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Conductivity of continuum percolating systems
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We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese
model, where the conducting medium is the space between randomly placed spherical holes, near the perco-
lation threshold. This model can be mapped onto a bond percolation model where the conductances of
randomly occupied bonds is drawn from a probability distribution of the forms2a. Employing the methods of
renormalized field theory we show to arbitrary order in« expansion that the critical conductivity exponent of
the Swiss-cheese model is given bytSC(a)5(d22)n1max@f,(12a)21#, whered is the spatial dimension and
n andf denote the critical exponents for the percolation correlation length and resistance, respectively. Our
result confirms a conjecture that is based on the ‘‘nodes, links, and blobs’’ picture of percolation clusters.
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I. INTRODUCTION

Percolation@1# is one of the best studied problems in s
tistical physics, both because of its fundamental nature
its vast array of applications. The most natural type of p
colation, perhaps, is continuum percolation, where the p
tions of the constituting elements are not restricted to
discrete sites or bonds of a regular lattice. A simple exam
of continuum percolation is a conducting material with u
formly sized holes placed at random. Due to its similarity
Swiss cheese, this model is commonly called the Sw
cheese model.

Since the holes are allowed to overlap, the system ce
to support electrical transport when the total volume of
holes exceeds a critical fractionqc . Near this percolation
thresholdqc the conducting network consists of many na
row bottlenecks each of which is bounded by interpenet
ing holes. Thus, it is plausible that the Swiss-cheese mo
can be mapped onto the random resistor network~RRN!
problem where conducting nearest neighbor bonds on a
percubicd-dimensional lattice are randomly occupied with
probability p. Apparently, the bottlenecks are playing a ro
similar to the occupied conducting bonds. However,
bottlenecks have a wide distribution of widths, in contrast
the standard RRN, where all occupied bonds are ident
Due to the wide distribution of neck widths the Swiss-che
model corresponds to a modified RRN in which the cond
tancess of the individual occupied bonds have a broad d
tribution in the form of a power laws2a with 0,a,1 @2#.
Due to its relation to the Swiss-cheese model, we abbrev
such a RRN by RRNSC.

It is well established that the purely geometrical perco
tion exponents for the Swiss-cheese model are in conform
with their analogs in the discrete models@3#. For example,
the correlation lengthj is governed in both models by th
same exponentn. The reason is that only the connectivity
the bottlenecks is relevant for the geometrical exponents
the widths of the individual bottlenecks do not matter, th
can be regarded identical in the context of connectivity pr
erties and the problem is essentially equivalent to stand
discrete percolation.

The situation is different for critical exponents pertaini
1063-651X/2001/64~5!/056105~14!/$20.00 64 0561
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to transport quantities. Let us consider the conductivity
ponentt for the RRN. It describes the decrease of the aver
macroscopic conductivityS when the critical occupation
probability pc is approached from above@4#:

S;~p2pc!
t. ~1.1!

The conductivity exponent is related to the resistance ex
nent f governing the average resistanceMR between two
terminal sitesx andx8 known to be on the same cluster@5,6#

MR~x,x8!;ux2x8uf/n ~1.2!

via the scaling relation

t5~d22!n1f. ~1.3!

The conductivity exponent for the RRNSC on the other hand
depends ona, i.e.,

SSC;~p2pc!
tSC(a). ~1.4!

Early estimates oftSC(a) were given by Kogut and Strale
@7#, and Ben-Mizrahi and Bergman@8#. Later Straley@9# ar-
gued based on the ‘‘nodes, links, and blobs’’ picture@10# of
percolation clusters thattSC(a) is given by

tSC~a!5~d22!n1max@f,~12a!21# ~1.5!

~see also Machtaet al. @11#!. Without relying on the assump
tions of the ‘‘nodes, links, and blobs’’ picturetSC(a) has
been addressed by Lubensky and Tremblay~LT! @12# from a
renormalization group~RG! perspective. After some contro
versy @13# their perturbation calculation to first order in th
deviation from the upper critical dimension for percolatio
«562d shows agreement with Eq.~1.5!.

The paper in hand presents our field theoretic study of
conductivity of the RRNSC. Our analysis builds up on the
field theoretic RRNSC Hamiltonian by LT. We discuss the
RG flow for the whole regime 0,a,1 to arbitrary order in
a diagrammatic expansion. The central result of our work
that Eq.~1.5! holds to arbitrary order in«.

The outline of the remainder of this paper is the follow
ing. Section II describes the modeling. We define the per
©2001 The American Physical Society05-1
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lation problem under consideration. Then we show how
average resistance and the related average conductanc
be derived from a generating function. We explain how
replica trick facilitates averaging and leads to an effect
Hamiltonian. Next, this effective Hamiltonian is refined in
a field theoretic functional. A scaling analysis concludes S
II. It reveals the relevance of the field theoretic couplin
associated with the conductances of the occupied bond
Secs. III and IV we actually compute the generating funct
for the average conductance by employing field theory a
mented by renormalization. A Gell-Mann-Low RG equati
~RGE! provides us with the scaling behavior of the avera
conductance near criticality. Our analysis is partitioned i
two cases. In Sec. III we considera50 and basically review
the known results for the RRN. Section IV deals with t
case of prime interest, viz. 0,a,1. Finally, concluding re-
marks are given in Sec. V. Technical details are relegate
Appendices A and B.

II. THE MODEL

We are about to consider a bond percolation model o
d-dimensional hypercubic lattice where the conductance
the occupied bonds are independently and identically dist
uted random variables. To be specific, the distribution fu
tion g of the conductancesb of any bondb is taken to be

g~s!5~12p!d~s!1p f~s!, ~2.1a!

where

f~s!5~12a!s0
21S s

s0
D 2a

~2.1b!

with sP@0,s0# and 0,a,1. For the relation of the RRNSC

defined by this choice to continuum percolation we refer
Halperinet al. @2#. Note thatf has the important feature tha
the average resistance of an occupied bond is infinite@14#.
This is a key distinction to the standard RRN and also t
RRN with noise modeled by a narrow distribution of bo
conductances~cf., e.g., Ref.@15# and references therein!.

Since we are going to calculate the conductivity expon
tSC(a) via the average conductanceMR21

SC we need a precise
definition of this quantity. Commonly this definition is base
on a setup in which a fixed external currentI is applied
between two leads at lattice sitesx andx8 known to be on the
same cluster. In this setup one could measure the resist
R(x,x8) between the two terminals and then average w
respect tog,

MR
SC~x,x8!5^R~x,x8!&g8 ~2.2!

with the average being defined as

^•••&g85
^x~x,x8!•••&g

^x~x,x8!&g

. ~2.3!

Herex(x,x8) is an indicator function that takes on the val
one if x and x8 are located on the same cluster and z
otherwise. The average macroscopic resistance~2.2!, how-
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ever, has the severe drawback that it is not well defin
because the average bond resistance diverges. Thus,
preferable to work with the average conductance instead
is given by

MR21
SC

~x,x8!5^R~x,x8!21&g8 . ~2.4!

