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The laboratory closed-loop optimal control of quantum phenomena, expressed as minimizing a suitable cost
functional, is currently implemented through an optimization algorithm coupled to the experimental apparatus.
In practice, the most commonly used search algorithms are variants of genetic algorithms. As an alternative
choice, a direct search deterministic algorithm is proposed in this paper. For the simple simulations studied
here, it outperforms the existing approaches. An additional algorithm is introduced in order to reveal some
properties of the cost functional landscape.
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I. INTRODUCTION

Laser manipulation of quantum dynamics involves the tai-
loring of a control field, often from a laser, to optimally steer
the system toward a desired target outcome. The underlying
phenomenon utilized to achieve such goals is the manipula-
tion of quantum interferences in the evolving dynamics
driven by the laser field. The success of any particular laser
field is measured in terms of a cost functional that incorpo-
rates the achieved metric distance to the target, and possibly
other auxiliary costs such as the laser pulse energy. The sub-
ject of quantum control has well-defined theoretical founda-
tions and an extensive literature[1–4]. In addition to the
theoretical developments, numerous optimal control experi-
ments have demonstrated the feasibility of the approach
[5–11]. In particular, the most dramatic experimental ad-
vances, especially over control of complex systems, have
utilized the so-called closed-loop paradigm, introduced a de-
cade ago[12]. This paradigm will be the focus of the present
article. The laser field is updated from one experiment to the
next, on the basis of a measure of the distance to the desired
target goal. The quantum system subjected to control is used
in the laboratory, within the optimization loop, as an analog
computer to integrate its own evolution equation. The control
terminology of “closed-loop”, as opposed to “open-loop”,
means that the distance to the target is evaluated on-the-fly
and serves as a guideline to modify the control, in order to
further optimize the result upon traversing the loop once
again, etc. The loop is closed from one experiment to the

next with anewsample of the quantum system, as it is both
difficult to react in the extremely small time window be-
tween experiments, and almost impossible, in the quantum
framework, to observe the state of a system without modify-
ing the system itself in some unknown way.

When carrying out the closed-loop optimal control para-
digm, a natural consideration is which type of optimization
algorithm is preferable to guide the evolving experiments.
Following the original work[12], practitioners of the field
have used stochastic-like algorithms, and more precisely ge-
netic algorithms(GA), that have proved to be surprisingly
efficient in this context[13]. To justify the use of GAs, it is
often argued that other types of algorithms, mainly determin-
istic algorithms, present major drawbacks that prevent them
from being efficient in this context involving the optimiza-
tion of a nonconvex cost function in a high-dimensional
search space with a significant degree of laboratory noise.
The purpose of this article is to show that in some circum-
stances, appropriate deterministic algorithms(possibly with a
small amount of introduced randomness) can perform
equally well and even outperform GAs by an order of mag-
nitude in terms of the number of functional evaluations(i.e.,
experiments) required. A discrete descent algorithm which
gives us some insight into the shape of the cost functional
surface will also be introduced to provide a possible expla-
nation of why the GAs perform well in this laser control
problem and why they can be outperformed by such deter-
ministic algorithms. Before presenting the algorithms and
evaluating their efficiency, it is useful to draw up a list of the
main features of the optimization problem at hand, and to see
how these features impact on the qualities needed for an
algorithm to perform well.

As the optimization algorithm will operate with the labo-
ratory experiments, we will only have access to measure-
ments on the system such that the cost functional can be
evaluated for each trial laser field. No derivatives with re-
spect to the laser field are directly available, in contrast to the
situation arising when the control process is simulated nu-
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merically [14]. So far, this optimization context is the same
as in any practical problem in the control engineering sci-
ences(see Ref.[15] for a recent review). However, quantum
control distinguishes itself in one important way: the cost
function evaluation is unprecedented in its cheapness.
Present experiments may be performed at the rate of hun-
dreds or more per second and available technology could in
principle operate at a million per second. The need for signal
averaging will reduce these numbers, but they still remain far
from the standard duty cycle of engineering applications.
The quantum control situation suggests that the optimization
algorithm should be of order zero(i.e., only function evalu-
ations are involved with no derivatives) or gradient-free to
exploit the ability to perform massive numbers of experi-
ments [16]. Such a criterion immediately suggests using
Monte Carlo-type methods, including GAs, but this is not the
only choice, as will be shown in this paper.

