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The Hamiltonian of the wurtzite quantum dots in the presence of an external homogeneous magnetic field is
given. The electronic structure and optical properties are studied in the framework of effective-mass envelope
function theory. The energy levels have new characteristics, such as parabolic property, antisymmtric splitting,
and so on, different from the Zeeman splitting. With the crystal field splitting energy �c=25 meV, the dark
excitons appear when the radius is smaller than 25.85 Å in the absence of external magnetic field. This result
is more consistent with the experimental results reported by Efros et al. �Phys. Rev. B 54, 4843 �1996��. It is
found that dark excitons become bright under appropriate magnetic field depending on the radius of dots. The
circular polarization factors of the optical transitions of randomly oriented dots are zero in the absence of
external magnetic field and increase with the increase of magnetic field, in agreement with the experimental
results. The circular polarization factors of single dots change from nearly 0 to about 1 as the orientation of the
magnetic field changes from the x axis of the crystal structure to the z axis, which can be used to determine the
orientation of the z axis of the crystal structure of individual dots. The antisymmetric Hamiltonian is very
important to the effects of magnetic field on the circular polarization of the optical transition of quantum dots.
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I. INTRODUCTION

Ever since colloidal quantum dots were achieved, such
nanostructures have become a major subject of attention be-
cause of their prospective application in devices. Xia1,2 in-
troduced the Baldereschi-Lipari3 Hamiltonian to investigate
the electronic structure of quantum dots.

Recently much attention has been paid to the optical prop-
erties of dots. Circular polarized emissions of quantum dots
were observed in experiments.4–7 Most of these experiments
were done under magnetic field. Up to now, several different
theoretical models have been used in the study of the elec-
tronic structure of dots under magnetic field. About 50 years
ago, Luttinger8 proposed the quantum theory of the cyclotron
resonance in semiconductors. He introduced the symme-
trized product and the antisymmetric Hamiltonian. Whaley
et al.9,10 calculated the g-factor of quantum dots using the
tight-banding method. Early on, Efros et al.11 studied the
effects of magnetic field within the framework of single-band
effective-mass approximation. Recently, Efros et al.12 stud-
ied the structure of the electron quantum size levels in the
framework of the eight-band effective-mass model13 at zero
and weak magnetic fields. But until now, a useful theoretical
model, taking into account all effects of magnetic field no
matter how strong in the framework of the six-band
effective-mass envelope function theory, has not yet been
introduced.

In this paper, we introduce a theoretical model in the
framework of the six-band effective-mass approximation,
which takes into account spin-orbit coupling �SOC�, spin-
Zeeman splitting, and symmetric and antisymmetric Hamil-
tonians in the presence of external magnetic field. The re-
mainder of this paper is organized as follows. In Sec. II we
give the form of the Hamiltonian. Our numerical results and

discussions are given in Sec. III. Finally, we draw a brief
conclusion in Sec. IV.

II. MODEL AND CALCULATION

If we take the basic functions of the valence-band top as

�1,1� = �1/�2��X + iY� , �1a�

�1,0� = Z , �1b�

�1,− 1� = �1/�2��X − iY� , �1c�

the effective-mass Hamiltonian2 of the hole in the zero SOC
and zero magnetic field case is written as

Hh0 =
1

2m0�
P1 S T

S* P3 S

T* S* P1
	 , �2�

where

P1 = �1p2 −�2

3
�2P0

�2�, �3a�

P3 = �1�p2 + 2�2

3
�2�P0

�2� + 2m0�c, �3b�

T = �P−2
�2� + �P2

�2�, �3c�

T* = �P2
�2� + �P−2

�2�, �3d�

S = Ap0P−1
�1� + �2�3�P−1

�2�, �3e�
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S* = − Ap0P1
�1� − �2�3�P1

�2�. �3f�

P�2� and P�1� are the second- and first-order tensors of the
momentum operator, respectively. p0=�2m0�, �=40 meV.
The effective-mass parameters2 for CdSe are given in Table
I. The matrix elements of all tensors of operators in this
paper are given in Appendix B. The SOC Hamiltonian is
written as

Hso =�
− � 0 0 0 0 0

0 0 0 �2� 0 0

0 0 � 0 − �2� 0

0 �2� 0 � 0 0

0 0 − �2� 0 0 0

0 0 0 0 0 − �

	 . �4�

Here, we take the basic functions as �1, 1� ↑, �1, 0� ↑,
�1,−1�↑, �1, 1� ↓, �1, 0� ↓, and �1,−1�↓. The envelope func-
tions are

