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The laboratory closed-loop optimal control of quantum phenomena, expressed as minimizing a suitable cost
functional, is currently implemented through an optimization algorithm coupled to the experimental apparatus.
In practice, the most commonly used search algorithms are variants of genetic algorithms. As an alternative
choice, a direct search deterministic algorithm is proposed in this paper. For the simple simulations studied
here, it outperforms the existing approaches. An additional algorithm is introduced in order to reveal some
properties of the cost functional landscape.

DOI: 10.1103/PhysRevE.70.016704 PACS nuni)er02.70—c, 32.80.QKk, 42.50.Vk

[. INTRODUCTION next with anewsample of the quantum system, as it is both
difficult to react in the extremely small time window be-
Laser manipulation of quantum dynamics involves the taitween experiments, and almost impossible, in the quantum
loring of a control field, often from a laser, to optimally steer framework, to observe the state of a system without modify-
the system toward a desired target outcome. The underlyinigg the system itself in some unknown way.
phenomenon utilized to achieve such goals is the manipula- When carrying out the closed-loop optimal control para-
tion of quantum interferences in the evolving dynamicsdigm, a natural consideration is which type of optimization
driven by the laser field. The success of any particular lasedlgorithm is preferable to guide the evolving experiments.
field is measured in terms of a cost functional that incorpoFollowing the original work[12], practitioners of the field
rates the achieved metric distance to the target, and possibRave used stochastic-like algorithms, and more precisely ge-
other auxiliary costs such as the laser pulse energy. The suBetic algorithms(GA), that have proved to be surprisingly
ject of quantum control has well-defined theoretical founda£fficient in this contex{13]. To justify the use of GAs, it is

tions and an extensive literatufd—4). In addition to the often argued that other types of algorithms, mainly determin-

theoretical developments, numerous optimal control experiiStic algorithms, present major drawbacks that prevent them

ments have demonstrated the feasibility of the approacﬁom being efficient in this context involving the optimiza-

[5-11. In particular, the most dramatic experimental ad-UO" Of @ nonconvex cost function in a high-dimensional
' earch space with a significant degree of laboratory noise.

zzﬂggj’tﬁsggcg:é doggsggr}ggé g;é%%?:}e);nfféﬁgz gz\ﬁhe purpose of this article is to show that in some circum-
e o= ! stances, ropriate deterministic algorit ibly with a
cade agq12]. This paradigm will be the focus of the present 3 es, appropriate dete ¢ algorithpussibly

; o . small amount of introduced randomngssan perform
article. The laser field is updated from one experiment to th(—‘é ually well and even outperform GAs by an order of mag-
next, on the basis of a measure of the distance to the desirﬁ

| Th bi d i ude in terms of the number of functional evaluatigns.,
target goal. The quantum system subjected to control is usg periments required. A discrete descent algorithm which
in the laboratory, within the optimization loop, as an analog

; . : . ives us some insight into the shape of the cost functional
computer to integrate its own evolution equation. The controf, t- o will also be introduced to provide a possible expla-
terminology of “closed-loop”, as opposed to “open-loop ’q&ation of why the GAs perform well in this laser control

medans that the d'St%nCI? to the t?jrgetr:s evalualte_d on(—jthe-f roblem and why they can be outperformed by such deter-
and serves as a guideline to mo ify the control, In order tq;nigtic algorithms. Before presenting the algorithms and
further optimize the result upon traversing the loop once

. The | is closed f X h evaluating their efficiency, it is useful to draw up a list of the
again, etc. The loop Is closed from one experiment t0 the, iy features of the optimization problem at hand, and to see

