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1. INTRODUCTION

Considerable current interest to terahertz radiation
stems from its applications in many important areas of
science and engineering. One promising method for
generating terahertz waves is to use ultrashort laser
pulses. The possibility of generating low-frequency
(LF) waves by an electromagnetic wave packet was first
pointed out by Askar’yan [1], who considered the Cher-
enkov and transition radiations from the packet on a
qualitative level. The generation of LF radiation in a
plasma was, to the best of the author’s knowledge, first
considered by Dysthe et al. [2], who solved a one-
dimensional problem of the propagation of an ampli-
tude-modulated electromagnetic wave through an inho-
mogeneous plasma (see also [3]). The emission of LF
terahertz electromagnetic radiation in the irradiation of
gaseous and solid-state targets by femtosecond laser
pulses was revealed experimentally by Hamster et al.
[4]. More recently, many different physical mecha-
nisms have been proposed for generating terahertz radi-
ation in a plasma in its interaction with a high-power
laser pulse. One of them is associated with the conver-
sion of a wake plasma wave excited by a short laser
pulse in a low-density plasma into LF electromagnetic
radiation. Such conversion of longitudinal plasma
waves into a transverse electromagnetic field can occur
when the plasma is inhomogeneous or when there is an
external magnetic field. The theory of electromagnetic
radiation generated by a short laser pulse in a periodi-
cally inhomogeneous (stratified) plasma was con-
structed in [5] (see also [6]). For a randomly inhomoge-
neous plasma, the related problem was considered in
[7]. For a regularly inhomogeneous plasma, LF emis-
sion in the terahertz frequency range was investigated
both numerically [8] and analytically [9, 10]. The gen-
eration of terahertz electromagnetic wave fields by a

laser pulse in a low-density plasma in the presence of an
external magnetic field is associated with the Cheren-
kov emission mechanism; this issue was studied in a
number of papers [11–16]. In some recent papers [17–
21], a study was made of how an electron bunch accel-
erated in the wake wave of a laser pulse generates tran-
sition radiation in the terahertz range as it crosses a
plasma–vacuum interface. LF transition radiation gen-
erated by a laser pulse at the boundary of a low-density
plasma was considered in [22, 23].

The present paper is aimed at investigating the gen-
eration of LF (terahertz) radiation by a laser pulse inci-
dent on the boundary of a plasma with an overcritical
density. In this case, LF wave fields are excited in the
reflection of a laser pulse from the boundary of a dense
plasma, in contrast to the above-cited papers [22, 23],
where the interaction of a laser pulse with a low-density
plasma was considered. As the pulse is reflected from
the plasma boundary, its ponderomotive force induces
a surface vortex electric current, which generates tera-
hertz waves. It is established that LF radiation propa-
gates from the plasma into vacuum in the form of an
electromagnetic pulse whose duration is determined by
the time of interaction of a laser pulse with the plasma
boundary and is comparable to the duration of the laser
pulse. The spectral, angular, energy, and spatiotemporal
parameters of the LF radiation are investigated. It is
shown that a tightly focused laser pulse emits energy
predominantly in a direction transverse to the normal to
the plasma boundary and that the radiation spectrum
has a broad peak at a frequency close to the reciprocal
of the laser pulse duration. An increase in the focal spot
size leads to a shift of the spectral peak toward lower
frequencies and to a displacement of the directional
pattern of the radiation energy toward smaller angles.
A wide laser pulse whose transverse size substantially
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exceeds its length generates LF radiation energy nearly
along the normal to the plasma boundary. The total
energy of the emitted terahertz radiation and the coeffi-
cient of conversion of the laser pulse energy into LF
energy are calculated. It is found that, in the interaction
of femtosecond terahertz laser pulses with porous tar-
gets, the power of terahertz radiation can amount to tens
of megawatts.

2. REFLECTION OF A LASER PULSE
FROM THE BOUNDARY OF A DENSE PLASMA

Let a laser pulse propagating at the carrier frequency
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 in the positive direction of the 

 

z

 

 axis be normally
incident from the vacuum onto the boundary of a dense
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 for the given carrier fre-
quency and occupying the half-space 
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 > 0. We consider
the problem of the reflection of a laser pulse from an
overcritical plasma. We assume that the plasma bound-
ary is sharp and that the pulse is linearly polarized and
its intensity obeys a Gaussian distribution in both the
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, and transverse, 

 

r

 

⊥

 

 = 

 

,
coordinates. In vacuum (

 

z

 

 < 0), the electric field of a
laser pulse incident on the plasma boundary can be rep-
resented as

 

(2.1)
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the pulse duration, and 
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 are the charge and mass
of an electron.