�h = 

M=m+1/2



l,n �

al,n,m,↑Cl,njl�kn
l r�Yl,m−1��,	�

bl,n,m,↑Cl,njl�kn
l r�Yl,m��,	�

dl,n,m,↑Cl,njl�kn
l r�Yl,m+1��,	�

al,n,m,↓Cl,njl�kn
l r�Yl,m��,	�

bl,n,m,↓Cl,njl�kn
l r�Yl,m+1��,	�

dl,n,m,↓Cl,njl�kn
l r�Yl,m+2��,	�

	 . �5�

M is the z component of the total angular momentum. The
effective-mass Hamiltonian of electron is written as

He0 =
p2

2ma
−

1

2mb

�2

3
P0

�2�, �6�

where

1

ma
=

1

3
� 2

mx
+

1

mz
� , �7a�

1

mb
=

1

3
� 1

mx
−

1

mz
� . �7b�

We take the basic functions as S↑ and S↓; S is the Bloch
state of the conduction-band bottom. The envelope functions
are

�e = 

m



l,n
�el,n,m,↑Cl,njl�kn

l r�Yl,m��,	�
el,n,m,↓Cl,njl�kn

l r�Yl,m��,	�
� . �8�

For simplicity, hereafter we assume that the external mag-
netic field is applied in the x-z plane of crystal structure. If �
is the angle between the orientation of the magnetic field and
the z axis of the crystal structure, then the components of the

magnetic field are Bz=B cos �, Bx=B sin �, and By =0. For
quantum spheres, we can choose the symmetric gauge, so
that the vector potential is written as

A = �−
1

2
Bzy,

1

2
Bzx −

1

2
Bxz,

1

2
Bxy� . �9�

In the presence of external magnetic field, the momentum
operator changes into p⇒p+eA. Because the different com-
ponents of p do not commute, then the p
p� terms in the
Luttinger Hamiltonian are not symmetric. Luttinger8 intro-
duced the symmetrized product


p
p�� =
1

2
�p
p� + p�p
� . �10�

He divided the Luttinger Hamiltonian into two parts, the
symmetric part and the antisymmetric part. The antisymmet-
ric part is simply written as

Hasym = K�BI · B . �11�

Hereafter we name it the antisymmetric Hamiltonian,
which introduces antisymmetric splitting. Luttinger8 gave the
forms of the components of I as the basic functions are X, Y,
and Z,

Ix = �0 0 0

0 0 − i

0 i 0
	 , �12a�

Iy = � 0 0 i

0 0 0

− i 0 0
	 , �12b�

Iz = �0 − i 0

i 0 0

0 0 0
	 . �12c�

If we take the basic functions as �1, 1�, �1, 0�, and �1,
−1�, the matrices change into

Ix =�
0 −

�2

2
0

−
�2

2
0

�2

2

0
�2

2
0
	 , �13a�

TABLE I. Parameters for CdSe in the actual calculation.

mx mz �1 �2 �2� � �1� �3� A ��meV� �c�meV�

0.1756 0.1728 1.7985 0.7135 0.7970 1.4492 2.166 0.3779 0.6532 139.3 25
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Iy =�
0

�2

2
i 0

−
�2

2
i 0 −

�2

2
i

0
�2

2
i 0

	 , �13b�

Iz = �1 0 0

0 0 0

0 0 − 1
	 . �13c�

The whole Hamiltonians of the electron and hole are re-
spectively

He = He0 + Hmm�e + HZeeman�e, �14�

Hh = Hh0 + Hso + Hmm�h − Hasym − HZeeman�h. �15�

Hereafter we take the negative hole energy as positive.
The terms Hmm�e, Hmm�h, HZeeman�e, and HZeeman�h are given in
Appendix A.