how these features impact on the qualities needed for an
algorithm to perform well.
*Also at CERMICS-ENPC, Champs sur Marne, 77455 Marne la  As the optimization algorithm will operate with the labo-
Vallée Cedex, France. Electronic address: gabriel.turinici@inria.fr ratory experiments, we will only have access to measure-
TAlso at INRIA Rocquencourt, MICMAC project, Domaine de ments on the system such that the cost functional can be
Voluceau, Rocquencourt B.P. 105, 78153 Le Chesnay Cedexvaluated for each trial laser field. No derivatives with re-
France. Electronic address: lebris@cermics.enpc.fr spect to the laser field are directly available, in contrast to the
*Electronic address: hrabitz@princeton.edu situation arising when the control process is simulated nu-
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merically [14]. So far, this optimization context is the same  (b) Exploits the high duty cycle of the experiments;
as in any practical problem in the control engineering sci- (c) Assures robustness with respect to noise as best as
encegsee Ref[15] for a recent review However, quantum possible;
control distinguishes itself in one important way: the cost (d) Avoids being trapped in an uninteresting local extre-
function evaluation is unprecedented in its cheapnessnum; and
Present experiments may be performed at the rate of hun- () works effectively in high-dimensional searches.
dreds or more per second and available technology could in The next section will review some good candidates to
principle operate at a million per second. The need for signa,iil| the above list of requirements. All of these candidates
averaging will reduce these numbers, but they still remain fag ¢ \ye|l-established strategies that have proved their effi-
from the standard dut'y cycle of engineering appl.'c"’?t'or.‘sciency in other contexts. Section Il will then present com-
Tlhe qtéanturr]n clc(Jjntt)roI Sf'tu%t'on Sl(Jggestslth]:’:lt th? Opt'm'lzat'o'ﬂarisons between one of these algorithms and the GA on a
algorithm should be of order zefae., only function evalu- . . :
ations are involved with no derivativesr gradient-free to f(larlT(]a[\)/laGntm;r?;Itr?z:tagazj?o&gztg: Fr:gbrlr?zr;i]ntz‘;;iclﬁlt?ehsysolﬁlr:)é
exploit the ability to perform massive numbers of experi- . o

generic problem. The conclusion is that GAs are not the only

ments [16]. Such a criterion immediately suggests using . o
Monte Carlo-type methods, including GAs, but this is not the?V& 0 proceed and other algorithms may be significantly
more efficient. In Sec. IV, we describe @apparently new

only choice, as will be shown in this paper. i o ) i ) .
A second key issue is robustness with respect to noise iguasideterministic algorithm that is used to obtain some in-

the observations, and especially in the controls. This mattepight into the cost function landscapes. This result suggests
is of particular concern for the control of quantum systems@n€ possible explanation of the success of GAs in this con-
where the manipulation of quantum interference may be seri€xt, and also permitted us to further tune the algorithms for
sitive to noise. It is therefore of primary interest to have an€Ven better efficiency. Section V summarizes the paper and
optimization algorithm that is as robust as possible with re-dives some suggestions for future work.
spect to noise. A related matter is the presence of slow drift
(i.e., slower than the closed-loop cycle_ timae the laser or Il ALGORITHMS
other apparatus components over the time of the experiment.
Such drift is often not critical when considering control alone  Before presenting the particular algorithms tested in this
as the goal, but other auxiliary goals can be affected by drifpaper, we will briefly survey some algorithms from the op-
[17]. Thus, significantly reducing the number of experimentstimization literature that only use point value information
with faster algorithms is of prime interest. This point may and not the gradientgi.e., so-called “direct search” or
also be important for control cases where the target is, bygradient-free” optimization Different trends can be identi-
some suitable measure, very far from the initial state, therebfied.
calling for extensive searching to find an effective control. (1) Genetic or evolutionary algorithms. These form an
A third feature of the quantum control problem is the important example of stochastic algorithms that have proved
expected general nonconvexity of the cost functional. Al-to be useful in a wide variety of engineering contexts. Later
though this feature is not peculiar in comparison with otherin this section, additional details will be presented on the
problems in the engineering sciences, it can be particularlglgorithm we have tested.
vexing in quantum control. A consequence is the risk that the (2) Hierarchical algorithms. The pattern search algo-
search algorithm will get trapped in a local poor-quality ex-rithms formalized by Torczoret al. [20-24 organize the
tremum. It is therefore crucial to ensure that the algorithmsearch on hierarchical lattices in the parameter space. The
have goodylobal searchpropertieq(i.e., the ability to search solution iteratively wanders from one point of the lattice sys-
for an extremum by efficiently scanning over a large range otem to another according to rules that take into account cost
control parameter valugsas opposed to docal search  function information in the form of a finite difference
which optimizes in the vicinity of the current iteration. scheme. Convergence theory for these algorithms is well es-
Again, this would seem to suggest approaches using randotablished and the presence of constraints may be accounted
variations in one way or another in executing the search, buor, but the case of noisy cost functions is not completely
this choice is not the only class of algorithms as argued iranalyzed yet. A related approach is the work of Anderson
this work. [25], which treats noise and establishes convergence proper-
A final main feature of quantum control experiments isties. An important assumption used in the proof is that the
the accessible high dimensionality of the search space withoise amplitude is weaker around the extrema, which is an
hundreds of phases and amplitude parametensbg that  open question for quantum control cost functionals.
define the laser field. Typically, each of these variables is (3) Simplex algorithms. The so-called simplex search
discretized to about 50 values over its domain of variationprocedure is based on using a setN\of 1 points forming a
Thus, an enormous space is available for exploration in theondegenerate geometrical object in tiNedimensional
experiments. Such a circumstance is within the standardpace(e.g., triangle in 2D, tetrahedron in 3D, §tcA com-
range encountered in other nonlinear nonconvex optimizamon form of this procedure is the Nelder-Mead algorithm