Let us consider how a laser pulse is reflected from a
semi-infinite overcritical plasma. The equation for the
electric field of the pulse has the form
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 is the electron density, which has a
jump at the plasma boundary 
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 at 
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 > 0 (in plasma). Applying the Fourier transfor-
mation in time, we find the solutions to Eq. (2.2) in vac-
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uum and in plasma that are consistent with electric field
(2.1) of the incident pulse:
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(2.4)
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, are determined from the continuity conditions for
the tangential components of the electric and magnetic
fields at the plasma boundary and have the form
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the plasma frequency.

Applying the inverse Fourier transformation, we
take into account relationships (2.5) to obtain from for-
mulas (2.3) and (2.4) the electric field of the laser pulse
in vacuum and in plasma, respectively:
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mula (2.6), we arrive at the following expression for the
electric field of the laser pulse in vacuum (z < 0):

(2.8)

where η = z + ct. This expression describes the waves
that are incident on the plasma and those that are
reflected from its boundary. In the case at hand, the
incident wave is completely reflected from the bound-
ary of an overcritical plasma (ωp > ω0). According to
expression (2.7), the electric field of a laser pulse in a
plasma has the form

(2.9)

We can see from this formula that a laser pulse pene-
trates into a plasma to a small depth l ≈ c/(ω0χ(ω0)) on
a time scale comparable to the pulse duration.

3. GENERATION OF LF RADIATION
AT THE PLASMA BOUNDARY

In order to describe the generation of LF (terahertz)
radiation in the reflection of laser pulse (2.1) from the
boundary of a dense plasma, we use the hydrodynamic
equation for the electron velocity V(r, t), averaged over
the high-frequency (HF) electromagnetic oscillations
(see, e.g., [5]),
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and Maxwell’s equations for the LF electric and mag-
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the laser field is accounted for only through the aver-
aged ponderomotive potential

(3.4)

where VL(r, t) = (e/me) (r, t ') is the electron

velocity in laser field (2.9) and the angle brackets
denote averaging over HF oscillations. The linear
approximation is valid under the inequalities |V |, VTe �
|VL | � c, which imply that the electron velocity in the
laser field is much lower than the speed of light but is
much higher than both the electron thermal velocity VTe

and the slow electron drift velocity. Note that, accord-
ing to [24], electron–ion collisions in the field of an
intense laser pulse are governed by the motion of elec-
trons in the laser field rather than by their thermal

motion, νe, i ≈ 4πZe4NelnΛ/( ), where Z is the
degree of plasma ionization and lnΛ is the Coulomb
logarithm. Under the condition νe, iτ < 1, electrons and
ions do not collide during the time of reflection of a
laser pulse from the plasma boundary, so the plasma
can be treated as being collisionless. Under the above
restrictions, Eq. (3.1) can be written in the linear
approximation in a form in which the term with the
thermal pressure can be discarded and collisions can be
ignored.

From Eqs. (3.1)–(3.3) we can obtain the following
equations for the LF electric and magnetic fields:
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Equation (3.1) implies that, within the plasma (where
the electron density is constant, Ne(z) = N0e), the electric
current j = eN0eV is purely potential and does not excite
electromagnetic waves. However, at the plasma bound-
ary (at z = 0), where the electron density has a jump, the
electric current has the vortex component — × j = e[—
Ne(z) × V], which enters into the right-hand side of Eq.
(3.6) for the magnetic field and serves as a source for
generating terahertz electromagnetic radiation.
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where the transverse wave vector k⊥ has the compo-
nents kx and ky. From Eqs. (3.5) and (3.6) we can see
that, in its reflection from the boundary of a dense
plasma, a laser pulse excites the azimuthal components
Bφ of the LF magnetic field and also the radial and lon-
gitudinal (along the plasma density gradient) compo-
nents, Er and Ez, of the LF electric field.