Note thatx probes only geometrical connectivity. Henc
^x(x,x8)&g can be identified with ^x(x,x8)&C , where
^•••&C denotes averaging over all diluted lattice configu
tions C of the corresponding standard bond percolat
model. Accordingly^x(x,x8)&g is nothing more than the
usual percolation correlation function, i.e., the probabil
P(x,x8) that x andx8 are connected.

A. Generating function

In this section we review how one can devise a genera
function for MR21

SC based on the ideas of Stephen@16#. We
demonstrate that this generating function indeed serves
purpose and explain how the average conductance ca
extracted from it.

Stephen introduced the quantity

clW ~x!5exp~ ilW •VW x!, lW Þ0W . ~2.5!

VW x5(Vx
(1) , . . . ,Vx

(D)) is a D-fold replicated variant of the

voltageVx at lattice sitex andlW 5(l (1), . . . ,l (D)) is, apart
from a factor2 i , a replicated external current. The corr
sponding scalar product is defined aslW •VW x5(a51

D Vx
(a)l (a).

The physical content ofclW (x) will be explained below.
In order to proceed towards the desired generating fu

tion we now consider the two-point correlation function
clW (x)

G~x,x8,lW !5^clW ~x!c2lW ~x8!& rep, ~2.6!

where the average is defined by

^•••& rep5K Z2DE )
j

)
a51

D

dVj
(a)

3expF2
1

2
P~$VW %!G•••L

g

. ~2.7!

The product overj is taken over all lattice sites.Z is a nor-
malization factor given by

Z5E )
j

dVj expF2
1

2
P~$V%!G . ~2.8!

P($V%) denotes the dissipated power

P~$V%!5(
b

sbVb
25(

^ i , j &
s i , j~Vi2Vj !

2 ~2.9!

with the summations running over all bonds.Vb abbreviates
Vi2Vj , where i and j are the lattice sites belonging to th
5-2
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CONDUCTIVITY OF CONTINUUM PERCOLATING SYSTEMS PHYSICAL REVIEW E64 056105
respective bond, and accordingly,s i , j5sb . P($VW %) is the
replicated version of the power with all voltages replaced
their replicated analogs.

Before evaluating Eq.~2.6! we need to comment on regu
larization issues. First, it is important to realize that the in
grands in Eqs.~2.7! and~2.8! depend only on voltage differ
ences and hence the integrals are divergent. To give t
integrals a well defined meaning one can introduce an a
tional power term (iv/2)( iVi

2 . Physically the new term cor
responds to grounding each lattice site by a capacitor of
capacity. The original situation may be restored by taking
limit of vanishing frequency,v→0. Second, it is not guar
anteed thatZ stays finite because infinite voltage drops m
occur. Thus, the limit lim

D→0
ZD is not well defined. This

problem can be regularized by switching to voltage variab
uW taking discrete values on aD-dimensional torus that we
refer to as the replica space. The voltages are discretize
settinguW 5DukW , whereDu5uM /M is the gap between suc
cessive voltages,uM is a voltage cutoff,kW is aD-dimensional
integer, andM a positive integer. The components ofkW are
restricted to2M,k(a)<M and periodic boundary condi
tions are realized by equatingk(a)5k(a)mod(2M ). The con-
tinuum may be restored by takinguM→` and Du→0. By
settingM5m2, uM5u0m, and, respectively,Du5u0 /m, the
two limits can be taken simultaneously viam→`. Note that
the limit D→0 has to be taken beforem→` in order to
ensure lim

D→0
(2M )2D51. Since the voltages andlW are

conjugated variables,lW is affected by the discretization a
well:

lW 5Dl lW, DlDu5p/M , ~2.10!

wherelW is aD-dimensional integer taking the same values
kW . This choice guarantees that the completeness and orth
nality relations

1

~2M !D (
uW

exp~ ilW •uW !5dlW ,0W mod(2MDl) ~2.11a!

and

1

~2M !D (
lW

exp~ ilW •uW !5duW ,0W mod(2MDu) ~2.11b!

do hold. Equations~2.11! provide us with a Fourier trans
form between theuW andlW tori. It is important to note that the
replica space Fourier transform ofclW (x),

FuW~x!5~2M !2D (
lW Þ0W

exp~ ilW •uW !clW ~x!5duW ,uW x
2~2M !2D

~2.12!

satisfies the condition(uWFuW(x)50 and hence is nothing
more than a Potts spin@17# with q5(2M )D states.

In passing we emphasize the benefit of the replicat
procedure. It provides us with an extra parameterD that we
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may tune to zero. In this replica limit the normalization d
nominatorZ2D goes to one and hence does not depend
the distribution of the bond conductances anymore. Then
only remaining dependence on this distribution rests in
power P appearing in the exponential in Eq.~2.7!. In the
replica limit, therefore, we just have to average this expon
tial instead of the entire right hand side of Eq.~2.7!. This
average then provides us with an effective power or Ham
tonian that serves as vantage point for all further calcu
tions. The effective Hamiltonian will be discussed in Se
II B.

Now we come back to the role of Eq.~2.6! as a generating
function. Since the integrations are Gaussian they are rea
carried out with the result

G~x,x8,lW !5P~x,x8!K expF2
lW 2

2
R~x,x8!G L

g

8
.

~2.13!

It is evident from Eq.~2.13! that G(x,x8,lW ) represents a
generating function for the average resistance. To obta
generating function for the average conductance one sim
needs to carry out a Fourier transformation in replica spa

G̃~x,x8,uW !5P~x,x8!
1

~2M !D (
lW

exp~ ilW •uW !

3K expF2
lW 2

2
R~x,x8!G L

g

8
. ~2.14!

After paying due attention to the exclusion oflW 50W we may
approximate the summation in Eq.~2.14! by an integration,

G̃~x,x8,uW !5P~x,x8!
1

~2MDl!D H K E
2`

`

dDl

3expF2
lW 2

2
R~x,x8!1 ilW •uW G L

g

8
2

1

~2M !DJ .

~2.15!

The l integration is straightforward since it is Gaussian.
the limit D→0 we obtain

G̃~x,x8,uW !5P~x,x8!H K expF2
uW 2

2
R~x,x8!21G L

g

8
21J

5P~x,x8!H 2
uW 2

2
MR21

SC
~x,x8!1•••J . ~2.16!

We learn from Eq.~2.16! that G̃(x,x8,uW ) is indeed the gen-
erating function we are looking for and thatMR21

SC can be
extracted simply by taking the appropriate derivative,
5-3
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MR21
SC

~x,x8!5P~x,x8!21
]

]~2uW 2/2!
G̃~x,x8,uW !U

uW 250

.

~2.17!