tion. (described ilMNumerical Recipef26] for noiseless functions
Given the criteria above, we seek a control algorithm withand used in a related laser control context in REZ3,28)

the following properties: and its modifications to treat noisy functiofi9] which is
(a) Utilizes only function evaluations; further analyzed in Ref[30]. A short description of the
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Nelder-Mead simplex algorithm is as follows: the simplex alternatives:

can be viewed as “rolling” on the cost function surface. De- (i) Accept expansion.If J¥P<Jo% then x®® replaces
pending on the outcome of the current “roll” step, the sim-x"9"in the simplex.

plex is eitherexpandedwhen it successfully improves the (i) Reject expansionlf J®P=J°" then the expansion is
cost function(i.e., minimum) value orcontracted(presum-  rejected and™" replaces<"9".

ably to get through a narrow vallgwhen it cannot improve The current iteration finishes and the control is passed to
the minimal value. Further details are provided later in thisstep 3.
section. (c) Attempt contraction. If the newly constructed

(4) Ordinal optimization. The “ordinal optimization” vertexx™" would not improve the cost functional in the new
framework of Hoet al. [31-34 accommodates high noise simplex, i.e., ifJ"> Js¢h then the simplex contracts. The
amplitudes. It relies on an ordering approach that aims t@ontraction begins by first selecting the lowest cost func-
find designs that belong to a particular percentile of all detional associated witkk"9" and x® (i.e., if J*¢<Jho" then
signs (but whose cost functional values are hopefully notx™ replacesx"9" and J®" replacesd"@"). The contraction
significantly inferior to the true optimuyi35]. vertex is given by

Additional approaches are reviewed in Rgf5]. Startin i
from the list aFl)aF())ve, we will test the perfol?‘r?ance of Gt]WO XM= BN+ (1= p)xeer (3)
algorithms for noisy cost functionals arising in quantum con-The contraction coefficienis chosen ag=0.5 in this work.
trol: (A) a modified simplex algorithm from Ref29], and  The valueJ®" corresponding to°"is computed and the
(B) an evolutionary strateggGA) algorithm. following alternatives arise:

Below, the goal is minimization of the cost functional, (i) Accept contraction. If J°°"< J"9" then the contrac-
J(Xq, ... xn):RN—R, which characterizes the control prob- tion is accepted; the current iteration finishes and the con-
lem and where, ... Xy are the control “knobs” that can be trol is passed to step 3.

adjusted in practical laboratory experiments. (i) Shrink. If Je°ont>Jhigh  then the whole simplex
shrinks aroundx®¥ such that each point excep®” is
A. Modified simplex algorithm modified by the formula
The following discussion presents tmeodified simplex XE= X+ (1= XV, (4)

algorithm as introduced by Barton and Ivg29]. The algo-
rithmic rules are given below.