Performing simple manipulations, we arrive at the
following equation for the Fourier transformed LF azi-
muthal magnetic field component Bφ(ω, k⊥, z), whose
right-hand side is written in terms of the Fourier com-
ponent φ(ω, k⊥, z) of the ponderomotive potential:

(3.8)

Here, we have introduced the notation ε(z) = 1 –

(z)/ω2 and  =  + . The longitudinal, Ez(ω, k⊥,
z), and radial, Er(ω, k⊥, z), components of the electric
field are related to the azimuthal magnetic field Bφ(ω,
k⊥, z) by the relationships

(3.9)
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(z > 0) and using the continuity conditions for the tan-
gential components Er and Bφ of the electric and mag-
netic fields at the plasma boundary (z = 0), we can
determine the LF electromagnetic fields over the entire
space. In vacuum (z < 0), the solution to Eq. (3.8) for
the Fourier component of the magnetic field has the
form of a wave running away from the plasma bound-
ary,
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The results obtained, specifically, formulas (3.11) and
(3.12), show that the LF electromagnetic radiation in
vacuum, in which we are interested here, is determined
by the Fourier component of the ponderomotive poten-
tial at the plasma boundary. Taking into account formu-
las (3.4), (2.8), and (2.9), we can obtain the ponderomo-
tive potential at z = 0 and also its Fourier transform,
which has the form

(3.13)

where VE = eE0L/meω0 is the electron oscillatory veloc-
ity in the laser field.

We apply the inverse Fourier transformation in the
spatial variables (see the first of formulas (3.7)) and
take into account relationships (3.11) and (3.13) to rep-
resent the spectral density of the azimuthal magnetic
field in vacuum in the form

(3.14)
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to the conventional azimuthal angle ϑ by the formula
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electromagnetic wave that propagates into vacuum
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plasma boundary.
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4. SPECTRAL AND ANGULAR PARAMETERS
OF THE LF RADIATION

Here, using expressions (3.15) and (3.16) for the
Fourier transformed electric and magnetic fields, we
consider the frequency and angular dependence of the
LF electromagnetic radiation energy in vacuum. In
order to investigate the energy parameters of the radia-
tion generated by a laser pulse, we utilize the following
expression for the time-integrated energy flux density
at a certain point [25]:

. (4.1)

The vector P(r) describes the electromagnetic energy
that is emitted by the pulse during the entire time of its
interaction with the plasma boundary and flows through
a surface of unit area along the normal to it in the vicin-
ity of a point with the position vector r. The vector P(r)
can also be represented in terms of the frequency inte-
gral,

, (4.2)

of the spectral energy flux density p(ω, r), which in
turn is expressed through the Fourier components of the
electric and magnetic fields in the form

(4.3)
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represented in terms of the spectral density of the azi-
muthal magnetic field as

(4.4)

where er = r/r is a unit vector in the direction of the
position vector. Using expression (3.15), we can deter-
mine the energy dW(ω, θ) = (p · er)r2dOdω emitted by
a laser pulse into the solid angle element dO =
2πsinθdθ per unit frequency range dω in vacuum:

(4.5)

where WL = L/8π is the laser pulse energy.

In expression (4.5), we integrate over the solid angle
elements dO (with the angle θ lying within the interval
0 ≤ θ ≤ π/2) to obtain the spectral energy of the excited
LF radiation:
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Let us consider the behavior of the normalized spectral
energy density of the LF radiation, I(x) =

/ , as a function of the dimen-

sionless frequency x = ωτ:

(4.7)
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Fig. 1. Spectra of terahertz radiation from a laser pulse in its
reflection from a dense plasma (ωpτ = 100) for different val-

ues of /L2: (1) 0.25, (2) 1, and (3) 4.RL
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the pulse length. We can see that the spectrum has a flat
peak at the frequency ωmax ≅ 1/τ, whose position shifts
toward lower frequencies as the ratio RL/L increases.

These results can be obtained analytically by inte-
grating over angles in formula (4.7). In this way, we
arrive at the following frequency dependence of the
radiation energy:

(4.8)

where a = x2 /2L2. Equating the derivative of the func-
tion I(x) to zero and using its power series expansion for
small values a < 1, we obtain from formula (4.8) the
position of the maximum in the radiation spectrum:

. (4.9)

For a tightly focused laser pulse (RL � L), the radi-
ation energy is maximum at the frequency ωmax = 2/τ.
As the focal spot size increases, the maximum in the
radiation spectrum shifts toward lower frequencies, in
accordance with the numerical results presented in
Fig. 1.