We conclude Sec. II A by addressing the physical cont
of clW (x) and its replica space Fourier transformFuW(x). A
reasoning similar to that for the two-point correlation fun
tion G(x,x8,lW ) leads to

^clW ~x!& rep5P`K expF2
lW 2

4
R`~x!G L

g

8
, ~2.18!

where the prime now indicates averaging subject to the c
dition that x is located on an infinite cluster.P` stands for
the percolation probability that a point belongs to an infin
cluster andR`(x) denotes the resistance betweenx and in-
finity. From Eq. ~2.18! we learn an important feature o
clW (x), namely that its average is proportional to the per
lation order parameterP` . For reasons that are clear by no
it is preferable to considerFuW(x). Upon Fourier transforma
tion in replica space we find in the limitD→0

^FuW~x!& rep5P`$^exp@2uW 2R`~x!21#&g821%. ~2.19!

Anticipating results we will derive in Sec. IV we rewrite Eq
~2.19! as

^FuW~x!& rep5P`H E
0

`

dtp~ t !expF2t
uW 2

wjfSC(a)/nG21J ,

~2.20!

wherew is a constant proportional tos0
21 and where

p~ t !5^d~ t2wjfSC(a)/nR`
21!&g8 , ~2.21!

is the probability distribution of the conductance to infinit
Thus, the physical meaning of the averagedFuW(x) may be
stated as follows:̂FuW(x)& rep corresponds to the percolatio
order parameter times a scaling function that incorporates
distribution of the conductance to infinity.

B. Field theoretic Hamiltonian

This section presents our derivation of a field theore
Hamiltonian for the RRNSC. It is guided be the work of LT.

We start by revisiting Eq.~2.7! from which we read off
the effective Hamiltonian announced in Sec. II A:

H rep52 lnK expF2
1

2
P~$uW %!G L

g

52 lnH E
0

s0

)
b

dsbg~sb!expF2
1

2
P~$uW %!G J .

~2.22!

For the subsequent steps it is convenient to recast Eq.~2.22!
as
05610
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b

K~uW b!. ~2.23!

Here, we have introduced

K~uW !52 lnH 11yE
0

s0
dsf~s!expF2

1

2
suW 2G J ~2.24!

with y5p/(12p). Moreover, we dropped a constant ter
NBln(12p) with NB being the number of bonds in the und
luted lattice. In order to refineH rep towards a field theoretic
Hamiltonian we now expandK(uW ) in terms ofclW (x):

K~uW b!5
1

~2M !D (
lW

(
uW

exp@ ilW •~uW b2uW !#K~uW !

5 (
lW Þ0W

clW ~ i !c2lW ~ j !K̃~lW !, ~2.25!

whereK̃(lW ) is the replica space Fourier transform ofK(uW ).
To evaluateK̃(lW ) we approximate the summation overuW by
an integration. This gives, up to a multiplicative factor th
goes to one forD→0,

K̃~lW !52E
2`

`

dDu exp@ ilW •uW # lnH 11yE
0

s0
dsf~s!

3expF2
1

2
suW 2G J . ~2.26!

Upon expanding the logarithm and carrying out theuW inte-
gration we obtain, once more by dropping a multiplicati
factor that goes to one in the replica limit,

K̃~lW !5(
l 51

`
~21! l

l
y lFl~lW ! ~2.27!

with Fl(lW ) being given by

Fl~lW !5E
0

s0
ds1•••E

0

s0
ds lf~s1!•••f~s l !

3expF2
lW 2

2

1

s11•••1s l
G . ~2.28!

Integration yields, as demonstrated in Appendix A,

Fl~lW !511AllW
21BllW

2l (12a)1O„~lW 2!2
…, ~2.29!

where lW 2l (12a) is understood as (lW 2) l (12a). Al and Bl are
constants. For example,A1 is given by A15(1
2a)/(2as0) and B1 readsB152G(a)/(2s0)12a with G
denoting theG function. The general form of theAl is Al

;s0
21@11 l (a21)#21. For reasons that will be given in Se

II C we will neglect all terms associated withBl .1 from now
on. By inserting Eq.~2.29! into Eq. ~2.27! we find
5-4
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K̃~lW !5K1wlW 21vlW 2l (12a)1••• ~2.30!

with K, w, andv being expansion coefficients.v is propor-
tional to s0

a21 and positive fora.0. w is proportional to
s0

21. Its sign depends on the values ofa andy. From now on
we omit factors (2M )2D that go to one in the replica limit
Moreover, we define the discrete gradient“uW via

2(
uW

FuW~ i !“uW
2
FuW~ j !5 (

lW Þ0W
lW 2clW ~ i !c2lW ~ j !. ~2.31!

Collecting we find that

H rep5(
^ i , j &

(
uW

FuW~ i !@K2w“uW
2
1v~2“uW

2
!12a#FuW~ j !.

~2.32!

In the limit of perfect transport,s0→`, the coefficientsw
andv vanish andH rep reduces to

H rep5K(
^ i , j &

(
uW

FuW~ i !FuW~ j !. ~2.33!

This Hamiltonian represents nothing more than the (2M )D

states Potts model that is invariant against all (2M )D permu-
tations of the spin states. Ifs0

21Þ0, thisS(2M )D symmetry is
lost in favor of anO(D) rotational symmetry in replica
space.

We proceed with the usual coarse graining step and
place the Potts spinsFuW(x) by order parameter fieldsw(x,uW )
that inherit the constraint(uWw(x,uW )50. We model the cor-
responding field theoretic HamiltonianH in the spirit of Lan-
dau as a mesoscopic free energy. The constituting elem
are local monomials of the order parameter field and its g
dients in real and replica space. Purely local terms in rep
space have to respect the fullS(2M )D Potts symmetry. After
these remarks we write down the Landau-Ginzburg-Wils
type Hamiltonian

H5E ddx(
uW

H 1

2
w~x,uW !K~D,DuW !w~x,uW !2

g

6
w~x,uW !3J ,

~2.34a!

with the kernel being given by

K~D,DuW !5t2“

22w“uW
2
1v~2“uW

2
!12a. ~2.34b!

In Eq. ~2.34! we have neglected all higher order terms th
are irrelevant in the renormalization group sense.w andv are
now coarse grained analogs of the original coefficients
pearing in Eq.~2.32!. The parametert2tc;(pc2p) speci-
fies the deviation of the occupation probabilityp from the
critical probability pc . In mean field theory the percolatio
transition happens att5tc50. We point out thatH reduces
to the usual field theoretic Hamiltonian for the (2M )D states
Potts model upon settingw5v50. Thus,H satisfies an im-
portant consistency requirement since one retrieves pu
geometrical percolation in the limits0→`.
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C. Scaling analysis in the voltage variable

Now we address the relevance of the coupling consta
associated with the bond conductances. We carry out a s
ing analysis by rescaling the voltage variable:uW→buW . Hereb
denotes a scaling factor and should not be confused with
index labeling the bonds. By substitutingw(x,uW )
5w8(x,buW ) into the Hamiltonian we get

H@w8~x,buW !;t,w,v#

5E ddx(
uW

H 1

2
w8~x,buW !K~D,DuW !w8~x,buW !

2
g

6
w8~x,buW !3J . ~2.35!