(1) Initialization. In this stepN+1 pointsx®, ... xN** are
randomly chosen to form the vertices of a nondegenerat
simplex in the N-dimensional search spagee., the geo-
metrical simplex figure has strictly positive volume; for ex-
ample, in 2D the three points cannot be collinear, in 3D th

We use here the shrinkage fac#®+0.9. Thealgorithm then
evaluates) at each point(including x°¥); the current it-
eration finishes and the control is passed to step 3.
) Stopping criterion. Iterations continue until the stop-
ping criterion is met; in the present work the stopping crite-
rion is based on the volume of the simplex, which is not
. P & llowed to drop below a certain dimension-normalized value.
four points cannot be on the same plane,efor each point  rhi |ogic is based on a shrinking simplex, implying that the
x¢ the cost functional(x’) is evaluatedk=1, ... N+1. search is converging in a local minimum of the cost func-

(2) Reflection. The simplex vertices are Qr?‘;ghd by the tional. Another useful criterion is to set a bound on the total
computed valueh_of the cost fulnct|onal. The highst' sec-  ymper of iteration steps. If the stopping criterion is not met,
ond highest**", and lowestJ®" values are identified and e the algorithm begins a new iteration at step 2.

the corresponding points are denoted®®', x5 andx'o¥,

respectively. The centroixFe™ of all the vertices except™d" B. Evolutionary algorithm

. ﬂ . .

|shigr9mputed, ?eﬂtd anew verteX” is gener:?\ted by reflecting  The second algorithm used is an evolutionary strategy op-

x"9" throughx**™ by the following formula: timization algorithm. The evolutionary strategies are one of
xefl = (1 + a)xeemt— gxMioh, (1) the most efficient descendants of the genetic algorithms that

o ' ' appeared in the 1980[86]. The implementation we used is
The value that we have used in this workis 1. Depending  the EO Evolutionary Computation Framewd]. Some of
on the value of)®, the algorithm branches to one of the the settings are given below.

following alternatives: _ . (i) Nonisotropic mutation.

(@) Accepted reflection.If J°%= J*l< %" thenx®" (i) Population size was taken to be 10, with the percent-
replaces<"9" in the simplex; the current iteration finishes age number of offspring being 1000%.
and the control is passed to step 3. (iii) Initialization bounds for the pulse amplitudes are

(b) Attempt expansion.If J®1<J°% then the reflec- [-0.10,0.10 and for the phasef-,«]; during a run the
tion is expanded to further exploit the current “search di-final amplitudes were bounded ovgr0.5,0.9 and no re-
XP= el 4 (1 — y)xcent 2) Note that With these parameters eac_h generation requires
100 cost functional evaluatiorise., experiments except for
The expansion coefficient will be taken as 2 in the present the initial step that requires 10 evaluations. As a stopping
work. The valueJ®*® of the cost functional ax®®is com-  criterion a maximum number of 300 generations was im-
puted and the iteration utilizes one of the following posed.
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With a slight abuse of language in order to generally con- 015 N run humber 1 ——
form to the control literature, we will denote this procedure 0.2 [ gt run gﬂmgg:g —
as a “GA,” although it is actually an evolutionary strategy. 025 3

s \
I1l. SIMULATIONS OF QUANTUM CONTROL 153 03 2
€ 035 =~

The algorithms in Sec. Il were successfully tested on typi- 2 04
cal optimization benchmarks extracted from the literature ) ‘-\11.\__“ e
[29,38, in addition to noise-free quantum control problems. 045 L D D,
In order to better model the experimental conditions, this 05

0 200 400 600 800 10001200 1400

section will describe quantum control simulations where .
evaluations

both control field and measurement noise is present.

The modified simplex algorithm and the evolutionary  FIG. 1. Results fore=0.0 (simplex algorithr, the abscissa is
learning strategy were applied to a model 10-level quantunte number of cost functional evaluations, and the ordinate is the
system presented earlier in R¢B9]. The numerical values noisy cost functional values for these typical runs. The relative
below have the units of fs for time, rad/fs for frequency andnoise levels are 1% for phases, 2% for amplitudes, and 5% obser-
energy, and V/A for the electric field. The field is expressedvation noise. Good quality results are obtained with the cost func-
in terms of fixed frequencies,, with the amplitudes, and  tional converging close to the optimum value of -0.5. Similar re-

phasesy, being the control variables for optimization sults are obtained for other small weights suchua0.001.
L
— _((+_ 2 ~ T
et) =g exd—- ((t=T/2)/o) ]gl acodwt+6). (5 Jay, ... 31604, ... 006 =(1+0.05 'Wl)%f (t)dt
0
A total of 32 variables(i.e., L=16) was optimized corre- 1
sponding to selected single, double, and triple quantum tran- +(1+0.05 -7,) = (W[ W) |2
sitions[39]. ?