Taking the integral over frequency in expression (4.5),
we find the angular distribution of the LF radiation
energy emitted by a laser pulse:

(4.10)

The dependence of the dimensionless radiation energy

J(θ) = /  on the angle θ,

namely,

(4.11)
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is depicted in Fig. 2 in the form of a directional pattern
for different values of the ratio of the laser pulse radius
to its length. A tightly focused laser pulse (RL � L) radi-
ates LF energy predominantly in the transverse direc-
tion (θ ≅ π/2). As the size of the focal spot of the laser
pulse increases, the directional pattern is displaced
toward smaller angles. A laser pulse with a large trans-
verse size (RL � L) emits radiation at small angles,
almost along the normal to the plasma boundary.

Let us analyze angular dependence (4.11) analyti-
cally for different values of the ratio between the length
of the laser pulse and the radius of its focal spot. For a
tightly focused laser pulse (RL � L), formula (4.11)
becomes

(4.12)

The angle at which the intensity of the emitted radiation
is maximum is close to π/2 and is described by the rela-
tionship

. (4.13)
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Fig. 2. Directional pattern of the terahertz radiation in the
reflection of a laser pulse from a dense plasma (ωpτ = 100)

for different values of /L2: (1) 0.25, (2) 1, and (3) 4. For

a given direction in which the radiation is emitted, the value
of J(θ) (see formula (4.11)) is determined by the radius of
the circle passing through the corresponding point of the
directional pattern.
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For a laser pulse with a wide focal spot (RL � L), for-
mula (4.11) yields the following angular distribution of
the radiated energy:

. (4.14)

In this case, radiation is emitted at small angles to the
normal to the plasma boundary,

. (4.15)

By integrating in expression (4.6) over frequencies or in
expression (4.10) over angles, we can calculate the total
LF energy emitted by a laser pulse in its reflection from
the boundary of a dense plasma:

(4.16)

Simple expressions for the total radiation energy can be
derived analytically in two limiting cases. For a tightly
focused laser pulse (RL � L), from formula (4.12) we
obtain

. (4.17)

In the opposite limit, i.e., for a laser pulse with a wide
focal spot such that RL � L, the expression for the
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total energy can be obtained with allowance for for-
mula (4.14):

. (4.18)

The energy is likely to be maximum for RL ≈ L, as is
confirmed by a numerical analysis of expression (4.16).
Figure 3 illustrates the results of investigating the

dimensionless total energy w = W/

numerically as a function of the ratio between the
radius and length of the laser pulse. Calculations from
formula (4.16) show that, for ωpτ > 50, the dimension-
less energy has a maximum equal to wmax ≈ 0.6 for RL ≈
L. Based on this result, we can conclude that the LF
radiation energy is maximum,

(4.19)

for a laser pulse whose length is close to the focal spot
radius. Using formula (4.19), we can find the coeffi-
cient of energy conversion from a laser pulse to tera-
hertz radiation:

(4.20)

Terahertz radiation energy (4.19) and conversion coef-
ficient (4.20) are both inversely proportional to the
electron plasma density squared. Consequently, it can
be expected that the emitted radiation energy will be
maximum at electron densities slightly above the criti-
cal value.

5. SPATIOTEMPORAL DISTRIBUTION 
OF THE LF ELECTROMAGNETIC FIELD

Let us consider the spatiotemporal distribution of
the LF (terahertz) electromagnetic radiation in vacuum.
We apply the inverse Fourier transformation in time to
represent expression (3.15) for the magnetic field as

(5.1)

The electric field components can be calculated from
relationships (3.16). Using the saddle point method, we
can analytically obtain asymptotic formulas for the
integral in expression (5.1) in the wave zone under the
conditions |r – ct | � L, RL. Calculating the derivative of
the power index of the exponential function in the inte-
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Fig. 3. Dimensionless total energy of the terahertz radiation
from a laser pulse in its reflection from a dense plasma
(ωpτ = 100) as a function of the radius-to-length ratio R/L of
the pulse.
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grand in expression (5.1) and equating it to zero, we
find the position of the saddle point in the plane of the
complex variable ω:

(5.2)ωs
2ic r ct–( )

L2 RL
2 θsin

2
+

-------------------------------.=

Deforming the integration contour so that it passes
through the saddle point (5.2) along the path of steepest
descent, we arrive at the following expression for the
magnetic field of the LF radiation in vacuum under the

condition (r – ct)2 � L2 + sin2θ:RL
2
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The result obtained, namely, formula (5.3), indicates
that, in vacuum, LF radiation propagates as an electro-
magnetic pulse whose duration is determined by the
sizes of the laser pulse and depends on the observation
angle θ. A laser pulse does not emit terahertz radiation
exactly along the normal to the plasma boundary (θ = 0)
and in a direction strictly transverse to the normal (θ =
π/2). At small observation angles, the duration of the
LF electromagnetic radiation pulse is comparable to
that of the laser pulse. At observation angles close to
θ = π/2, the LF radiation pulse duration is determined
by both the length of the laser pulse and its transverse
dimensions.