Renaming the scaled voltage variablesuW 85buW leads to

H@w8~x,uW 8!;t,w,v#

5E ddx(
uW 8

H 1

2
w8~x,uW 8!K~D,b2DuW !w8~x,uW 8!

2
g

6
w8~x,uW 8!3J . ~2.36!

Obviously, a scaling of the voltage variable results in a sc
ing of the voltage cutoff,u0→bu0. However, by taking the
limit D→0 and thenm→`, the dependence of the theory o
the cutoff drops out. In other words:u0 is a redundant scal
ing variable. Thus, one can identifyuW 8 anduW and conclude
that

H@w~x,buW !;t,w,v#5H@w~x,uW !;t,b2w,b2(12a)v#.
~2.37!

Next we consider the consequences of Eq.~2.37! for the
correlation functions of the fieldw(x,uW ) given by

G̃N~$x,uW %;t,w,v !5E Dww~x1 ,uW 1!•••w~xN ,uW N!

3exp~2H@w~x,uW !;t,w,v# !,

~2.38!

whereDw indicates an integration over the set of variab

$w(x,uW )% for all x anduW . Equation~2.37! implies that

G̃N~$x,uW %;t,w,v !5G̃N~$x,buW %;t,b2w,b2(12a)v !.
~2.39!

From Eq.~2.39! in conjunction with Eq.~2.16! we deduce

uW 2MR21
SC

„~x,x8!;t,w,v…

5b2uW 2MR21
SC

„~x,x8!;t,b2w,b2(12a)v…. ~2.40!
5-5
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The freedom of choice with respect tob has not been
exploited yet. To address the issue of relevance we cho
b25v21/(12a). This gives

MR21
SC

„~x,x8!;t,w,v…

5v21/(12a)MR21
SC

„~x,x8!;t,w/v1/(12a),1…. ~2.41!

By virtue of v;s0
2(12a) we may recast Eq.~2.41! as

MR21
SC

„~x,x8!;t,w,v…5s0
21f 1„~x,x8!;t,w/v1/(12a)

…,
~2.42!

with f 1 being a scaling function. We learn thatw appears
only in the combinationw/v1/(12a). A trivial consequence of
the fact that the Hamiltonian~2.34! must be dimensionless i
that wlW 2;vlW 2(12a);m2, where m is an inverse length
scale. Thus,w/v1/(12a);m22a/(12a). This leads to the con
clusion thatw is marginal fora of order « whereas it is
clearly irrelevant fora of order one.

As hypothesized in Sec. II B the scaling analysis in t
voltage variable justifies that we have neglected in the
mainder of Eq.~2.29! all terms associated withBl .1. Sup-
pose that we had retained these terms. Each of them
contributed a term2v l(2“uW

2) l (12a) to the kernel in Eq.
~2.34!. From the preceding paragraph it is evident, howev
that v l appears in the average conductance only asv l /v l

;m222l . We conclude that keeping theBl .1 had produced
only irrelevant terms and that neglecting them in study
the leading behavior at the critical point is indeed justifie

For our RG improved perturbation calculation presen
in Sec. IV it will be helpful to dispose of a coupling that
invariant underuW→buW . To identify a candidate we revisi
Eq. ~2.40! and chooseb25w21. This leads to

MR21
SC

„~x,x8!;t,w,v…5s0
21f 2„~x,x8!;t,h…, ~2.43!

with f 2 being another scaling function.h5v/w12a;m2a

turns out to be the sought invariant coupling constant.
will see that it emerges quite naturally in perturbation theo
Hence, we refer toh as effective coupling.

III. REVIEW OF THE RRN

This section here presents a brief review of the mo
with a50 @18–20#. We provide the reader with backgroun
on the RRN to make the subsequent analysis of the RRSC

more digestible.
In this as well as in the following section we utilizeH and

calculate the generating functionG̃(x,x8,uW ) by employing
field theory augmented by renormalization. For backgrou
on these methods we refer to Ref.@21#. As soon as we have
G̃(x,x8,uW ) at hand it is a straightforward matter to extra
MR21

SC .
For a50 the coupling constantsv and h are redundant

and can be set to zero. Straightforward dimensional anal
shows thatdc56 is the upper critical dimension and thatG2
andG3 are the only superficially divergent vertex function
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The diagrammatic elements as constituents of our pertu
tion calculation are the three-leg vertexg and the principal
propagator

Gbold~p,lW !5G~k,lW !$12dlW ,0W%, ~3.1!

where G(p,lW )5(t1p21wlW 2)21. Due to the factor$1
2dlW ,0W% that enforces the constraintlW Þ0W the principal propa-
gator decomposes in a conducting partGcond(p,lW )
5G(p,lW ) carrying replica currents and an insulating pa
Gins(p)5G(p,lW )dlW ,0W not carrying replica currents. Eac
principal diagram decomposes into a sum of conducting d
grams consisting of conducting and insulating propagato

Our real-world interpretation@15,19,20,22–27#, in which
the conducting diagrams are viewed as being resistor
works themselves, provides for a powerful and eleg
framework to calculate these diagrams. At first we rewr
the propagators in Schwinger parametrization,

G~p,lW !5E
0

`

dsexp@2s~t1p21wlW 2!#. ~3.2!

Next we interpret the Schwinger parameterss of the conduct-
ing propagators as their resistance. Then we can expres
lW -dependent part of any conducting diagram withPcond con-
ducting propagators in terms of its electric powerP:

expS 2w (
i PPcond

silW i
2D 5exp@wP~lW ,$kW %!#. ~3.3!

The summation on the left hand side runs over all conduc
propagators.lW i5lW i(lW ,$kW %), wherelW is an external curren
and $kW % is a complete set of independent loop currents,
notes the current flowing through conducting propagatori. In
this representation it is easy to see that the sum over the
currents is determined by the total resistanceR($si%) of the
respective diagram,

(
$kW %

exp@wP~lW ,$kW %!#5exp@2R~$si%!wlW 2#. ~3.4!

Carrying out the usual momentum integrations, which
straightforward after completion of squares, and Taylor
pansion gives

I ~p2,lW 2!5I P~p2!2I W~p2!wlW 21•••

5E
0

`

)
i

dsi@12R~$si%!wlW 21•••#D~p2,$si%!,

~3.5!

for the overall form of any conducting diagram.D(p2,$si%)
stands for the usual~Schwinger parametrized! integrand of
the corresponding diagram in the standardw3 theory.

The ultraviolet~UV! divergences encountered in compu
ing the diagrams can be handled by resorting to dimensio
regularization. In dimensional regularization the UV dive
gences appear as poles in the deviation«562d from dc .
5-6
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These poles may be eliminated from the superficially div
gent vertex functions by employing the renormalizati
scheme

w→w° 5Z1/2w, ~3.6a!

t→t°5Z21Ztt, ~3.6b!

w→w° 5Z21Zww, ~3.6c!

g→g°5Z23/2Zu
1/2G«

21/2u1/2m«/2, ~3.6d!

where the+ indicates unrenormalized quantities. The amp
tudeG«5(4p)2d/2G(11«/2) is introduced for convenience
Z, Zt , andZu are the usual Potts modelZ factors known to
three-loop order@28#.