A second key issue is robustness with respect to noise in
the observations, and especially in the controls. This matter
is of particular concern for the control of quantum systems,
where the manipulation of quantum interference may be sen-
sitive to noise. It is therefore of primary interest to have an
optimization algorithm that is as robust as possible with re-
spect to noise. A related matter is the presence of slow drift
(i.e., slower than the closed-loop cycle time) in the laser or
other apparatus components over the time of the experiment.
Such drift is often not critical when considering control alone
as the goal, but other auxiliary goals can be affected by drift
[17]. Thus, significantly reducing the number of experiments
with faster algorithms is of prime interest. This point may
also be important for control cases where the target is, by
some suitable measure, very far from the initial state, thereby
calling for extensive searching to find an effective control.

A third feature of the quantum control problem is the
expected general nonconvexity of the cost functional. Al-
though this feature is not peculiar in comparison with other
problems in the engineering sciences, it can be particularly
vexing in quantum control. A consequence is the risk that the
search algorithm will get trapped in a local poor-quality ex-
tremum. It is therefore crucial to ensure that the algorithm
have goodglobal searchproperties(i.e., the ability to search
for an extremum by efficiently scanning over a large range of
control parameter values) as opposed to alocal search,
which optimizes in the vicinity of the current iteration.
Again, this would seem to suggest approaches using random
variations in one way or another in executing the search, but
this choice is not the only class of algorithms as argued in
this work.

A final main feature of quantum control experiments is
the accessible high dimensionality of the search space with
hundreds of phases and amplitude parameters(knobs) that
define the laser field. Typically, each of these variables is
discretized to about 50 values over its domain of variation.
Thus, an enormous space is available for exploration in the
experiments. Such a circumstance is within the standard
range encountered in other nonlinear nonconvex optimiza-
tion.

Given the criteria above, we seek a control algorithm with
the following properties:

(a) Utilizes only function evaluations;

(b) Exploits the high duty cycle of the experiments;
(c) Assures robustness with respect to noise as best as

possible;
(d) Avoids being trapped in an uninteresting local extre-

mum; and
(e) Works effectively in high-dimensional searches.
The next section will review some good candidates to

fulfill the above list of requirements. All of these candidates
are well-established strategies that have proved their effi-
ciency in other contexts. Section III will then present com-
parisons between one of these algorithms and the GA on a
simple model quantum control problem that is physically
relevant and that embodies all the main difficulties of the
generic problem. The conclusion is that GAs are not the only
way to proceed and other algorithms may be significantly
more efficient. In Sec. IV, we describe an(apparently new)
quasideterministic algorithm that is used to obtain some in-
sight into the cost function landscapes. This result suggests
one possible explanation of the success of GAs in this con-
text, and also permitted us to further tune the algorithms for
even better efficiency. Section V summarizes the paper and
gives some suggestions for future work.

II. ALGORITHMS

Before presenting the particular algorithms tested in this
paper, we will briefly survey some algorithms from the op-
timization literature that only use point value information
and not the gradients(i.e., so-called “direct search” or
“gradient-free” optimization). Different trends can be identi-
fied.

(1) Genetic or evolutionary algorithms. These form an
important example of stochastic algorithms that have proved
to be useful in a wide variety of engineering contexts. Later
in this section, additional details will be presented on the
algorithm we have tested.