The physical objective in the cost functional is to maxi-
mally project onto a target staj#) at timeT balanced with
a laser fluence penalty weighted through a paramete0

The value ofJ is returned to the evaluation routine except
when (1+0.09(W|¥)|>>1, whereupon the relative noise
for the target is modified to 1¢¥|¥)[?-1 in order to avoid
Jay, ...,.a,0 ...,6) unphysical noisy values above the maximum target overlap
of 1.0. In this case the returned cost functional value is

T
" 1

= == é - (W2 ~

J(e() Zfo (Hdt 2|( W)l (6) e ... ey ... 20

Initially, the system is in its ground state and the tafget) _ w(T

is chosen to be the fifth excited state. The system is simu- =(1+0.05 'nl)Efo entdt

lated over a total tim&=500; we setoc=200 andey,=1 in

Eqg. (5). The system should be fully controllable and when + (1 +( 1 : 1) )EK‘I’W )2

©=0 the minimum possible value faris —0.5, which cor- (P W)2 2)5 LA

responds to 100% overlap with the target stidtg); asu >0 _ i

increases, this global optimum value will also increase. The For both tested algorithms three runs are taken starting at

algorithms will be compared for several valuesafin all ~ fandom initial guesses; typical sample runs are shown in
. L~ o o Figs. 1-3. In the laboratory an ensemble of experiments

cases a noisy cost functiondlis optimized which is com-

puted fromJ by building noise into the fiela(t) through the would be performed with the actual cost being the average
litud d the ph 0. In order t over the ensemble.

a_mpll l: e?.alla“' A16 anth ep a}sea_l, oo v1e tn %r gr 0 The parametel has to be chosen carefully in order for

simuiate - Tie anmse eie vaiues are perturoe Ry the minimization of the cost functional to give a good target

—ay+(1+0.02 7)), where g are independent, uniform, ran-

: ) ) R value. If u is too large, such ag=0.1 in Fig. 3, the solution
dom variables taking values ir1; 1] (this will be called 2% iy converge toward the zero field, as too much weight is

relative amplitude noigesimilarly, the phgses are rand_omly put on the fluence terlfwg €(t)2dt. In the ranggw<0.001 that
altered by fj— 6-(1+0.017) (1% relative phase noige gives satisfactory solutions for the control problem, both al-
This produces a noise-contaminated modified fégfd). The  gorithms find many local minima that have overlaps with
terms u/2[ g ex(t)dt and 1/(W|Wy)|? of the cost functional  target typically in the range of 60% —90%& u is lowered

for this modified field are then computed. The observation othis quality increasés In these cases both algorithms are
the field fluence and the target were both taken to have gometimes trapped in a local minimum of lesser quality, but
noise level of 0.05 (5% relative noisg Unless running several times eventually ensures finding acceptable
(1+0.05|(W|¥p)[>>1 (see below, the two terms in the cost  quality results. When is lowered tox=0.0001(and even
functional were multiplied by (1+0.05%;) and more so foru=0), then good quality solutions are almost
(1+0.051,), respectively, wherey,, 7, are uniform random always found. The results for the two algorithmsat 0.0
variables with values ifi-1;1], such that are shown in Figs. 1 and 2. Both algorithms can give good
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-01 7 T T T -0.1 . r .
TUN NUMber | — . run number 1
-0.15 run number 2 === N -0.15 |-® ;h e PURN NUMDEY 2 smmmmmm -]
) run number 3w 0.2 (_ HA run number 3 s
0.2 - P
3 025 Y VTR
z OB 2 03 L F el
g 03 3 0351V
=
2 035 0.4
04 -0.45
-0.5 1 :
-0.45 0 500 1000 1500 2000 2500
b ualh
-0.5 b - evaluations