In the minimal renormalization procedure, i.e., dime
sional regularization in conjunction with minimal subtra
tion, theZ factors are of the form

Z . . . ~u!511 (
m51

` X . . .
(m) ~u!

«m
. ~3.7!

The X . . .
(m) (u) are expansions in the coupling constantu be-

ginning with the powerum. It is a fundamental fact of renor
malization theory, cf. Ref.@21#, that this procedure is suit
able to eliminate the UV divergencies from any vert
function order by order in perturbation theory.

The unrenormalized theory has to be independent of
arbitrary length scalem21 introduced by renormalization
Hence, the unrenormalized correlation functions satisfy
identity

m
]

]m
G° N~$x,lW %;g° ,t° ,w° !50. ~3.8!

Equation~3.8! translates via the Wilson functions

g . . . ~u!5m
]

]m
ln Z . . .U

0

, ~3.9a!

b~u!5m
]u

]m U
0

5u~3g2gu2«!, ~3.9b!

k~u!5m
] ln t

]m U
0

5g2gt , ~3.9c!

z~u!5m
] ln w

]m U
0

5g2gw ~3.9d!

~the u0 indicates that bare quantities are kept fixed while t
ing the derivatives! into the RGE

Fm ]

]m
1b

]

]u
1tk

]

]t
1wz

]

]w
1

N

2
gG

3GN~$x,lW %;u,t,w,m!50. ~3.10!
05610
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From the structure of the renormalization factors~3.7! and
the Wilson functions~3.9! one can deduce the important fa
the RGE is determined entirely by theX . . .

(1) (u). This may be
seen as follows. From the definitions~3.9a! and ~3.9b! we
learn that the Wilsong functions can be expressed as

g . . . ~u!5b~u!
]

]u
ln Z . . . . ~3.11!

A glance at Eq.~3.7! tells us then that the logarithmic de
rivative in Eq. ~3.11! has a pure Laurent expansion wi
respect to« starting at first order in 1/«. Moreover, we know
from Eq. ~3.9b! that b(u) begins with the zero-loop term
2«u. Because theg functions are finite for«→0 their «
poles have to cancel order by order in the loop expansion
a consequence, theg functions are given by

g . . . ~u!52u
]

]u
X . . .

(1) ~u!. ~3.12!

For this reason we will focus in the remainder of this pap
on theX . . .

(1) (u). We neglect higher order terms in the expa
sion ~3.7! and write

Z . . . ~u!511 (
L51

` Y . . .
(L)

L«
uL1O~«22!, ~3.13!

where theY . . .
(L) are numerical coefficients independent of«.

The RGE can be solved in terms of a single flow para
eter l by using the characteristics

l
]m̄

] l
5m̄, m̄~1!5m, ~3.14a!

l
]ū

] l
5b„ū~ l !…, ū~1!5u,

~3.14b!

l
]

] l
ln t̄5k„ū~ l !…, t̄~1!5t,

~3.14c!

l
]

] l
ln w̄5z„ū~ l !…, w̄~1!5w,

~3.14d!

l
]

] l
ln Z̄5g„ū~ l !…, Z̄~1!51.

~3.14e!

These characteristics describe how the parameters trans
if we change the momentum scalem according to m

→m̄( l )5 lm. Being interested in the infrared~IR! behavior
of the theory, we study the limitl→0. According to Eq.
~3.14b! we expect that in this IR limit the coupling consta
ū( l ) flows to a stable fixed pointu* satisfyingb(u* )50.
5-7
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The IR stable fixed point solution to the RGE is read
found. In conjunction with dimensional analysis it gives

GN~$x,lW %;u,t,w,m!

5 l (d221h)N/2GN~$ lx,lW %;u* ,l 21/nt,l 2f/nw,m!
~3.15!

with the critical exponents for percolationh5g(u* ) andn
5@22k(u* )#21 known to third order in« @28#. f5n@2
2z(u* )# is the percolation resistance exponent known
second order in« @19,20,29#.

Equation ~3.15! implies that the two-point function
G̃(x,x8,uW ) scales at criticalityt50 as

G̃~x,x8,uW !5 l 2b/nV~ l ux2x8u,l 2f/nw21uW 2! ~3.16!

with b5(d221h)n/2 denoting the percolation order pa
rameter exponent and whereV is a scaling function. Upon
choosingl 5ux2x8u21 and expanding the right hand side
Eq. ~3.16! we obtain by dropping nonuniversal constants

G̃~x,x8,uW !5ux2x8u2b/nH 2w21
uW 2

2
ux2x8u2f/n1•••J .

~3.17!

With the help of Eq.~2.17! it is now straightforward to de-
duce the scaling behavior of the average conductance,

MR21;w21ux2x8u2f/n. ~3.18!

IV. RENORMALIZATION GROUP ANALYSIS
OF THE RRNSC

Now we turn to the RRNSC and assume that 0,a,1.
First we address the renormalization of the model. By ca
fully analyzing the RG flow we reveal the critical behavi
of MR21

SC andSSC. As far as notation is concerned, we ado
the same convention as in Sec. I and II. Quantities that m
be confused with their analogs for the RRN are marked
the superscript SC.

A. Renormalization

Obviously the Potts modelZ factors are independent ofa
and hence do not require further consideration. TheZ factor
pertaining tow, however, is expected to be different from i
analog for the RRN, i.e.,

w→w° 5Z21Zw
SCw. ~4.1!

SincevÞ0 we need an additional renormalization

v→v° 5Z21Zv
SCv. ~4.2!

From Eqs.~4.1! and ~4.2! we deduce immediately, that th
effective invariant couplingh5v/w12a announced in Sec
II C has to be renormalized by

h→h°5Z2aZv
SC~Zw

SC!a21hm2a. ~4.3!
05610
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The factorm2a is included to render the renormalized effe
tive coupling dimensionless.

After these remarks we now bring our attention to t
perturbation calculation and its Feynman diagrams. For
RRNSC the principal propagator has a form similar to i
analog for the RRN,

GSC,bold~p,lW !5GSC~k,lW !$12dlW ,0W%. ~4.4!

However, its flesh is now given byGSC(p,lW )5(t1p2

1wlW 21vlW 2(12a))21. Evidently, GSC,bold(p,lW ) decomposes
into a conducting and an insulating part. This leads to c
ducting diagrams identical to those for the RRN up to app
ent distinctions in the definition of the propagators. Due
these distinctions an expansion for small external mome
and currents leads to

I ~p2,lW 2!5I P~p2!2I W~p2!wlW 22I V~p2!vlW 2(12a)1•••

~4.5!

instead of Eq.~3.5! for the overall form of the conducting
diagrams.