(2) Hierarchical algorithms. The pattern search algo-
rithms formalized by Torczonet al. [20–24] organize the
search on hierarchical lattices in the parameter space. The
solution iteratively wanders from one point of the lattice sys-
tem to another according to rules that take into account cost
function information in the form of a finite difference
scheme. Convergence theory for these algorithms is well es-
tablished and the presence of constraints may be accounted
for, but the case of noisy cost functions is not completely
analyzed yet. A related approach is the work of Anderson
[25], which treats noise and establishes convergence proper-
ties. An important assumption used in the proof is that the
noise amplitude is weaker around the extrema, which is an
open question for quantum control cost functionals.

(3) Simplex algorithms. The so-called simplex search
procedure is based on using a set ofN+1 points forming a
nondegenerate geometrical object in theN-dimensional
space(e.g., triangle in 2D, tetrahedron in 3D, etc.). A com-
mon form of this procedure is the Nelder-Mead algorithm
(described inNumerical Recipes[26] for noiseless functions
and used in a related laser control context in Refs.[27,28])
and its modifications to treat noisy functions[29] which is
further analyzed in Ref.[30]. A short description of the
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Nelder-Mead simplex algorithm is as follows: the simplex
can be viewed as “rolling” on the cost function surface. De-
pending on the outcome of the current “roll” step, the sim-
plex is eitherexpandedwhen it successfully improves the
cost function(i.e., minimum) value orcontracted(presum-
ably to get through a narrow valley) when it cannot improve
the minimal value. Further details are provided later in this
section.

(4) Ordinal optimization. The “ordinal optimization”
framework of Hoet al. [31–34] accommodates high noise
amplitudes. It relies on an ordering approach that aims to
find designs that belong to a particular percentile of all de-
signs (but whose cost functional values are hopefully not
significantly inferior to the true optimum) [35].

Additional approaches are reviewed in Ref.[25]. Starting
from the list above, we will test the performance of two
algorithms for noisy cost functionals arising in quantum con-
trol: (A) a modified simplex algorithm from Ref.[29], and
(B) an evolutionary strategy(GA) algorithm.

Below, the goal is minimization of the cost functional,
Jsx1, . . . ,xNd :RN→R, which characterizes the control prob-
lem and wherex1, . . . ,xN are the control “knobs” that can be
adjusted in practical laboratory experiments.

A. Modified simplex algorithm

The following discussion presents themodified simplex
algorithm as introduced by Barton and Ivey[29]. The algo-
rithmic rules are given below.

(1) Initialization. In this stepN+1 pointsx1, . . . ,xN+1 are
randomly chosen to form the vertices of a nondegenerate
simplex in theN-dimensional search space(i.e., the geo-
metrical simplex figure has strictly positive volume; for ex-
ample, in 2D the three points cannot be collinear, in 3D the
four points cannot be on the same plane, etc.). For each point
xk the cost functionalJsxkd is evaluated,k=1, . . . ,N+1.

(2) Reflection. The simplex vertices are ordered by the
computed value of the cost functional. The highestJhigh, sec-
ond highestJsechi, and lowestJlow values are identified and
the corresponding points are denoted asxhigh, xsechi, andxlow,
respectively. The centroidxcent of all the vertices exceptxhigh

is computed, and a new vertexxrefl is generated by reflecting
xhigh throughxcent by the following formula:

xrefl = s1 + adxcent− axhigh. s1d

The value that we have used in this work isa=1. Depending
on the value ofJrefl, the algorithm branches to one of the
following alternatives:

sad Accepted reflection.If JlowøJrefløJsechi, thenxrefl

replacesxhigh in the simplex; the current iteration finishes
and the control is passed to step 3.