The results of a numerical analysis of the integral in
expression (5.1) for the magnetic field of the terahertz
radiation are illustrated in Fig. 4 in the form of a distri-

bution of the dimensionless function H(r, θ, t) = Bφ(r,

θ, t)/ , specifically,

(5.4)

Note that formula (5.3) and the distribution shown
in Fig. 4 are similar to the results obtained in [22, 23]
for the LF transition radiation emitted by a long (ωpτ �
1) laser pulse at the boundary of a rarefied plasma.

6. CONCLUSIONS

In the present paper, a study has been made of the
excitation of LF (terahertz) electromagnetic wave fields
in vacuum in the reflection of an incident short laser
pulse from the boundary of an overcritical plasma. As a
laser pulse is reflected from the plasma boundary, it
induces a surface vortex electric current, which gener-
ates a short terahertz radiation pulse. The duration of
the terahertz radiation pulse is determined by the time
of interaction of the laser pulse with the plasma bound-
ary and is comparable to the duration of the laser pulse.
The spectrum of the LF radiation and its directional pat-
tern depend strongly on the ratio of the length of the
laser pulse to the diameter of its focal spot. In its reflec-
tion from the boundary of a dense plasma, a tightly
focused laser pulse radiates LF electromagnetic energy
predominantly in the transverse direction, the radiation
spectrum being peaked at the frequency ωmax = 2/τ. As
the radius of the focal spot of the laser pulse increases,
this spectral line shifts toward lower frequencies and
the directional pattern is displaced toward smaller
angles.
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Fig. 4. Spatiotemporal distribution of the dimensionless
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ing at the angle θ = π/4 from the boundary of a dense plasma
(ωpτ = 100).
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The model considered here, namely, that of a plasma
with a sharp boundary, makes it possible to substan-
tially simplify the problem by calculating the electro-
magnetic fields with the help of the boundary condi-
tions. This approximate model is valid when the width
of the plasma boundary is less than the laser pulse
length. In actuality, such conditions can be achieved,
e.g., in experiments with femtosecond laser pulses
focused on the surfaces of quartz (SiO2) aerogels hav-
ing a very low density, 0.01–0.04 g/cm3 [26]. In this case,
the electron density in the plasma produced through ion-
ization of the target material may be only a few times
higher than the critical density. With increasing density
of the target material, the terahertz radiation energy
decreases markedly, because it is inversely proportional
to the electron density squared (see formula (4.19)).
As for the interaction of laser pulses with solid-state
targets, the efficiency with which terahertz radiation is
generated in such conditions is likely to be very low.
However, the results reported in the present paper were
obtained in the collisionless plasma model and as such
cannot be applied to plasmas with a solid-state density,
in which the electron–ion collision frequency exceeds
the reciprocal of the laser pulse duration and can be
comparable to the laser frequency.

Let us estimate the energy of the terahertz electro-
magnetic radiation generated in the interaction of an
incident, 0.8-µm 90-mJ 4.5-TW laser pulse with a peak
intensity of 2 × 1017 W/cm2, duration of 20 fs (corre-
sponding a pulse length of 6 µm), and focal spot radius
of 20 µm with the boundary of a SiO2 aerogel with a
density of 0.04 g/cm3. In a laser-produced plasma with
an average ion charge number of 10, the electron den-
sity is equal to 4 × 1021 cm–3, which is almost two times
the critical density for the given laser wavelength. In
this case, the electron–ion collision frequency is νe, i ≈
3 × 1011 s–1, which is much less than the reciprocal
of the laser pulse duration, νe, iτ ≈ 6 × 10–3. From for-
mulas (4.7) and (4.11), we can conclude that electro-
magnetic energy is radiated at a small angle to the
plasma boundary, θ ≈ 14°, and the radiation spectrum
is peaked at a frequency of about 5.6 THz. The terahertz
radiation energy is equal to 0.3 µJ (see formula (4.19)),
conversion coefficient (4.20) is equal to 3.2 × 10–6, and
the radiated power is estimated to be 15 MW. These
estimates show that the generation mechanism under
discussion here should be taken into account in devel-
oping broadband high-power frequency-tunable tera-
hertz radiation sources.
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