To extract information onZv
SC consider thelW dependent

part of a conducting diagram withPcondconducting propaga-
tors that reads in Schwinger parametrization

(
$kW %

expF2 (
i PPcond

si~wlW i
21vlW i

2(12a)!G . ~4.6!

We keep in mind thatlW i5lW i(lW ,$kW %). The important obser-
vation is now that any conducting propagator affected by
summation over the loop currents gives a contribution to
~4.5! polynomial inlW , i.e., it contributes toI W rather than to
I V . The only contributions toI V can come from conducting
propagators not affected by the summation over$kW %. In the
terminology of our real-world interpretation this means th
I V is determined exclusively by the red bonds of that d
gram, i.e., by its singly connected conducting propagato
To be specific,I V is given by

I V~p2!5E
0

`

)
j

dsj (
i PPred

siD~p2,$sj%!, ~4.7!

where the sum runs over allPred conducting propagators o
the diagram not belonging to any closed conducting loop

Now we take a short detour and recall some central f
tures of our field theory on the nonlinear RRN@20,22# in
which the occupied bonds obey a generalized Ohm’s lawV
;I r . The field theoretic Hamiltonian for the nonlinear RR
@30# corresponds to that for the standard RRN withw¹uW

2

replaced bywr(a51
D (2]/]u (a)) r 11. Accordingly, one en-

counters a generalized renormalization factorZwr
that then

leads to a generalized resistance exponentf r5n@2
2z r(u* )#. The Wilson functionz r is defined analogous to
Eq. ~3.9d! with gw replaced bygwr

5m]/]m ln Zwr
u0. The

generalized resistance exponent has the physical meanin
governing the average nonlinear resistance at criticality,
5-8
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Mr~x,x8!5^x~x,x8!Rr~x,x8!&C/^x~x,x8!&C

;ux2x8ufr /n. ~4.8!

The nonlinear RRN is particularly interesting, because
provides for an elegant way to determine fractal dimens
of percolation clusters by considering specific values or.
For example, it is a well known fact@31# that

lim
r→`

Mr;M red, ~4.9!

whereM red is the mass~average number! of the red bonds.
From Eqs.~4.8! and ~4.9! one obtains immediately the sca
ing relationdred5 lim

r→`
f r /n for the fractal dimensiondred

of the red bonds. It was shown rigorously by Coniglio@32#
that dred51/n, which means that lim

r→`
f r51. From the

definition off r it then follows that lim
r→`

z r(u)5k(u) that

leads in turn to the identity

lim
r→`

Zwr
5Zt . ~4.10!

In Refs. @20,22# we showed based on our real-world inte
pretation that the contributionI Wr

of a conducting diagram to

Zwr
takes forr→` the simple form

lim
r→`

I Wr
~p2!5E

0

`

)
j

dsj (
i PPred

siD~p2,$sj%!. ~4.11!

Comparison of Eqs.~4.7! and ~4.11! yields

lim
r→`

Zwr
5Zv

SC. ~4.12!

From this and Eq.~4.10! we finally conclude the identity

Zv
SC5Zt . ~4.13!

For analyzingZw
SC we revisit Eq. ~4.6! and rescale the

replica currents,lW 2→w21lW 2. This recasts Eq.~4.6! into

(
$kW %

expF2 (
i PPcond

si~lW i
21hlW i

2(12a)!G . ~4.14!

As mentioned above, conducting propagators belonging
closed conducting loops~blobs! lead in an expansion fo
small lW to terms polynomial inlW that contribute toI W .
Sinceh appears in Eq.~4.14! I W will in general depend onh
~cf. Appendix B!. We conclude thatZw

SC is not only a func-
tion of u but also ofh,

Zw
SC5Zw

SC~u,h!. ~4.15!

For arbitraryaP(0,1) it is difficult to gain further insight
into Zw

SC. Anyway, the most exciting values ofa are those
for which a is of the order of our small expansion parame
«. This is the key region in which the crossover between
RRN and the RRNSC occurs~the naive limita→0 presup-
poses«!a and hence is inadequate to resolve the cro
05610
it
n
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over!. In case botha and« are small we can follow the work
of Honkonen and Nalimov@33# to analyze the structure o
Zw

SC. This structure differs from that ofZw @cf. Eq. ~3.13!#
because two major differences emerge fora.0. First, the
conducting propagators

GSC,cond~p,w21/2lW !5 (
k50

`
~21!klW 2(12a)k

@t1p21lW 2#k11
hk ~4.16!

give rise to an entire series of individual terms. Second, si
a is now of order«, the poles in these individual contribu
tions are now of the type 1/(L«12ka). HenceZw

SC is of the
form

Zw
SC~u,h!511 (

L51

`

(
k50

` Yw
(L,k)

L«12ka
ulhk1O~«22!.

~4.17!

Here, theYw
(L,k) are the numerical coefficients of the pole

Appendix B illustrates the preceding arguments at the
stance of an one-loop calculation.

In minimal subtraction, theYw
(L,k) are independent of both

« anda. This fact provides us with a simple method to ca
culate the numerical coefficients because it is sufficient
consider the limita→0. In this limit the Hamiltonian for the
RRNSC reduces to the Hamiltonian for the RRN withw re-
placed byw1v. As a consequence we obtain by exploitin
Eq. ~4.13! the relation

Zw
SC~u,h!5Zw~u!1h@Zw~u!1Zt~u!# ~4.18!

valid in the limit a→0. Inserting the explicit forms~3.13!
and ~4.17! into Eq. ~4.18! we obtain the following relations
between the numerical coefficients:Yw

(L,0)5Yw
(L) , Yw

(L,1)

5Yw
(L)2Yt

(L) , andYw
(L,k.1)50. Recalling that theYw

(L,k) are
independent ofa we conclude that

Zw
SC~u,h!511 (

L51

`

ul H Yw
(L)

L«
1h

Yw
(L)1Yt

(L)

L«12a J 1O~«22!.

~4.19!

B. Scaling

We proceed in the same fashion as in Sec. III and se
a Gell-Mann-Low RG equation for the RRNSC. By carefully
analyzing the RG flow we derive the scaling behavior of t
average conductance.

The RGE for the RRNSC is somewhat richer than that fo
the RRN:

Fm ]

]m
1b

]

]u
1tk

]

]t
1wzw

SC ]

]w
1vzv

SC ]

]v
1

N

2
gG

3GN~$x,lW %;u,t,w,v,m!50, ~4.20!

where we have introduced the Wilson functions

gw
SC~u,h!5m

]

]m
ln Zw

SCU
0

, ~4.21a!
5-9
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zw
SC~u,h!5m

] ln w

]m U
0

5g2gw
SC, ~4.21b!

zv
SC~u!5m

] ln v
]m U

0

5g2gv
SC. ~4.21c!

Obviously value ofzv
SC at the fixed pointu* is given by

zv
SC~u* !5221/n. ~4.22!

In order to expresszw
SC at u* in terms of the known RRN

exponents we introduce the function

f ~h!5gw
SC~u* ,h!2gw~u* !, ~4.23!

which leads to

zw
SC~u* ,h!522f/n2 f ~h!. ~4.24!