sbd Attempt expansion. If Jrefl,Jlow, then the reflec-
tion is expanded to further exploit the current “search di-
rection.” The expanded point is given by the formula

xexp= gxrefl + s1 − gdxcent. s2d

The expansion coefficientg will be taken as 2 in the present
work. The valueJexp of the cost functional atxexp is com-
puted and the iteration utilizes one of the following

alternatives:
(i) Accept expansion. If Jexp,Jlow, then xexp replaces

xhigh in the simplex.
(ii ) Reject expansion.If JexpùJlow, then the expansion is

rejected andxrefl replacesxhigh.
The current iteration finishes and the control is passed to

step 3.
(c) Attempt contraction. If the newly constructed

vertexxrefl would not improve the cost functional in the new
simplex, i.e., ifJrefl.Jsechi, then the simplex contracts. The
contraction begins by first selecting the lowest cost func-
tional associated withxhigh and xrefl (i.e., if JrefløJhigh, then
xrefl replacesxhigh and Jrefl replacesJhigh). The contraction
vertex is given by

xcont= bxhigh + s1 − bdxcent. s3d

Thecontraction coefficientis chosen asb=0.5 in this work.
The valueJcont corresponding toxcont is computed and the
following alternatives arise:

sid Accept contraction. If JcontøJhigh, then the contrac-
tion is accepted; the current iteration finishes and the con-
trol is passed to step 3.

sii d Shrink. If Jcont.Jhigh, then the whole simplex
shrinks aroundxlow such that each point exceptxlow is
modified by the formula

xk = dxk + s1 − ddxlow. s4d

We use here the shrinkage factord=0.9. Thealgorithm then
evaluatesJ at each pointsincluding xlowd; the current it-
eration finishes and the control is passed to step 3.

s3d Stopping criterion. Iterations continue until the stop-
ping criterion is met; in the present work the stopping crite-
rion is based on the volume of the simplex, which is not
allowed to drop below a certain dimension-normalized value.
This logic is based on a shrinking simplex, implying that the
search is converging in a local minimum of the cost func-
tional. Another useful criterion is to set a bound on the total
number of iteration steps. If the stopping criterion is not met,
then the algorithm begins a new iteration at step 2.

B. Evolutionary algorithm

The second algorithm used is an evolutionary strategy op-
timization algorithm. The evolutionary strategies are one of
the most efficient descendants of the genetic algorithms that
appeared in the 1980’s[36]. The implementation we used is
the EO Evolutionary Computation Framework[37]. Some of
the settings are given below.

(i) Nonisotropic mutation.
(ii ) Population size was taken to be 10, with the percent-

age number of offspring being 1000%.
(iii ) Initialization bounds for the pulse amplitudes are

f−0.10,0.10g and for the phasesf−p ,pg; during a run the
final amplitudes were bounded overf−0.5,0.5g and no re-
strictions were imposed on the phases[see Eq.(5)].

Note that with these parameters each generation requires
100 cost functional evaluations(i.e., experiments), except for
the initial step that requires 10 evaluations. As a stopping
criterion a maximum number of 300 generations was im-
posed.
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With a slight abuse of language in order to generally con-
form to the control literature, we will denote this procedure
as a “GA,” although it is actually an evolutionary strategy.

III. SIMULATIONS OF QUANTUM CONTROL

The algorithms in Sec. II were successfully tested on typi-
cal optimization benchmarks extracted from the literature
[29,38], in addition to noise-free quantum control problems.
In order to better model the experimental conditions, this
section will describe quantum control simulations where
both control field and measurement noise is present.

The modified simplex algorithm and the evolutionary
learning strategy were applied to a model 10-level quantum
system presented earlier in Ref.[39]. The numerical values
below have the units of fs for time, rad/fs for frequency and
energy, and V/Å for the electric field. The field is expressed
in terms of fixed frequenciesvl, with the amplitudesal and
phasesul being the control variables for optimization

ecstd = e0 expf− „st − T/2d/s…2go
l=1

L

al cossvlt + uld. s5d

A total of 32 variables(i.e., L=16) was optimized corre-
sponding to selected single, double, and triple quantum tran-
sitions [39].

