available in the literatur®4,25. Our model de- the basis of solution ofjuasistaticproblems. As was dis-
scribes the effective constitutive parameters of bianisotropieussed in Sec. |, not one of the known biisotropic and bi-
crystal lattices with(as a general cas@onuniaxial bianiso- —anisotropic mediachiral, Tellegen, and) mediag can be
tropic particles. The only assumptions made so far about théescribed by local quasistatic parameters. There are, how-
structure of the polarizability dyadics of every particle areever, the MCBMs which are describgdasistatically When
that all inverses in Eqg22)—(27) exist. An analysis of par- the integral-form constitutive relations are not introduced
ticular cases whether the necessary inverses exist or not, igrmally, but describe real bianisotropic materials, physical
beyond the scope of the present consideration. effects, based on relation86), may be analyzed. It was
Another important question also arises in our analysisshown[12], for example, that for the gquasimonochromatic
There is a question about the coefficie@s andC,,. The  €lectromagnetic field, the energy transport in bianisotropic
calculation of these coefficients is far from straightforward.media is possible if components of complex envelopes sat-
We will evaluate the interaction constants below in Sec. VI.isfy certain differential relations.
It will be shown, in particular, that because of symmetry, the When bianisotropic constitutive parameters have the local
coefficientsEE and 6’M are diagonal tensors. quasistatic limit, a d)_/nam|cal model of bianisotropic crystal
lattices may be realized. For such a purpose, an approach
based on the field discretization develope@2f] for dielec-

IV. SPATIAL DISPERSION AND EIELD DISCRETIZATION tric crystal lattices may be successfully used for bianisotropic

IN BIANISOTROPIC MATERIALS crystal lattices. . . .
Let us consider spatially homogeneous bianisotropic me-

As a general description, one can formally introduce thedia as a linear system of space signal proces@ogposing
integral-form constitutive relations for bianisotropic media, that the causality principle is taken into accqurwe can
similarly to relations(2) for dielectrics[12,13: rewrite Eq.(36) as
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Di(F):Ll[J dF’&(F—F’)Ej(F’)} X 8(x—KkAX)8(y—nAy)8(z—1Az), (45)

e e HO(r) = HY(kAx,nAy,IAz
+L2[Idr,5(r—r')Hj(r')}, (40) 5 (") zw n;oc k;oo a( y142)

X 8(x—kAX)8(y—nAy)8(z—1Az).  (46)

Bi(r):LSU dr’&(r—r’)Ej(r’)} For thei components of electric fields(® ,E{” and the

magnetic fieldsH{” andH{ in Eq. (30) we have similar
, (4D expressions denoted, respectively, &$),E{” and HY,
Hgf’). Because of the linearity of relationships, one has
whereL, (p=1, 2, 3, 4 are linear operators describing trans-
formation of an input signalK;,H;) into an output signal E(S$>:E<S_0)+E<Sp),
(Di,B;). Since operatord , are linear operators, one can ' ' ' (47)
consider constitutive tensors in E@6) as the so-called ap- HO—HO ;4@
paratus functions or impulse-response functif8ts 32 Si Si S

+L,

de'a(F—F')Hj(F')

The microscopic electric and magnetic dipole moment

densitiesﬁmiC and rﬁmic are expressed as sequences fafnc-
tions[34] and, therefore, are represented as a series of sam-
plings. For thei component we have

e (r=r)=Lyfo(r=r"], &(r—r)=La(r—r"],

Li(r=r)=La[ 8=, wmj(r=r)=L8(r—r")].
(42

When a bianisotropic medium is considered as a linear sys-(p_.).= > > > p;(kAx,nAy,1Az)§(x—kAX)

tem of space signal processing and modeled as a triple infi- I=—o0 n=—o k=—o

nite periodic array, components of continuous fields may be _ _

represented as sampling values on the basis of the procedure X 8(y—nay)s(z—1az)

shown in[20]. One can correlate the polarization and mag- =ps, (48)

netization of every bianisotropic particle with sampling val- '

ues of the effective electric and magnetic fields and define o o o

sampling vaIue_s of the e_Iectric_dispIacement anq the mag-im,)i= > > > mi(kAx,nAy,IAz)S(x—kAX)

netic flux density. All variables in the macroscopic electro- I=— n=—cw k=—w

dynamics are finite-spectrum functioffs9,20. In our case, _ _

this means that the Fourier images of all variables are equal X 8(y=ndy)a(z=1Az)

to zero for =mq, (49)

|4d>Qx, layl>Qy. lazl>Q:, @3 here p(kAx,nAy,1AZ) and m(kAx,nAy,|Az) are the

electric and magnetic dipole moments of the particle charac-

where q is the wave vector in the host material and terized by the numbers,n, .