0 2000 4000 6000 8000 10000 12000 14000 . L
evaluations FIG. 4. Results foe=0.0(simplexX. The abscissa is the number

of functional evaluations, and the ordinate is the noisy cost func-

FIG. 2. Results fou=0.0 (GA); the abscissa is the number of tional values. The relative noise levels are 5% for phases, 10% for
cost functional evaluations, and the ordinate is the noisy cost funcamplitudes, and 25% for observation.
tional values for a few typical runs. The relative noise levels are 1%
for phases, 2% for amplitudes, and 5% for the observations. A good
quality result is obtained with the cost functional converging closeAs a conservative worst case scenario, no signal averaging
to the optimum value of —0.5. When compared with the simplexwas done in the present simulatiofé2]. One interesting
algorithm in Fig. 1, the GA is slower by a factor of between 5 andconclusion drawn from these simulations is that recomputing
10. Similar results are obtained fgr=0.001. the cost functional value at an apparently good quality point
) ) ) is important in order to detect faulty situations where the
target yields, but the simplex algorithm was generally an.oaq quality” is in fact due to random noise deviations.

ordler ofdmatgn;tutiethmorebeff{ment ﬂ}atr;] thel GAih ith Note that the simplex algorithm takes provisions against this
S er(]:tciz) c?(r)ntoroleznd gbrsoerszt?oensic?ise Iivaegorflurgw]:rvxlumreer;F—)henomenon: for any shrink step thenole simplex is re-

P . . ’ evaluated. These arguments were at the core of the modifi-
cal experiments were carried out. The paramgteras set to

zero, and the relative noise was increased by a factor of 5 t ation introduced t.)y Barton and IVE&Q] to. the standa'rd
become 5% phase noise, 10% amplitude noise, and 25 Oelder-Megd algorithm. The GA also |mpI|C|tIy takes into
observation noise. The results are given in Figs. 4 and @ccount this phenomenon if an appropriate replacement rule
Additional scenarios were also test@lg., noise levels ten IS chosen, for example requiring that the parents are neces-
times as large at 10% phase noise, 20% amplitude noise, ag@'ly replaced after one generation. The influence of noise
50% observation noigeand the qualitative behavior was needs to be considered in examining the fluctuating values of
the same. The results are generally very robust to large dény single functional trajectory versus the number of evalu-
grees of noise, which appears consistent with recent analys@éons in the figures, expecially at high noise levels.
[40,47.

Signal averaging would generally be done in the labora-
tory to reduce the influence of noise. Such averaging would IV. CONSIDERATIONS REGARDING THE COST
be effective for the observation noise, but the nonlinear in- FUNCTIONAL SURFACE
fluence of the control noise will still have a residual effect.

As a follow-up of the numerical results of Sec. Ill, we

07 " typical GA run —— were also able to attain insight into the cost functional sur-
ot typical simplex run -=====- face from a new algorithm that has been designed to test the
0.5 feasibility of generic gradient-free algorithms for optimiza-
0.4

A tion of quantum control cost functionals. This algorithm,
0.3 A called the Monte Carlo discrete gradient algorithm, has not

functional

0.2 [y been optimized for performance but rather is used to reveal
0.1 L v some properties of the cost functional surface. The features
0 o of this search procedure are presented in the Appendix. This
0.1 algorithm will operate by converging to the robust solution
0 800 1600 2400 3200 4000

closest to the initial point as it does not have global search
properties other than those brought by the random selection
FIG. 3. Results foz=0.1; the abscissa is the number of func- Of the initial point(i.e., the Monte Carlo aspect of the algo-
tional evaluations and the ordinate is the noisy cost functional valfithm). The Monte Carlo discrete descent algorithm was
ues. Relative noise levels: 1% for phases, 2% for amplitudes, antested foru=0 and zero noise level. The results are given in
5% output noise. Becaugeis high no effective control is exhibited Fig. 6. It was found that the Monte Carlo discrete descent
(i.e., there is no overlap with the target and all the algorithms conalgorithm converges to a good solutidor any randomly
verge to nearly the constant zero field chosen initial point The conclusion that may be drawn from

evaluations
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-0.1
-0.15
-0.2
-0.25 e !
03 [|INFHE 4 L L,
0.85 L L |