The physical objective in the cost functional is to maxi-
mally project onto a target stateuCTl at timeT balanced with
a laser fluence penalty weighted through a parametermù0

Jsa1, . . . ,aL,u1, . . . ,uLd

= Jsestdd =
m

2
E

0

T

e2stddt −
1

2
ukCuCTlu2. s6d

Initially, the system is in its ground state and the targetuCTl
is chosen to be the fifth excited state. The system is simu-
lated over a total timeT=500; we sets=200 ande0=1 in
Eq. (5). The system should be fully controllable and when
m=0 the minimum possible value forJ is −0.5, which cor-
responds to 100% overlap with the target stateuCTl; asm.0
increases, this global optimum value will also increase. The
algorithms will be compared for several values ofm. In all

cases a noisy cost functionalJ̃ is optimized which is com-
puted fromJ by building noise into the fieldestd through the
amplitudesa1, . . . ,a16 and the phasesu1, . . . ,u16. In order to
simulate field noise these values are perturbed byak
→ak·s1+0.02·hk

ad, wherehk
a are independent, uniform, ran-

dom variables taking values inf−1;1g (this will be called 2%
relative amplitude noise); similarly, the phases are randomly
altered byuk→uk·s1+0.01·hk

ud (1% relative phase noise).
This produces a noise-contaminated modified fieldemstd. The
termsm/2e0

T em
2 stddt and 1/2ukCuCTlu2 of the cost functional

for this modified field are then computed. The observation of
the field fluence and the target were both taken to have a
noise level of 0.05 (5% relative noise). Unless
s1+0.05dukC uCTlu2.1 (see below), the two terms in the cost
functional were multiplied by s1+0.05·h1d and
s1+0.05·h2d, respectively, whereh1,h2 are uniform random
variables with values inf−1;1g, such that

J̃sa1, . . . ,a16,u1, . . . ,u16d = s1 + 0.05 ·h1d
m

2
E

0

T

em
2 stddt

+ s1 + 0.05 ·h2d
1

2
ukCuCTlu2.

The value ofJ̃ is returned to the evaluation routine except
when s1+0.05dukCuCTlu2.1, whereupon the relative noise
for the target is modified to 1/ukCuCTlu2−1 in order to avoid
unphysical noisy values above the maximum target overlap
of 1.0. In this case the returned cost functional value is

J̃sa1, . . . ,a16,u1, . . . ,u16d

= s1 + 0.05 ·h1d
m

2
E

0

T

em
2 stddt

+ S1 +S 1

ukCuCTlu2
− 1Dh2D1

2
ukCuCTlu2.

For both tested algorithms three runs are taken starting at
random initial guesses; typical sample runs are shown in
Figs. 1–3. In the laboratory an ensemble of experiments
would be performed with the actual cost being the average
over the ensemble.

The parameterm has to be chosen carefully in order for
the minimization of the cost functional to give a good target
value. If m is too large, such asm=0.1 in Fig. 3, the solution
will converge toward the zero field, as too much weight is
put on the fluence terme0

T estd2dt. In the rangemø0.001 that
gives satisfactory solutions for the control problem, both al-
gorithms find many local minima that have overlaps with
target typically in the range of 60% –90%(if m is lowered
this quality increases). In these cases both algorithms are
sometimes trapped in a local minimum of lesser quality, but
running several times eventually ensures finding acceptable
quality results. Whenm is lowered tom=0.0001(and even
more so form=0), then good quality solutions are almost
always found. The results for the two algorithms atm=0.0
are shown in Figs. 1 and 2. Both algorithms can give good

FIG. 1. Results form=0.0 (simplex algorithm); the abscissa is
the number of cost functional evaluations, and the ordinate is the
noisy cost functional values for these typical runs. The relative
noise levels are 1% for phases, 2% for amplitudes, and 5% obser-
vation noise. Good quality results are obtained with the cost func-
tional converging close to the optimum value of −0.5. Similar re-
sults are obtained for other small weights such asm=0.001.
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target yields, but the simplex algorithm was generally an
order of magnitude more efficient than the GA.

In order to test the robustness of the algorithms with re-
spect to control and observation noise levels, further numeri-
cal experiments were carried out. The parameterm was set to
zero, and the relative noise was increased by a factor of 5 to
become 5% phase noise, 10% amplitude noise, and 25%
observation noise. The results are given in Figs. 4 and 5.
Additional scenarios were also tested(e.g., noise levels ten
times as large at 10% phase noise, 20% amplitude noise, and
50% observation noise), and the qualitative behavior was
the same. The results are generally very robust to large de-
grees of noise, which appears consistent with recent analyses
[40,41].