Equations~4.21!, ~4.22!, and ~4.24! provide us with flow
equations for the couplingsw andv:

l
]

] l
ln w̄~ l !522f/n2 f „h̄~ l !…, w̄~1!5w, ~4.25a!

l
]

] l
ln v̄~ l !5221/n, v̄~1!5v. ~4.25b!

The flow equation~4.25b! for v is readily solved,

v̄~ l !5v l 221/n. ~4.26!

To solve the flow equation~4.25a! for w we first have to
analyze the flow ofh.

From the renormalization ofh ~4.3! follows immediately
that the logarithmic derivative of the renormalizedh with
respect tom is given atu* by

m
]

]m
ln hU

0

5
u5u* 1

n
@~12a!f21#1~12a! f ~h!. ~4.27!

Consequently,h obeys the flow equation

l
]

] l
h̄~ l !5h̄~ l !H 1

n
@~12a!f21#1~12a! f „h̄~ l !…J

~4.28!

with the initial conditionh̄(1)5h. A glance reveals that the
flow of h has two IR fixed points, viz.h1* 50 andh2* deter-
mined by

f ~h2* !5
1

n F 1

12a
2fG . ~4.29!

Now that we know the fixed points ofh we have to ana-
lyze their stability. Since there are two fixed points either o
will be stable and the other one will be unstable depend
on the value ofa. Considerh1* . h1* is stable if the$•••%
bracket on the right hand side of Eq.~4.28! has a positive
05610
e
g

sign and it is unstable if this bracket has a negative sign.
a of order one the sign is certainly negative. This leads to
conclusion thath2* is stable fora of order one. In the cross
over region, i.e., fora of order«, the question of stability is
more intricate. Here, we need more information on the fu
tional dependence off on h. This information can be derived
from the structure ofZw

SC given in Eq.~4.19!. Upon inserting
Eq. ~4.19! into the definition~4.21a! of gw

SC we obtain

gw
SC~u,h!5 (

L51

`

ul$Yw
(L)1h@Yw

(L)2Yt
(L)#%. ~4.30!

Substitutinggw
SC(u* ,h) into the definition~4.23! of f leads to

f ~h!5
h

n
@f21#. ~4.31!

The important conclusion from Eq.~4.31! is thatf is linear in
h for a of order«. Hence, it results in a contribution to th
right hand side of Eq.~4.28! quadratic inh that can be ne-
glected in analyzing the stability ofh1* . Finally, we perceive
that h1* is stable iff.(12a)21 whereash2* is stable iff
,(12a)21.

At this point we possess enough information to solve
flow equation~4.25a! for w. For f.(12a)21 we know that
f tends to zero becauseh flows toh1* . For f,(12a)21, on
the other hand, we have to insert Eq.~4.29!. Summarizing
both cases we write the solution to Eq.~4.25a! as

w̄~ l !5wl22fSC(a)/n, ~4.32!

where we have defined thea-dependent resistance expone

fSC~a!5H f if f.
1

12a

1

12a
if f,

1

12a
.

~4.33!

Collecting the above results we find that the solution
the RGE~4.20! augmented by dimensional analysis reads

GN~$x,lW %;u,t,w,v,m!

5 l Nb/nGN~$ lx,lW %;u* ,l 21/nt,l 2fSC(a)/nw,l 21/nv,m!.
~4.34!

This scaling form implies for the Fourier transformed tw
point function at criticality that

G̃~x,x8,uW !5 l 2b/nJ~ l ux2x8u,l 2fSC(a)/nw21uW 2,h1,2* !,

~4.35!

whereJ is a scaling function. The choicel 5ux2x8u21 and
subsequent Taylor expansion yields
5-10
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G̃~x,x8,uW !5ux2x8u2b/n

3H 2w21
uW 2

2
ux2x8u2fSC(a)/n1•••J .

~4.36!

With the help of Eq.~2.17! we readily obtain

MR21
SC ;w21ux2x8u2fSC(a)/n. ~4.37!

It remains to deduce the scaling behavior the average
ductivity and its conductivity exponenttSC(a). Commonly,
the conductivity of percolating systems is defined with
spect to a bus bar geometry where the network is pla
between two parallel superconducting plates~the electrodes!
of areaLd21 a distanceL apart. From the above we expe
that the average conductancesSC of this system scales as

sSC~L,t!5utuf
SC(a)Pa~L/j!, ~4.38!

wherePa is ana-dependent scaling function with the pro
erties

Pa~x!;H const for x!1

xd22 for x@1.
~4.39!

Now consider length scales large compared to the correla
length j. In this regime the RRNSC above the percolation
threshold,t,0, can be viewed as a homogeneous system
conductivitySSC(t). Hence, we may write forL@j that

SSC~t!;L22dsSC~L,t!. ~4.40!

By virtue of Eq.~4.39! we finally get

SSC~t!;utu(d22)n1fSC(a), ~4.41!

which means that the conductivity exponent is given by

tSC~a!5~d22!n1fSC~a!. ~4.42!

V. CONCLUDING REMARKS

We showed without relying on the assumptions of t
‘‘nodes, links, and blobs’’ picture that the conductivity e
ponent for the RRNSC is given by Eq.~1.5!. For sufficiently
large values ofa this means that

tSC~a!5~d22!n1~12a!21 ~5.1!

recognized by Halperinet al. @2# as a lower bound totSC(a)
that can be attributed to a dominance of the red bonds.
critical valueac5121/f the conductivity exponent crosse
over to the value

tSC~a!5~d22!n1f ~5.2!

for the standard lattice model and is essentially determi
by the blobs.

The ‘‘nodes, links, and blobs’’ picture provides an intu
tive explanation for this behavior. Since the distributi
05610
n-

-
d

n

of

a

d

function ~2.1b! is singular, there exists at criticality a larg
number of bonds with arbitrarily large resistance. Whene
one of these bonds is red it may dominate the total resista
of its link. If the large resistance, on the other hand, occur
a blob it has, in general, little impact because the current
flow through parallel paths. Fora.ac the resistance of the
weakest red bond is typically larger than the sum of res
tances of the other building blocks~the blobs and the othe
red bonds! of a link so that the weakest red bond domina
the total resistance of its entire link. Fora,ac the impor-
tance of the weak red bonds is diminished and the netw
behaves effectively as a standard RRN.

We point out that our analysis was not restricted to a
particular order in« expansion. Unlike LT who set up a
‘‘momentum shell’’ RG, we used the powerful methods
renormalized field theory. These methods allowed us to
plore general properties of the renormalization factors, s
sequently the RGE, and finally the conductivity exponent
all orders in perturbation theory.
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APPENDIX A: CONTENTS OF THE COUPLING
CONSTANTS w AND v

In this appendix we give details on the integrations in E
~2.28!. At the instance ofF1 and F2 we illustrate the con-
tents of the coupling constantsw andv.