III. RESULTS AND DISCUSSIONS

We calculated the electronic structure and optical proper-
ties of wurtzite quantum dots in the presence of external
magnetic field. The unit of energy is


0 =
1

2m0
��

R
�2

. �16�

We use the dimensionless magnetic field

b =
�eB

m0
0
. �17�

A. Electronic states

The energies of the electron states of CdSe quantum
spheres with any radius as functions of b when cos �=1 are
shown in Fig. 1�a�. We do not take into account the spin
Zeeman splitting as it is very simple. As we use the energy
unit 
0, the energy levels are independent of the radius. The
symbol of each energy level represents the main components
of its wave function. For example, �1, 0, 0� means that the
state consists mainly of the n=1, l=0, m=0 state of the
effective-mass envelope function multiplied with the S Bloch
state of the conduction-band bottom. At b=0, the energies of
the states with different �m� and same n, l split. The energies
of the states with bigger �m� are lower. This is because of the
second-order tensor of the momentum operator in the
effective-mass Hamiltonian of the electron. If mx=mz, then
the energy levels with different �m� and same n, l are degen-
erate, due to the second term in Eq. �6� equal to zero. In the
case of CdSe the mx and mz differ little as shown in Table I,
so that the splitting of energy levels with different �m� is very
small, as shown in Fig. 1�a�. As b increases, the energies split
further due to the m ·b terms in Hmm�e. The energies of the

states with bigger m are higher. The energy levels have para-
bolic property due to the quadratic terms of b in Hmm�e. The
energies of the electron states of CdSe quantum spheres with
any radius as functions of b when cos �=1/2 are shown in
Fig. 1�b�. The spin Zeeman splitting is also ignored. Com-
pared with Fig. 1�a�, We see that the energy levels almost do
not change. The states mix up due to the magnetic field com-
ponent perpendicular to the z axis of the crystal structure.

B. Hole states

The energies of the hole states of CdSe quantum
sphere with radius of 21 Å as functions of b for M
=−3/2 ,−1/2 ,1 /2 ,3 /2 are shown in Fig. 2. Here we assume
that the external magnetic field is applied along the z axis of
the crystal structure. As we choose the symmetric gauge, M
is a good quantum number. The energy levels are dependent
on the radius as we use the energy unit 
0 due to the SOC
Hamiltonian and the crystal field splitting energy �c. The
calculation by Whaley et al.9 shows that the g-factors of the
hole of CdSe quantum dots are nearly 2. So here and later we
use Kz=1 and ghz=2 for simplicity. The symbol of each en-
ergy level represents the main components of its wave func-
tion. For example, Sx+1↑ means that the state consists mainly
of the n=1, l=0 state of the effective-mass envelope function
multiplied with the �1, 1� Bloch state of the valence-band top
and the spin-up state. Then we see that the energies of the
states with M = ±1/2 and M = ±3/2, which are degenerate at
b=0, split as b increases, due to spin Zeeman splitting, anti-
symmetric splitting, and the b and b2 terms in Hmm�h. The
lowest energy levels of the states with M =1/2 ,3 /2 go
down in comparision with those of the states with M
=−1/2 ,−3/2. The energy levels have a parabolic property
due to the b2 terms in Hmm�h.

The lowest two levels of the hole states are shown in Fig.
3�a� to see the details. It is interesting to notice that, at b
=0, the hole ground state is optically passive, which is in
agreement with the dark exciton theory.11 Actually, at b=0,
when the radius is smaller than 25.85 Å, there are dark ex-

FIG. 1. �a� Energies of electron states of quantum dots as func-
tions of b �cos �=1�. �b� Energies of electron states of quantum dots
as functions of b �cos �=1/2�.
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citons. The critical radius is smaller than 30 Å calculated by
Xia,2 because we use �c=25 meV, different from 40 meV
used by Xia.2 But when b�1, the hole ground state changes
into Sx+1↑ with M =3/2, which is optically active. With the
optical transition between a given electron state and a given
hole state, the transition probability is proportional to


l,n,m,s�al,n,m,sel,n,m,s+dl,n,m,sel,n,m,s+bl,n,m,sel,n,m,s��2, and s
represents the spin state, ↑ or ↓. Multiply the Boltzmann
distribution factor of each state and sum up all the contribu-
tions to the transition probability. The transition probabilities
at different temperatures as functions of b are shown in Fig.
3�b�. Around b�1 �about 74 T�, the transition probabilities
go up, which means dark excitons become bright. At higher
temperature, the transition probabilities go up more
smoothly. The 74 T is too hard to realize experimentally.
Figure 3�c� shows that the critical magnetic field of larger
dots with radius of 25 Å, being about 8.4 T, is much smaller.
That is because 25 Å is not much smaller than 25.85 Å. We
see that as the temperature goes up, the transition probabili-
ties at b=0 increase very quickly, which means dark excitons
do not become very dark.