0.4 | s

-0.45

-0.5 -2
0 5000 10000 15000 20000 25000 -5 25 0 25 5
evaluations X

" run number 1 ——
-1 d run number 2

functional

FIG. 5. Results fo=0.0 (GA). The abscissa is the number of FIG. 7. Generic cost functiod(x) behavior with respect to a
functional evaluations, and the ordinate is the noisy cost functionagingle variablex. The minimum atx=>5 is deep, but narrower than
values. The relative noise levels are 5% for phases, 10% for amplthat atx=0, and may not be robust at larger scales; for example, the
tudes, and 25% for observation noise. x=0 minimum is robust for the scali||=2.5 but the one at=5 is

not. Both minima are robust for very small valueg|of, e.g., 0.01.

this result is that many local minima exist with values close

to that of the global optimum. This property has also been . , )
observed and analyzed in Rg43], and this behavior may gooq results. because close to any initial point there is a good
not hold for general observables beyond simple projection§uality solution. . .

to a single target state. This conclusion provides a possible We also found that when there is no noise for0 both
basis to understand why the GA is less efficient than thdéhe GA and the modified simplex algorithm converge to
simplex algorithm in this case: since the cost functional hadligh-quality solutions each time. However, as the GA and the
many good quality minima, the global exploration propertiessimplex algorithms have known global optimization proper-
of the GA are not needed. The GA does not have foreknowlties, this observation is less definitive about the nature of the
edge of this behavior and tends to explore the whole cogunctional surface than the conclusion drawn from the fact
functional surface in the hope of finding yet a better solutionthat the local Monte Carlo discrete descent algorithm con-
which does not exist. In contrast, the simplex algorithm lesy€rges to a good solution for any initial point.

thoroughly explores the cost functional surface and still finds

01 V. DISCUSSION AND CONCLUSIONS
-0.2
ji A Optimization algorithms are an important part of the ex-
-05 perimental protocols in the laser control of quantum phe-
01 nomena. The present work demonstrates through numerical
gjﬁ simulations on selected cases that genetic algorittems
g ol their descendangsare not the only algorithms that can per-
05 form efficiently in this context. An alternative, that is up to
0.1 an order of magnitude fastéfor the cases studigdis the
02 modified simplex algorithm of Barton and IvgR9]. One
_'gj ' possible explanation of why this latter algorithm is better
—05 resides in it exploiting the multiplicity of solutions and only

0 5000 10000 15000 20000
evaluations

exploring a selected region of the cost functional surface. As

a by-product of the search for good optimization algorithms,
FIG. 6. Results fox=0.0 and no noise for the discrete descentthe present work introduced a discrete descent algorithm

algorithm h=£=(0.01,...,0.01 The abscissa is the number of whose convergence properties gave additional evidence that

functional evaluations, and the ordinate is the cost functional valueindeed the local minima of the cost functional are of very

It was found thatll random initial points converge to high-quality good quality.

results of 90% overlap with targéthis conclusion was found for

many additional runs beyond those presented)h&tes conclusion

remains partially valid as the noise level increases. The value of the

cost functional for the first run increases over the period of approxi-

mately 5000 to 10 000 evaluations. This behavior arises from using
the “reflection at the boundary” procedusee Remark Bin order The authors thank Marc Schoenauer and Anne Auiger

to remain within predefined bounds on the controls. In this case, th&IA Rocquencourt, Frangeor providing a version of the
minimum most close to initiairandon) point is outside the chosen EVolving Objects platforn{37]. C.L.B. and G.T. acknowl-
bounds. After a period of oscillations along the boundary the algoedge financial support from the ACI “Laser control of chemi-
rithm becomes oriented and converges toward another minimurgal reactions” of the MENRTFranceg. H.R. acknowledges
inside the bounds. support from the U.S. Department of Energy.
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APPENDIX: MONTE CARLO DISCRETE DESCENT gradient. Let £€=(&;,...,&) € RN be a given vector such
ALGORITHM that §+#0,k=1, ... N. We denote byg, the vectors of the
canonical base of RM  ¢=(1,0,...,0,....&
=(0,...,1,...,0,ey=(0,...,D, and define the discrete gra-
Since an exact gradient of the cost functiod@, ... ,xy) dient of J(x) at the pointx with respect to the increments
is not available in practice, we will introduce discrete by the formula