Signal averaging would generally be done in the labora-
tory to reduce the influence of noise. Such averaging would
be effective for the observation noise, but the nonlinear in-
fluence of the control noise will still have a residual effect.

As a conservative worst case scenario, no signal averaging
was done in the present simulations[42]. One interesting
conclusion drawn from these simulations is that recomputing
the cost functional value at an apparently good quality point
is important in order to detect faulty situations where the
“good quality” is in fact due to random noise deviations.
Note that the simplex algorithm takes provisions against this
phenomenon: for any shrink step thewhole simplex is re-
evaluated. These arguments were at the core of the modifi-
cation introduced by Barton and Ivey[29] to the standard
Nelder-Mead algorithm. The GA also implicitly takes into
account this phenomenon if an appropriate replacement rule
is chosen, for example requiring that the parents are neces-
sarily replaced after one generation. The influence of noise
needs to be considered in examining the fluctuating values of
any single functional trajectory versus the number of evalu-
ations in the figures, expecially at high noise levels.

IV. CONSIDERATIONS REGARDING THE COST
FUNCTIONAL SURFACE

As a follow-up of the numerical results of Sec. III, we
were also able to attain insight into the cost functional sur-
face from a new algorithm that has been designed to test the
feasibility of generic gradient-free algorithms for optimiza-
tion of quantum control cost functionals. This algorithm,
called the Monte Carlo discrete gradient algorithm, has not
been optimized for performance but rather is used to reveal
some properties of the cost functional surface. The features
of this search procedure are presented in the Appendix. This
algorithm will operate by converging to the robust solution
closest to the initial point as it does not have global search
properties other than those brought by the random selection
of the initial point (i.e., the Monte Carlo aspect of the algo-
rithm). The Monte Carlo discrete descent algorithm was
tested form=0 and zero noise level. The results are given in
Fig. 6. It was found that the Monte Carlo discrete descent
algorithm converges to a good solutionfor any randomly
chosen initial point. The conclusion that may be drawn from

FIG. 2. Results form=0.0 (GA); the abscissa is the number of
cost functional evaluations, and the ordinate is the noisy cost func-
tional values for a few typical runs. The relative noise levels are 1%
for phases, 2% for amplitudes, and 5% for the observations. A good
quality result is obtained with the cost functional converging close
to the optimum value of −0.5. When compared with the simplex
algorithm in Fig. 1, the GA is slower by a factor of between 5 and
10. Similar results are obtained form=0.001.

FIG. 3. Results form=0.1; the abscissa is the number of func-
tional evaluations and the ordinate is the noisy cost functional val-
ues. Relative noise levels: 1% for phases, 2% for amplitudes, and
5% output noise. Becausem is high no effective control is exhibited
(i.e., there is no overlap with the target and all the algorithms con-
verge to nearly the constant zero field).

FIG. 4. Results form=0.0 (simplex). The abscissa is the number
of functional evaluations, and the ordinate is the noisy cost func-
tional values. The relative noise levels are 5% for phases, 10% for
amplitudes, and 25% for observation.
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this result is that many local minima exist with values close
to that of the global optimum. This property has also been
observed and analyzed in Ref.[43], and this behavior may
not hold for general observables beyond simple projections
to a single target state. This conclusion provides a possible
basis to understand why the GA is less efficient than the
simplex algorithm in this case: since the cost functional has
many good quality minima, the global exploration properties
of the GA are not needed. The GA does not have foreknowl-
edge of this behavior and tends to explore the whole cost
functional surface in the hope of finding yet a better solution,
which does not exist. In contrast, the simplex algorithm less
thoroughly explores the cost functional surface and still finds

good results because close to any initial point there is a good
quality solution.