We start by recalling the definition ofF1. After changing
the integration variable froms to t by settingt5lW 2/(2s) F1
takes on the form

F1~lW !5~12a!S lW 2

2s0
D 12a

GS a21,
lW 2

2s0
D . ~A1!

Here

G~a,y!5E
y

`

dt ta21e2t ~A2!

is the incomplete Gamma function that has abouty50 the
Taylor expansion@34#

G~a,y!5G~a!2 (
n50

`
~21!nya1n

n! ~a1n!
. ~A3!

Thus, we obtain

F1~lW !512G~a!S lW 2

2s0
D 12a

1
12a

a

lW 2

2s0
1O„~lW 2!2

….

~A4!

Now we turn toF2. After isolating the contribution for
lW 50W it is save to change variables by settings15s0tx and
s25s0t(12x). We get
5-11
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F2~lW !511~12a!2E
0

2

dtE
0

1

dxt122ax2a~12x!2a

3H expS 2
lW 2

2s0t
D 21J . ~A5!

The integration overx gives a Beta function@34# B(12a,1
2a). The integration overt can be handled analogous to th
integration in the preceding paragraph. As a result of b
integrations we obtain

F2~lW !511~12a!2B~12a,12a!H 2
22(12a)

2~12a!

1S lW 2

2s0
D 2(12a)

GS 2~a21!,
lW 2

4s0
D J . ~A6!

With help of the expansion~A3! we finally get

F2~lW !511~12a!2B~12a,12a! 22(12a)

3H G„2~a21!…S lW 2

4s0
D 2(12a)

1
1

2a21

lW 2

4s0

1O„~lW 2!2
…J . ~A7!

The higher ordersFl .2 can be analyzed by similar mean
It is not difficult to convince oneself that the general form
the Fl is given by Eq.~2.29! and that the coefficientsAl

decoratinglW 2 are proportional to@11 l (a21)#21. Since the
Fl enter into the kernelK̃(lW ) via Eq.~2.27! the coefficient of
the lW 2 term in K̃(lW ) is given by

w5(
l 51

`
~21! l

l
y lAl5(

l 51

`
~21! l

l
y l

Cl

11 l ~a21!
, ~A8!

where theCl are positive constants proportional tos0
21. We

learn from Eq.~A8! that the value ofw depends on details
like the specific values ofy anda. It may be finite or infinite,
positive or negative.v depends ony anda as well, see Eqs
~2.27! and ~A4!. However, for 0,a,1 and p.0 it is al-
ways finite and positive.

APPENDIX B: ONE-LOOP CALCULATION

In this appendix we calculate the one-loop contributio
to Zw

SC explicitly. We will see that the one-loop result is i
conformity with Eq. ~4.17!. In one-loop order there exist
only a single principal self-energy diagram that decompo
into conducting diagrams as shown in Fig. 1. In the follo
ing we set external momenta to zero for simplicity. Hen
the one-loop contributionG2

1-loop to the vertex functionG2

~note that the vertex functionsGN are defined as the negativ
of the corresponding diagrams! is given by
05610
h

s

s
-
e

G2
1-loop~lW !52B2A. ~B1!

Applying the usual Feynman rules yields

G2
1-loop~lW !52

g2

2 E
q
(
kW

Gcond~q,kW !Gcond~q,kW 1lW !

1g2E
q
Gcond~q,lW !Gins~q!, ~B2!

where we have dropped the superscript SC because we
sider exclusively the RRNSC throughout the entire appendix
*q is an abbreviation for (2p)2d*2`

` ddq. For the following
steps it is convenient to recast Eq.~B2! as

G2
1-loop~lW !52

g2

2 E
q
(
kW

H Gcond~q,kW !22
1

2
@Gcond~q,kW 1lW !

2Gcond~q,kW !#J 1g2E
q
Gcond~q,lW !Gins~q!.

~B3!

The evaluation of thelW -independent term is straightforwar
because (kW G

cond(q,kW )25Gins(q)2 for D→0. The
lW -dependent terms are expanded in the external currents
ter some algebra we obtain

G2
1-loop~lW !5

g2

2 E
q

1

~t1q2!2
2gE

q

wlW 21vlW 2(12a)

~t1q2!3

1g2E
q
(
kW

@w1~12a!vkW 22a#2~lW •kW !2

~t1q21wkW 21vkW 2(12a)!4
1•••.

~B4!

The first two integrations are readily carried out using
mensional regularization. The summation over the loop c
rent can be simplified by exploiting the rotational symme
in replica space and by rescalingwkW 2→kW 2. After these steps
we arrive at

G2
1-loop~lW !52g2

G«

«
t2«/2$t1wlW 21vlW 2(12a)%

1g2wlW 2I 1•••, ~B5!

where

I 5
1

DE
q
(
kW

@11~12a!hkW 22a#2kW 2

~t1q21kW 21hkW 2(12a)!4
~B6!

FIG. 1. The principal one-loop self-energy diagram~bold! de-
composes into the conducting diagrams A and B assembled of
ducting ~light! and insulating~dashed! propagators.
5-12
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remains to be evaluated. Upon rewritingI in Schwinger pa-
rametrization, the momentum integration can be carried
immediately. The summation overkW can be approximated b
an integration since we have already excludedlW 50W prop-
erly. Recasting this integration in spherical coordinates
get for D→0

I 5
1

6~4p!d/2E0

`

ds s32d/2 exp~2st!E
0

`

dk k

3@11~12a!hk22a#2 exp@2s~k21hk2(12a)!#.

~B7!

The integration over radius variablek is simplified by intro-
ducing an integration variablex5sk2. Moreover, we apply
the binomial formula and expand the rightmost exponen
function in Eq.~B7! with the result

I 5
1

12~4p!d/2E0

`

ds s22d/2 exp~2st!

3 (
k50

`

(
n50

2 S 2

nD ~12a!n
~21!k

k!
hn1ksa(n1k)

3E
0

`

dx exp~2x!xk2a(n1k). ~B8!

The integral overx is divergent fora>1/2 signifying that the
expansion inlW 2 is justified only fora,1/2. We assume tha
lin

J.

. B

05610
ut

e

l

a is sufficiently small and abbreviate the value of this in
gral by ck,n . Changing the summation indexk to k2n we
obtain

I 5 (
k50

`

ckh
kE

0

`

ds s22d/21ak exp~2st!, ~B9!

where we have set

ck5
1

12~4p!d/2 (
n50

2 S 2

nD ~12a!n
~21!k2n

~k2n!!
ck2n,n .

~B10!

The integration overs yields

I 5 (
k50

`

ckh
kGS «

2
1kaD t2(«/21ka). ~B11!

For a of order« we can expand theG function that provides
us with the final result

I 5 (
k50

`
Ckh

k

«12ka
t2(«/21ka), ~B12!

whereCk abbreviatesCk52ckG(11«/21ka). We see that
the UV singularities manifest themselves in a series of po
of the from hk/(L«12ka) with L51. In other words, our
one-loop example is in agreement with the general insig
presented in Sec. IV.
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