C. Circular polarization

Experimentally it is found that the circular polarization
factors of the optical transition of randomly oriented dots
with radius of 28.5 Å saturate at, about 0.8, other than 1 in
magnetic fields.4 It is very interesting because in zinc-blende
case, the saturation value of the circular polarization factors
in magnetic fields is 1. We attribute this saturation value of

0.8 to the asymmetry of the crystal structure of CdSe. We
represent the dipole transition operators of �+, �− polariza-
tions as

px cos � − pz sin � + ipy , �18�

px cos � − pz sin � − ipy , �19�

respectively, where � is the angle between the orientation of
the magnetic field and the z axis of the crystal structure. The
orientation of the wave propagation is always along the ori-
entation of the magnetic field. With a given cos � and the
optical transition between a given electron state and a given
hole state, the intensities of �+ and �− transitions are propor-
tional to

I�+ = � 

l,n,m,s

�al,n,m,sel,n,m,s�cos � − 1�/2

+ dl,n,m,sel,n,m,s�cos � + 1�/2 − bl,n,m,sel,n,m,s sin �/�2��2
,

�20�

I�− = � 

l,n,m,s

�al,n,m,sel,n,m,s�cos � + 1�/2

+ dl,n,m,sel,n,m,s�cos � − 1�/2 − bl,n,m,sel,n,m,s sin �/�2��2
.

�21�

FIG. 2. Energies of hole states of quantum dots �21 Å� as func-
tions of b. �a� M =−3/2. �b� M =3/2. �c� M =−1/2. �d� M =1/2.

FIG. 3. �a� The lowest two energy levels of hole states of quan-
tum dots �21 Å� as functions of b. �b� Transition probabilities of
dots �21 Å� as functions of b. �c� Transition probabilities of dots
�25 Å� as functions of b.
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Multiply the Boltzmann distribution factor of each state
and sum up all the contributions to the intensities. al,n,m,s,
bl,n,m,s, dl,n,m,s, and el,n,m,s are given in Eqs. �5� and �8�.

When cos �=1, I�+ = 

l,n,m,s�dl,n,m,sel,n,m,s��2, I�−

= 

l,n,m,s�al,n,m,sel,n,m,s��2, so that �1,−1� and �1, 1� in Eq. �1�
contribute to �+ and �− transitions, respectively. The ener-
gies of �1, 1� and �1,−1� split explicitly due to the antisym-
metric Hamiltonian. So the antisymmetric Hamiltonian is
very important to the effects of magnetic field on the circular
polarization of the optical transition of dots. We sum I�+ and
I�− over all orientations, respectively. The normalized inten-
sities of �− and �+ transitions of randomly oriented dots with
radius of 28.5 Å at T=10 K as functions of b are shown in
Fig. 4�a�. The g-factors14 used here are ge=1.138 and gh

*

=0.73. The g-factors of dots with radius of 21 Å �25 Å� and
28.5 Å are from different sources. This does not affect the
conclusions. We see that, as the magnetic field increases, the
intensity of �− transition goes up and the intensity of �+

transition goes down. There is no jump of intensity because
there is no dark exciton as 28.5 Å�25.85 Å. Experimen-
tally, the exciton g-factors at this low temperature exhibit
values between 0.74±0.05 and 0.87±0.05,14 which are close
to the g-factors of bright exciton states. For the bright exci-
ton states gex=1.004−1.5,4 which is much smaller than that
of the dark states gex�4.11 This supports that the critical
radius is 25.85 Å. We calculate the circular polarization fac-
tor by

P = �I�− − I�+�/�I�− + I�+� . �22�

The circular polarization factors of the optical transition
of the same dots in Fig. 4�a� as functions of b are shown in
Fig. 4�b�. We see that the saturation value of the circular
polarization factors is not 1, but about 0.8. In the zinc-blend
case, the x axis of crystal structure is equivalent to the z axis.
When the external magnetic field is applied along the z axis,
the saturation value is 1. So when the dots are randomly
oriented the saturation value is also 1. In the wurtzite case,
the crystal structure is asymmetric from the x axis to the z

axis. When the field is applied along the x axis, the dipole
transition operators of �+ and �− are represented as −pz
+ ipy, −pz− ipy, respectively. The minus signs before pz are
due to geometry. As the states with the Z Bloch state go up
due to �c, the lowest few states are the states with mainly the
X and Y Bloch states. We can calculate the intensities of �+

and �− transitions by the lowest few states approximately as

I�+ = � 

l,n,m,s

�− al,n,m,sel,n,m,s/2 + dl,n,m,sel,n,m,s/2��2
, �23�

I�− = � 

l,n,m,s

�al,n,m,sel,n,m,s/2 − dl,n,m,sel,n,m,s/2��2
. �24�

We see that I�+ = I�− and the circular polarization factor is
zero. We can give this another explanation. The crystal field
splitting energy term is simply written as