Qx,Qy,Q; are the limiting cutoff numbers. If spacings be-

tween nodes of a lattice are satisfied with the conditions Now we define the sampling vectols, and Bs as
1 1 1 Dy=€EV+ Py, (50)
AXS ——, Ays—, Azs<_—, (44)
R T Ba= ok + M, 5D

the sampling theorem enables us to reconstruct the full Fo

rier spectrum of the electromagnetic field on the basis o here
discrete field samplingk20,33. 5
One of the main purposes of the further analysis is to 53:—5, (52
develop adynamical modebf bianisotropic crystal lattices. AV
The sampling theorem will be a powerful tool for this pur- .
pose. - Mg
M= AV (53

V. FIELD SAMPLINGS IN BIANISOTROPIC CRYSTAL . .
LATTICES All components of vectors in Eqg50), (51) are defined
similarly to Eqgs.(45), (46), and(48), (49). Taking Eq.(47)
For thei components of the total electric and magneticinto account, one obtains
fields, the field samplings are defined[2§)]

Be= [ EO+EP+ B, (54)

[ o ©

My = (t) N - - -
EJ(N= 2 2 2 Eyl(kaxnay,laz) B o HO+ AP+ M.

=—ow N=—00 k=—ox

(59
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The induced dipole moments of every particle are ex-

pressed by Eq(18). For the sampling functions we have
P ifow (B +BL) + e (AP HL),

> _ e 2(0) 4 (i < 3(0) 4 5
M= e (EL +EY) + &y (HO +HY).

In a static model of bianisotropic crystals, we supposed .

that the interaction field& andH® are proportional, re-
spectively, to induced dipole momenﬁs and m [see Eq.

E. O. KAMENETSKII
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Bmm= szl. [@mmt @me: Ceer (1~ @ee Cee) ™+ @eml,
(64)
and
Flzl _Eee' Cee_ Eem'Cmm'(I_gmm mm) a’me eer
(65
F2:|_Emm’cmm_§me' Cee'(l_a‘)ee ee) aem mm-
(66)

(19)]. In a dynamical model, we have to suggest that a more Expressiong59) and (61)—(66) are the same form as ex-
general type of relationships between the interaction fieldgressiong20) and (22)—(27) of the static model. We have,

and induced dipole moments, takes place:

>

E(I e 5 EEem'mr

(57)

-

e’ p+Cmm' m,

>

HO=C,

where coefficient&ee, Eem, Eme, andEmmare dependable
on the wave vectoﬁ. For the long-wavelength limit, one has

Ceelqﬂo= Ce, Cem|qH0= 0,

Cme|qe0: 0, Cmm|qHO: Cu-

It will be shown, however(seg theenext section of the
papej that because of symmetrg,.,,.=C,,.=0 for all val-

ues of the wave vectay. Taking this into account, we can
rewrite Eq.(57) for the sampling functions

- >

E(si) =Cee Ps,

(58)
A= o .

Substitution of Eq(58) into Eg. (56) gives a system of two

vector equations linking the sampling functions of induced
dipole moments with the sampling functions of the external

applied fields:

55.: Eee' (E(50)+ Cee' 53) + Ezem' (H_)gO)_F Cmm' I’ﬁs), (59)

rﬁs: Eme' (E(SO) +Cee 55) + Emm' (ﬁgO) + Crm rﬁs)
This system of equations may be rewritten as

=Bee EQ+ B HY

= Brme EL + B HY (60)

where

b e,
(61)

[@eet @em Cnm (I = &mm Crom) ~

o e
ﬁee_Fl

-

—1 - - < o
1 [@emt dem Conme (I = @

b il
(62

Bem=F Cmm ™

Eee) -t Eee]v
(63)

2 [dmet @me Ceer (I — ager

Bme=F !

however, different interaction constants for the static and dy-
namical models.

The sampling functions of the polarization and magneti-
zation per unit volume are

F_Ss:NE)s: N(,Bee' E(s())""ﬁem'|__i(50))' (67)

Ms=NmMy=N(Bre EL'+ Brm H).

Now let us define the field&® andH{ in Egs.(54) and
(55). The dipole fieldsE® H(™ are equal, respectively, to
the sums of interaction field5"),H() and dipole fields, pro-

duced by the particle located at the origi),H™. It was
shown in[20] that for an electric dipole the sampling func-

tion E(M is equal to zero. Obviously, for a magnetic dipole,
we have the same situation, that is, the sampling function
H is equal to zero as well. So, one can write tR4Y and
H{ are, respectively, equal B’ andH{ . Keeping only
radiated(curl) parts ofE(P andH{" we have

- -

EP)=AV(Cee— Cg)- Ps,

(68)
ng): AV(Emm_ E:)M) : Ms-
At the quasistatic limit ¢—0), one haEP=H{P =0.
Taking into account Eqg67) and(68), we can represent
Egs.(54) and(55) as