We also found that when there is no noise form=0 both
the GA and the modified simplex algorithm converge to
high-quality solutions each time. However, as the GA and the
simplex algorithms have known global optimization proper-
ties, this observation is less definitive about the nature of the
functional surface than the conclusion drawn from the fact
that the local Monte Carlo discrete descent algorithm con-
verges to a good solution for any initial point.

V. DISCUSSION AND CONCLUSIONS

Optimization algorithms are an important part of the ex-
perimental protocols in the laser control of quantum phe-
nomena. The present work demonstrates through numerical
simulations on selected cases that genetic algorithms(and
their descendants) are not the only algorithms that can per-
form efficiently in this context. An alternative, that is up to
an order of magnitude faster(for the cases studied), is the
modified simplex algorithm of Barton and Ivey[29]. One
possible explanation of why this latter algorithm is better
resides in it exploiting the multiplicity of solutions and only
exploring a selected region of the cost functional surface. As
a by-product of the search for good optimization algorithms,
the present work introduced a discrete descent algorithm
whose convergence properties gave additional evidence that
indeed the local minima of the cost functional are of very
good quality.
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FIG. 5. Results form=0.0 (GA). The abscissa is the number of
functional evaluations, and the ordinate is the noisy cost functional
values. The relative noise levels are 5% for phases, 10% for ampli-
tudes, and 25% for observation noise.

FIG. 6. Results form=0.0 and no noise for the discrete descent
algorithm h=j=s0.01, . . . ,0.01d. The abscissa is the number of
functional evaluations, and the ordinate is the cost functional value.
It was found thatall random initial points converge to high-quality
results of 90% overlap with target(this conclusion was found for
many additional runs beyond those presented here). This conclusion
remains partially valid as the noise level increases. The value of the
cost functional for the first run increases over the period of approxi-
mately 5000 to 10 000 evaluations. This behavior arises from using
the “reflection at the boundary” procedure(see Remark 3) in order
to remain within predefined bounds on the controls. In this case, the
minimum most close to initial(random) point is outside the chosen
bounds. After a period of oscillations along the boundary the algo-
rithm becomes oriented and converges toward another minimum
inside the bounds.

FIG. 7. Generic cost functionJsxd behavior with respect to a
single variablex. The minimum atx=5 is deep, but narrower than
that atx=0, and may not be robust at larger scales; for example, the
x=0 minimum is robust for the scaleihi=2.5 but the one atx=5 is
not. Both minima are robust for very small values ofihi, e.g., 0.01.
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APPENDIX: MONTE CARLO DISCRETE DESCENT
ALGORITHM

1. Definition of the discrete gradient

Since an exact gradient of the cost functionalJsx1, . . . ,xNd
is not available in practice, we will introduce adiscrete

gradient. Let j=sj1, . . . ,jNdPRN be a given vector such
that jkÞ0,k=1, . . . ,N. We denote byek the vectors of the
canonical base of RN: e1=s1,0, . . . ,0d , . . . ,ek

=s0, . . . ,1 , . . . ,0d, eN=s0, . . . ,1d, and define the discrete gra-
dient of Jsxd at the pointx with respect to the incrementsj
by the formula

¹j
dJsxd = SJsx + j1e1d − Jsxd

j1
, . . . ,

Jsx + jkekd − Jsxd
jk

, . . . ,
Jsx + jNeNd − Jsxd

jN
D . sA1d

Note that in the limitj→0 the quantity thus computed is
precisely the gradient ofJ at the pointx, as each component
of ¹j

dJsxd converges to the corresponding partial derivative
of Jsxd. On the other hand, ifj is fixed we can heuristically
argue that the discrete gradient only sees details ofJsxd at the
scalej as the discrete gradient is a finite-difference represen-
tation of the true gradient at the given fixed scalej. This is
an important property which is consistent with the use we
make of Eq.(A1), as in practicej is not meant to tend to
zero.