Hcs = �0 0 0

0 0 0

0 0 �c
	 , �25�

when the basic functions are X, Y, and Z. If we take the basic
functions as �1/�2��Z+ iY�, X, and �1/�2��Z− iY�, Hcs is
given by

Hcs =�
1

2
�c 0

1

2
�c

0 0 0

1

2
�c 0

1

2
�c
	 . �26�

The off-diagonal terms in Eq. �26� admix the states with
�1/�2��Z+ iY� and �1/�2��Z− iY�. �1/�2��Z+ iY� and
�1/�2��Z− iY� contribute to �+ and �− transitions, respec-
tively, when the field is applied along the x axis. The mixture
of �1/�2��Z+ iY� and �1/�2��Z− iY� leads to a nearly zero
circular polarization factor. The upper two explanations are
equivalent. The circular polarization factors of single dots
�GaAs and CdSe� with radius of 28.5 Å at T=10 K and b
=0.5 as functions of cos � are shown in Fig. 5. The dashed
line represents the GaAs case. The parameters15 for GaAs
used here are me=0.067m0, L=18.4, M =3.77, N=19.6, �so

FIG. 4. �a� The normalized intensities of �− and �+ transitions
of dots �28.5 Å� as functions of b. �b� Circular polarization factors
of dots �28.5 Å� as functions of b.

FIG. 5. Circular polarization factors of single dots �28.5 Å� as
functions of cos �.
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=341 meV, ge=0.44, and gh
*=1.66. We see that the circular

polarization factors are nearly the same from cos �=0 to
cos �=1. The solid line represents the CdSe case. We see that
the circular polarization factors change from nearly 0 to
about 1 as cos � changes from 0 to 1. As a result, it is, in
principle, possible to use the polarization spectroscopy to
determine the orientation of the z axis of the crystal structure
of individual dots.

IV. CONCLUSION

The Hamiltonian of the wurtzite quantum dots in the pres-
ence of external homogeneous magnetic field is given. The
electron and hole energy levels and wave functions as func-
tions of the magnetic field are obtained. It is found that the
hole ground state changes from optically passive state to
optically active state under appropriate magnetic field. In the
absence of external magnetic field, with �c=25 meV, the
dark excitons appear when the radius is smaller than
25.85 Å. This critical radius is different from 30 Å when
�c=40 meV. The critical magnetic field under which the
dark excitons become bright is dependent sensitively on the
radius near 25.85 Å. The circular polarization factors of op-
tical transitions of randomly oriented dots are zero in the
absence of external magnetic field and increase with the in-
crease of the magnetic field. The circular polarization factors
of single dots change from nearly 0 to about 1 as the orien-
tation of magnetic field changes from the x axis of crystal
structure to the z axis, which can be used to determine the
orientation of the z axis of the crystal structure of individual
dots. The antisymmetric Hamiltonian is very important to the
effects of magnetic field on the circular polarization of the
optical transition of dots.
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APPENDIX A

In this Appendix we give the forms of the magnetic-
momentum Hamiltonians Hmm�e, Hmm�h and the spin Zeeman
splitting terms HZeeman�e, HZeeman�h. As p⇒p+eA,
p
p�⇒ 
p
p��, the symmetric tensors of momentum operator
change into