Dy(F) = Kee @) - EL(1) + Ken(@)- HO(r),

(69
Bo() = Kmd @) - EL/(1) + K@) - HO(),
where
Ked @)= €[i +(Coe=Ce) Beel *NBee,  (70)
’?em(a):G(éee_EE)’Eem'l'NEemu (71)
’?me(a)zﬂo(emm_éenl)'Eme+NEmer (72)
’?mm(a):/io[r""(émm_eM)'Emm]"'NEmm- (73

Hereq is considered as a parameter. One can see that for
gq=0 tensorsKee,Kem,Kme,Kmmcorrespond respectively, to

tensorSeeﬁ,aeﬁ,beﬁ Mot IN EQ. (31).
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When the sampling functior®(r) andB(r) are known,

one can reconstruct the Fourier spectrum of the electric disg

pIacementD(q) and magnetic flux densnﬁ(q) On the
basis of the sampling theorem, one 26,31-33

D) =[Red @) EQ+ Ranf@)- HO(G)]AV
“A a1 20502
12Q,/12Q,)"1 2Qz

Ox ( Ay )( d, )

20x/"12Qy/)"1 2Qz)
B(0) = [ Rl §) - EQ+ Rl @) - HO(G)]AV
L
12Q,)12Q,/"1 2Qz

Oy ( ay )( qz)
20x/"12Qy/"1 2Qz)"

where,- denotes the rectangle function.
These expressions may be rewritten as

(74

sg(amv/(

(79

EE(&)AW(

D(q) Keeld 3)-E ©(q) + Ker(Q) - H<°’(q)

(76)
B(q) = Reel @) - E(Q)+ Ken @) - HO(0).
The fieldsE©(q), HO(q), EL(q), andH®(q) in Egs.

(74—(76) are the Fourier images of the fields°)(r),
HO(r), EQ(r), andHO)(r), respectively.
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When we consider tensoi&«(q), Ker(d). <me(d), and

(6) as the Fourier images of certain original functions,
respectively, Keol), Kem(f), kme(r), and Kmu(r), the
convolution-form expressions based on EZf), take place.
These expressions may be considered as an analog of Eq.
(36) for time-invariant and spatially homogeneous media
when the causality principle is taken into account.

VI. EVALUATION OF THE INTERACTION CONSTANTS

We have developed the static field theory of bianisotropic
crystal lattices supposing that the interaction tensysand
Cw are known. Similarly, we have developed a dynamical
model of blanlsotroplc crystal Iattlces supposmg that the in-

teraction tensorﬁ:ee(q) Cem(q) Cme(q) andem(q) are
known as well. Now the question about evaluation of the
interaction constants arises. In our further analysis, we will
evaluate the interaction constants separately for static and
dynamical models of bianisotropic crystal lattices.

A. The interaction constants for the static model

The interaction tensor€g and Cy, are given, respec-
tively, from summations of the static electric and magnetic
fields due to the array of bianisotropic particles. Taking into
account the electric-dipole and the magnetic-dipole fields in
the quasistatic limif10], one can rewrite Eq.19) as

> > >

= . 1 & - w 3uup-
G 3 3 3 2 @
e .1 & . 3u(u-m)—m
CM.m_ E I:Zoc n=—o0 K== r§m| ’ (78)

Expression(76) may be considered as an analog of for-where the primes indicate omission of the terms viithn
mulas(37) and(38) used for spatially dispersive continuous =|=0, u is a unit vector directed along the radius-vector
bianisotropic media. In our case, however, the wave Vegtor r, | andr,,, is a distance from the particle at the origin to
and the field€(®,H(® do not correspond to the wave vector the particle characterized by numbérs, |.
and the fields in the medium. There are the wave vector and For they component, for example, we can rewrite Eq.
the fields in the host materigbacuum, in a particular case (77) as

o o o

(Ce-ply= 4776.2 > 2

—© N=—o k==

3[(kAX)(NAY)py+(nAY)2py+(nAY)(1AZ)p,]—[(kAX)*+(nAy)? +(|AZ)2]py
[(kAx)2+ (nAy)%+(1A2)%]%?

(79

Since the indices in Eq79) run equally over positive and negative values, the cross terms involkihg)(nAy)p, and
(nAy)(1AZz)p, vanish. This gives in result the interaction constant as a diagonal tensor. One can rew(it6) &s.

© ©

-1 2(nAy)2— (kAx)?—(1Az)?
(Celvy=1me zw N k=zoo [(KAX)Z+(nAy)Z+ (1AZ)2]5?