2. Definition of the Monte Carlo discrete descent algorithm

Consider the increment vectorh=sh1, . . . ,hNdPRN, j
PRN. The algorithm is prescribed by the following steps:

(1) Choose a random pointx0 in the admissible parameter
spaceRN; setn=0.

(2) Update the current solution by the formula

xn+1 = xn −
h * ¹j

dJsxnd
ih * ¹j

dJsxndd
ihi, sA2d

whereh* ¹j
dJsxnd is the element-wise product of the two vec-

tors

h * ¹j
dJsxnd

= „h1s¹j
dJsxnd…1, . . . ,hks¹j

dJsxnddk, . . . ,hNs¹j
dJsxnddNd,

sA3d

and the “discrete gradient”¹j
dJs·d is defined in Eq.sA1d.

(3) Unless a predefined stopping criterion is satisfied
(e.g., an acceptable value ofJsxn+1d is reached) set n=n+1
and return to step 2 above.

Although the algorithm was defined here for differentj
andh, in practice we chosej=h.

Remark 1.In practice, in order to increase the perfor-
mance of the algorithm above we use it on a population ofK
initial guessesx1

0, . . . ,xK
0; thus, we obtainK Monte Carlo

discrete descent algorithms that run independently in paral-
lel. Note that in our implementation — and in contrast with
the GA approach — there is no cross talk between theK
different running members. This “Monte Carlo” label char-
acterizes the only stochastic element present in this algo-
rithm.

Remark 2.Except for the random initialization and the
constant norm increment properties, similar algorithms have
been studied in Refs.[44,45]; related work(local lineariza-
tion) is pursued in Ref.[46]. With respect to these works, the
present study is different in that it is also aimed at exploring
the geometry of the cost functional surface by choosing a
simpler algorithm which is a particular case of the frame-
work given in Ref. [45], except that there the step size
ixn+1−xni can vary while here it is fixed.

Each of theK members of Monte Carlo discrete descent
algorithmic search is expected to “converge” to the “robust”
local optimum closest(at the scaleihi) to its initial point;
here, robustness means that in a neighborhood of the local
optimum the values of the cost functional are still of high
quality. An illustration of the concept is given in Fig. 7.

This algorithm can be viewed as following the path of a
ball of diameterj and moving at the constant “ground” speed
ihi on the cost function surface being minimized. The(lower
bounded) speed and the nonzero diameter will tend to
smooth the cost function surface.

3. Remarks on the algorithm

Note from Eq. (A2) that at each iteration the distance
between two consecutive pointsxn and xn+1 is the constant
valueihi; this choice is designed for the purpose of avoiding
long periods of small incremental steps to hopefully acceler-
ate the convergence toward the solution.

Remark 3.If some componentsxk of the argumentx are
required to be within predefined intervals, then these con-
straints are tested during the update step 2 in the definition
of the algorithm. If sxn+1dk would not satisfy the
required conditions, then the update formula is
modified by a “reflection at the boundary:”sxn+1dk

=sxndk+hks¹j
dJsxnddkihi / ih* ¹j

dJsxnddi.
Three important cases can be considered concerning the

relationship betweenj andh.
(i) iji, ihi: this corresponds to having iteration steps

larger than the steps used to compute the gradient(i.e., hav-
ing a precise gradient that may eventually result in lower
smoothness of the cost functional, for example where the
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first derivative of the cost functional is either not definite or
very big). This corresponds to extrapolation;

(ii ) iji. ihi: the opposite circumstance, corresponding to
interpolation; and

(iii ) iji=ihi: there is a “neighborhood” used both to
compute the gradient and to advance to the next step. This is
the case that has been used in all the computations of this
paper. Note fromh=j it follows that

h * ¹h
dJsxd = sJsx + h1e1d − Jsxd, . . . ,Jsx + hkekd

− Jsxd, . . . ,Jsx + hNeNd − Jsxdd.

In this case the update step can be written asxn+1=xn

−rnok=1
N fJsxn+hkekd−Jsxndgek, where the renormalization

factor rn is used to enforce the constant norm increment
ixn+1−xni=ihi=constant.
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