p2 ⇒ p2 + eBzLz −
e2

2
Bz

2r1
�1�r−1

�1� −
ie
�2

Bx�P1
�1�r0

�1� + P−1
�1�r0

�1��

−
e2

2�2
BzBx�r−1

�1�r0
�1� − r1

�1�r0
�1�� +

e2

4
Bx

2r0
�1�2

+
ie
�2

Bx�P0
�1�r1

�1� + P0
�1�r−1

�1�� −
e2

8
Bx

2�r1
�1�2 + r−1

�1�2 + 2r1
�1�r−1

�1�� ,

�A1a�

P0
�2� ⇒ P0

�2� +�3

2
�− eBzLz +

e2

2
Bz

2r1
�1�r−1

�1��
+�3

2� ie
�2

Bx�P1
�1�r0

�1� + P−1
�1�r0

�1��

+
e2

2�2
BzBx�r−1

�1�r0
�1� − r1

�1�r0
�1�� −

e2

4
Bx

2r0
�1�2�

+�3

2
�i�2eBx�P0

�1�r1
�1� + P0

�1�r−1
�1��

−
e2

4
Bx

2�r1
�1�2 + r−1

�1�2 + 2r1
�1�r−1

�1��� , �A1b�

P1
�2� ⇒ P1

�2� +
3
�2

ieBzP0
�1�r1

�1� +
3

2
ieBx�P0

�1�r0
�1� + P1

�1�r1
�1�

+ P1
�1�r−1

�1�� −
3

4
e2BzBx�r1

�1�2 + r1
�1�r−1

�1��

−
3

4�2
e2Bx

2�r0
�1�r1

�1� + r0
�1�r−1

�1�� , �A1c�

P−1
�2� ⇒ P−1

�2� −
3
�2

ieBzP0
�1�r−1

�1� +
3

2
ieBx�P0

�1�r0
�1� + P−1

�1�r1
�1�

+ P−1
�1�r−1

�1�� +
3

4
e2BzBx�r−1

�1�2 + r1
�1�r−1

�1�� −
3

4�2
e2Bx

2�r0
�1�r1

�1�

+ r0
�1�r−1

�1�� , �A1d�

P2
�2� ⇒ P2

�2� + 3ieBzP1
�1�r1

�1� −
3

2

e2

2
Bz

2r1
�1�2 −

3

8
e2Bx

2r0
�1�2

+
3

2�2
ieBxP1

�1�r0
�1� −

3

4�2
e2BzBxr1

�1�r0
�1�, �A1e�

P−2
�2� ⇒ P−2

�2� − 3ieBzP−1
�1�r−1

�1� −
3

2

e2

2
Bz

2r−1
�1�2 −

3

8
e2Bx

2r0
�1�2

+
3

2�2
ieBxP−1

�1�r0
�1� +

3

4�2
e2BzBxr−1

�1�r0
�1�, �A1f�

P1
�1� ⇒ P1

�1� +
1

2
ieBzr1

�1� +
i

2�2
eBxr0

�1�, �A1g�

P−1
�1� ⇒ P−1

�1� −
1

2
ieBzr−1

�1� +
i

2�2
eBxr0

�1�. �A1h�

r�1� is the first-order tensor of the coordinate operator.
Substituting Eq. �A1� into Eqs. �2� and �6� leads to the form
of the symmetric part of the Luttinger Hamiltonian, which
can be divided into two parts: one contains Bz and Bx, the
other does not. We name the former magnetic-momentum
Hamiltonian, denoted as Hmm�e and Hmm�h for the electron
and hole, respectively. If the external magnetic field is ap-
plied along the z axis of the crystal structure �Bx=0�, Hmm�e,
Hmm�h can be written as
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Hmm�e =
1