(80)
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The similar series in the right-hand sides, one has fofFig. 1(@)] or cylindrical MSW resonator§Fig. 1(b)], one
other components of the diagonal tengdg and also for can use an analysis of two-dimensional strip-type or disk-
components of the diagonal tensdy, . The calculation of ~type artificial dielectric§17]. Thus, the calculation of the
such series is far from straightforward and has been the sulluasistatic interaction constants in bianisotropic crystal lat-
ject of many works. A detailed consideration and a list oftic€ may sufficiently be based on the well-developed static
relevant references concerning an analysis of the quasistafi@eory of artificial dielectrics. Such a detailed analysis of
constants can be found [17]. concrete structures is beyond the scope of the present con-

For magnetostatically controlled bianisotropic media de-Sideration.
scribed in Sec. Il, a useful approach may be used to avoid the
difficulty of handling serieses of typ@80). This consists of
the assumption that the principal contribution to the interac-
tion fields acting on the particle at the origin comes from To obtain the interaction constants in the dynamical
those particles which lie in the same plane, i.e., the model of bianisotropic crystal lattices, one has to take full
=const in Fig. 3. This assumption may be well satisfiedexpressions for the electric and magnetic fields radiated by a
since the MCBMs are conceived as a pile of dielectric subcombination of electric and magnetic dipole sources. On the
strates with planar ferromagnetic objeft,15. In particu-  basis of known expressions for such fie[d$], we can re-
lar cases of very elongated parallelepiped MSW resonatorgrite (57) as follows:

B. The interaction constants for the dynamical model

oo

o 2 e .1 S e o o1 i2mg) . . . . 47%g? L.
Cee'P+Cemm=7— 2 2 2’ {[3u<u-p>—p](T——)—[u(u-p)—p] —Voe(uxm)
|=—o n=—% k=—» Mkl Ikni Mkni
14— )quz} Hi 27 ) 81
e — exp(i Fent),
2wl Tknl T4 kn
E 54 e — i i § Vioe(Ux p)| 1+ | ) quz+ 30(U-m)—m 1 _12m
me P mm 4ar |=—w n=—o0 k=—o Moetl P 2’7Tqun| Mkl [ U(u ] rEm Mkni
L 242
—[u(u-m)—m] e }exp{iZqukn,), (82
n

Obviously terms with vector productsx m andux p are VIl. CONCLUSION
equal to zero since the indices run equally over positive and Among a number of known temporally dispersive bi-
negative values. For this reason, the cross terms inVOIVi”Qnisotropic media, there are a class of bianisotropic
terms kAx)(nAy)px,(nAy)(I1AZ)p,, etc., vanish. As are-  composites—the MCBMs—which may be describgubs-
sult, we have thaC.,=C,.=0 and thatC., andC,,,, are istatically. This makes it possible to realize homogenized
diagonal tensors. dense materials with randomly distributed or aligned bianiso-

In our consideration, the tenso@«(q) andCp(q) are  tropic particles. o _ .
the finite-spectrum functions. This means that faog| A bianisotropic crystal lattice is one of the interesting
>Qy, |qy|>Qy: |9,>Q, the interaction constants are structures of such materials. In this paper, we developed ap-

equal to zero. Let the limiting cutoff wave numbers are deProaches for an analysis of static and dynamical models of
fined as bianisotropic crystal lattices. The static model is based on the

Lorenz-Lorentz theory and describes the effective constitu-
tive parameters of bianisotropic crystal lattices witis a
1 1 general casenonuniaxial bianisotropic particles. In such a
U=5r Q=5 Q=5—. (83)  general consideration of the static model, however, a ques-
2Ax 2Ay 2Az tion regarding the convergence of series describing the inter-
action tensors arises. For same particular cases one can use
well-known results obtained in the theory of artificial dielec-
One can carry out an analysis similar to the analysis madgics.
in [29]) for dielectiic crystal lattices. The components of ten- Two ways may be used for the description of the electro-
sorsCee((i) and Cmm(ﬁ) are described by expressions of a magnetic field-condensed media interaction. One way is to
form similar to Eqs(43) and(44) in [20]. Therefore, one can get over a discrete structure of a medium by the averaging
see that in the dynamical model of bianisotropic crystal latprocedure and another way may be conceived as follows: to
tices, the components of the interaction tensors are the Fouliscretize the fields on the basis of discrete structure of a
rier images of rapidly convergent series. medium. When initial restrictions to the wave number spec-
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trum take place, one can use the so-called sampling theoreses of spatially dispersive bianisotropic media.

for a medium modeled as a triple infinite periodic array of Here we discussed only the electric and magnetic dipole

identical 5-functional scattering elements. fields. The vector multipole fields are beyond the scope of
The dynamical theory of bianisotropic crystal lattices isthe present analysis and may be the subject of future inves-

based on the use of the sampling theorem similarly to théigations.

approach developed if20] for dielectric crystals. As the

main results of our dynamical model, one has the effective

constitutive parameters of bianisotropic composites depen-

dent on the wave vector in the host material. This makes it This paper was partly supported by the Ministry of Sci-

possible to use this constitutive parameters for further analyence in Israel.
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