1. Definition of the discrete gradient

Jx+&e)-Jx) I+ &) —IX) J<x+§NeN)—J<x)> (A1)

v4i(x) = ( . .
) & 3 &

Note that in the limité—0 the quantity thus computed is Remark 2.Except for the random initialization and the
precisely the gradient af at the pointx, as each component constant norm increment properties, similar algorithms have
of V?J(x) converges to the corresponding partial derivativebeen studied in Ref§44,49; related work(local lineariza-
of J(x). On the other hand, if is fixed we can heuristically tion) is pursued in Ref{46]. With respect to these works, the
argue that the discrete gradient only sees detailofat the  present study is different in that it is also aimed at exploring
scale¢ as the discrete gradient is a finite-difference representhe geometry of the cost functional surface by choosing a
tation of the true gradient at the given fixed scéléhis is  simpler algorithm which is a particular case of the frame-
an important property which is consistent with the use wework given in Ref.[45], except that there the step size
make of Eq.(Al), as in practice is not meant to tend to ||x™1-x"| can vary while here it is fixed.
Zero. Each of theK members of Monte Carlo discrete descent
algorithmic search is expected to “converge” to the “robust”
_ . local optimum closestat the scald|h||) to its initial point;
Consider the increment vectdi=(h,....hy) e RN, €  here, robustness means that in a neighborhood of the local
e RN. The algorithm is prescribed by the following steps:  gptimum the values of the cost functional are still of high
@ C':\lhoose a random poist in the admissible parameter quality. An illustration of the concept is given in Fig. 7.
spaceli™; setn=0. _ This algorithm can be viewed as following the path of a
(2) Update the current solution by the formula ball of diameterg and moving at the constant “ground” speed
|h|| on the cost function surface being minimized. Troaver
bounded speed and the nonzero diameter will tend to
smooth the cost function surface.

2. Definition of the Monte Carlo discrete descent algorithm

N h* va(x"
XM= xn - _g_d —]hl, (A2)
[h* VEI(x")

whereh* V?J(x“) is the element-wise product of the two vec-

tors
3. Remarks on the algorithm
h* VE(X")
- d/yn d (N dq(yn Note from Eq.(A2) that at each iteration the distance
(VXD - VIO IV, between two consecutive pointd and x™! is the constant
(A3) value||h|; this choice is designed for the purpose of avoiding
and the “discrete gradienng(.) is defined in Eq(A1). long periods of small incremental steps to hopefully acceler-
(3) Unless a predefined stopping criterion is satisfiedate the convergence toward the solution.
(e.g., an acceptab|e value dﬁxn*'l) is reachegj setn=n+1 Remark 3.f some components, of the argumenk are
and return to step 2 above. required to be within predefined intervals, then these con-
Although the algorithm was defined here for differgnt Straints are tested during the update step 2 in the definition
andh, in practice we chosé=h. of the algorithm. If (x™), would not satisfy the

Remark 1.In practice, in order to increase the perfor- required —conditions, then the update formula is
mance of the algorithm above we use it on a populatiok of modified by a ‘reflection at the boundary:(x™?),
initial guessesd, ... x2; thus, we obtaink Monte Carlo  =(XVk+hi(VEIXM)ylh]/[In* VEI(X)).
discrete descent algorithms that run independently in paral- Three important cases can be considered concerning the
lel. Note that in our implementation — and in contrast with relationship betweeg andh.
the GA approach — there is no cross talk between Khe () |4 <[l this corresponds to having iteration steps
different running members. This “Monte Carlo” label char- larger than the steps used to compute the gradient hav-
acterizes the only stochastic element present in this alggng a precise gradient that may eventually result in lower
rithm. smoothness of the cost functional, for example where the
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first derivative of the cost functional is either not definite or h* V33(x) = (J(x + hyey) = I(X), ... J(x+ heg)
very big). This corresponds to extrapolation; h
(i) ||&>1hl|: the opposite circumstance, corresponding to ~JI), - I+ hyey) = I()).

interpolation; and

(iii) [[&l=[n: there is a “neighborhood” used both to In this case the update step can be written x&g=x"
compute the gradient and to advance to the next step. This iSanE:1 [J(X"+he)-J(x")]e, where the renormalization
the case that has been used in all the computations of thfactor p, is used to enforce the constant norm increment

paper. Note fronh=¢ it follows that [x"*1—x"|=h]|=constant.
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