2ma
�eBzLz −

e2

2
Bz

2r+r−� −
1

2mb

�2

3
�−�3

2
eBzLz +�3

2

e2

2
Bz

2r1
�1�r−1

�1�� , �A2�

Hmm�h =
1

2m0
Ha, �A3a�

Ha =

⎝
⎜
⎜
⎜
⎛ �1�eBzLz −

e2

2
Bz

2r1
�1�r−1

�1�� Ap0�−
1

2
ieBzr−1

�1�� ��− 3ieBzP−1
�1�r−1

�1� −
3

2

e2

2
Bz

2r−1
�1�2�

−�2

3
�2�−�3

2
eBzLz� + �2�3��−

3
�2

ieBzP0
�1�r−1

�1�� + ��3ieBzP1
�1�r1

�1� −
3

2

e2

2
Bz

2r1
�1�2�

+ ��3

2

e2

2
Bz

2r1
�1�r−1

�1��
− Ap0�1

2
ieBzr1

�1�� �1��eBzLz −
e2

2
Bz

2r1
�1�r−1

�1�� Ap0�−
1

2
ieBzr−1

�1��
− �2�3�� 3

�2
ieBzP0

�1�r1
�1�� + 2�2

3
�2��−�3

2
eBzLz� + �2�3��−

3
�2

ieBzP0
�1�r−1

�1��
+ ��3

2

e2

2
Bz

2r1
�1�r−1

�1��
��3ieBzP1

�1�r1
�1� −

3

2

e2

2
Bz

2r1
�1�2� − Ap0�1

2
ieBzr1

�1�� �1�eBzLz −
e2

2
Bz

2r1
�1�r−1

�1��
+ ��− 3ieBzP−1

�1�r−1
�1� −

3

2

e2

2
Bz

2r−1
�1�2� − �2�3�� 3

�2
ieBzP0

�1�r1
�1�� −�2

3
�2�−�3

2
eBzLz +�3

2

e2

2
Bz

2r1
�1�r−1

�1�� ⎠
⎟
⎟
⎟
⎞

.

�A3b�

The spin Zeeman splitting terms are written as

HZeeman�e =
1

2
ge�B� · B , �A4a�

HZeeman�h =
1

2
gh�B� · B . �A4b�

APPENDIX B

In this Appendix we give the matrix elements of the
tensors P�

�2�, P�
�1�, r�

�1�, P�
�1�r�

�1�, and r�
�1�r�

�1�. We denote the
envelope functions Cl,njl�kn

l r�Yl,m−1�� ,	� with different
n as the same one �l ,m�. n is only useful to the integration of
Bessel functions which is very easy and is not listed here.
The nonzero matrix elements are �l+2,m��P�

�2��l ,m�,
�l ,m��P�

�2��l ,m�, �l−2,m��P�
�2��l ,m�, �l+1,m��P�

�1��l ,m�,
�l−1,m��P�

�1��l ,m�, �l+1,m��r�
�1��l ,m�, �l−1,m��r�

�1��l ,m�,
�l+2,m��P�

�1�r�
�1��l ,m�, �l ,m��P�

�1�r�
�1��l ,m�, �l−2,

m��P�
�1�r�

�1��l ,m�, �l+2,m��r�
�1�r�

�1��l ,m�, �l ,m��r�
�1�r�

�1��l ,m�, and
�l−2,m��r�

�1�r�
�1��l ,m�. The matrix elements consist of CG co-

efficients and reduced matrix elements, for example

�l�,m��P�
�2��l,m� = �− 1�l�−m�� l� 2 l

− m� � m
��l��P�2��l� ,

�B1�

�l�,m��P�
�1��l,m� = �− 1�l�−m�� l� 1 l

− m� � m
��l��P�1��l� ,

�B2�

�l�,m��r�
�1��l,m� = �− 1�l�−m�� l� 1 l

− m� � m
��l��r�1��l� ,

�B3�

�l + 2,m��P�
�1�r�

�1��l,m�

= �− 1�l+1−m−�� l + 1 1 l

− m − � � m
��l + 1�r�1��l�

��− 1�l+2−m−�−�� l + 2 1 l + 1

− m − � − � � m + �
�

��l + 2�P�1��l + 1� , �B4�
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�l − 2,m��r�
�1�r�

�1��l,m�

= �− 1�l−1−m−�� l − 1 1 l

− m − � � m
��l − 1�r�1��l�

��− 1�l−2−m−�−�� l − 2 1 l − 1

− m − � − � � m + �
�

��l − 2�r�1��l − 1� �B5�

The reduced matrix elements are given by

�l − 2�P�2��l� = − 3� l�l − 1�
2l − 1

� d2

dr2 +
2l + 1

r

d

dr
+

l2 − 1

r2 � ,

�B6�

�l�P�2��l� = �3� l�2l + 1��2l + 2�
�2l − 1��2l + 3�

� d2

dr2 +
2

r

d

dr
−

l�l + 1�
r2 � ,

�B7�

�l + 2�P�2��l� = −
3

2
��2l + 2��2l + 4�

2l + 3

�� d2

dr2 −
2l + 1

r

d

dr
+

l�l + 2�
r2 � , �B8�

�l + 1�P�1��l� =
�

i
�l + 1� d

dr
−

l

r
� , �B9�

�l − 1�P�1��l� = −
�

i
�l� d

dr
+

l + 1

r
� , �B10�

�l + 1�r�1��l� = �l + 1r , �B11�

�l − 1�r�1��l� = − �lr . �B12�
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