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We study the inhibition of pattern formation in nonlinear optical systems using intracavity photonic crystals.
We consider mean-field models for singly and doubly degenerate optical parametric oscillators. Analytical
expressions for the new �higher� modulational thresholds and the size of the ”band gap“ as a function of the
system and photonic crystal parameters are obtained via a coupled-mode theory. Then, by means of a nonlinear
analysis, we derive amplitude equations for the unstable modes and find the stationary solutions above thresh-
old. The form of the unstable mode is different in the lower and upper parts of the band gap. In each part there
is bistability between two spatially shifted patterns. In large systems stable wall defects between the two
solutions are formed and we provide analytical expressions for their shape. The analytical results are favorably
compared with results obtained from the full system equations. Inhibition of pattern formation can be used to
spatially control signal generation in the transverse plane.

DOI: 10.1103/PhysRevE.72.016614 PACS number�s�: 42.65.Sf, 89.75.Kd, 05.65.�b, 42.70.Qs

I. INTRODUCTION

Photonic crystals �PC’s� have been shown to be able to
control light in ways that were not possible with conven-
tional optics �1,2�. Their remarkable properties stem from the
unusual dispersion relation as a result of the periodic modu-
lation of their dielectric properties. Most of the interest in
PC’s is related to propagation problems. Here the existence
of photonic band gaps—i.e., a range of frequencies for which
light cannot propagate in the medium—allows for a new way
of guiding and localizing light once defects are introduced in
the PC’s �1,2�. Photonic crystals in combination with nonlin-
ear effects have been also considered for all-optical switch-
ing devices �3�.

Transverse effects in periodic media have been mainly
studied in propagation in planar waveguides with periodic
modulation of the refractive index in the transverse direction
and arrays of couple waveguides. In the first case attention
has been focused on the so-called spatial gap �or Bragg�
solitons �4–6�, which are intense peaks with frequencies in-
side the �linear� band gap. This is possible thanks to a shift of
the photonic band-gap boundaries due to nonlinear effects:
the intense core of a gap soliton can propagate freely in the
periodic media, while in its less intense tails, where nonlin-
earity can be neglected, light is reflected back to the center
due to Bragg reflection, sustaining the localized structure.
Bragg solitons are usually studied within the coupled-mode
theory where only the slowly varying envelope of two coun-
terpropagating beams is considered. Arrays of waveguides
are usually studied within the tight-binding approximation,
where the system is described by a set of coupled ordinary
differential equations describing the dynamics of the guided-
mode amplitude in each site. The evanescent coupling be-
tween adjacent waveguide gives rise to the so-called discrete
diffraction. If nonlinearity is also present, discrete solitons
can be formed �3,4�.

In this paper we consider a different case, a photonic crys-
tal inside a nonlinear optical cavity—i.e., a system with driv-
ing and dissipation. Nonlinear optical cavities typically un-
dergo spatial instabilities leading to the formation of spatial

structures similar to what observed in many different fields
across science �7,8�. In particular, spatial structures in non-
linear optical cavities have important potential applications
in photonics such as memories, multiplexing, optical pro-
cessing, and imaging �9�. Control of spatial structures is then
an important issue for the implementation of such devices. In
this context, different mechanisms of control have been pro-
posed �10–12�. In particular, Neubecker and Zimmerman re-
ported on experimental pattern formation in presence of an
external modulated forcing and observed lockings between
the forcing and natural wavelengths �12�. More recently the
use of the properties of photonic crystals for the control of
optical spatial structures has been considered �13–15�. In
�13� we showed how the photonic band gap of a photonic
crystal could be used to inhibit a pattern forming instability
in a self-focusing Kerr cavity. Pattern formation in an opti-
cally injected, photonic-crystal vertical-cavity surface-
emitting laser, electrically biased below threshold, has been
observed experimentally in �14�. Finally, in �15�, a defect in
a photonic crystal has been used to achieve stable emission
in broad area lasers.

Here we study the inhibition of pattern formation in a
mean-field model for a degenerate optical parametric oscil-
lator with a photonic crystal. We first show that the inhibition
mechanism introduced in �13� occurs independently of the
type of nonlinearity here being quadratic. Then we introduce
an analytical treatment by means of a couple-mode theory
that fully explains the phenomenon. A linear stability analy-
sis allows us to determine analytically the new thresholds
shifted in parameter space by pattern inhibition and the form
of the unstable modes. We show that the band-gap region is
divided into two different regions: one in which pattern for-
mation takes place due to an energy concentration at the
maxima of the photonic crystal modulation and a different
one where the energy concentrates at the minima. We deter-
mine amplitude equations for the unstable modes and find
the stationary solutions above threshold analytically. We
show that this scenario is organized by a codimension-2 bi-
furcation point where both modes become simultaneously
unstable. We also show that in the band gap, where the pat-
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tern arises with a wave number half the one of the PC, there
is bistability between two different “phase-locked” solutions
differing by a shift of a PC wavelength in the near field. This
bistability stems from the breaking of the translational sym-
metry by the PC. In large systems this leads to the formation
of domains of different “phases” connected by topological
walls �or antiphase boundaries� �8�. This is a different kind of
�spatial� bistability where the two different “phases” do not
differ on the phase of the electric field but on the location of
the spatial oscillation in the near field.

II. MODELS

A phase-matched double-resonant degenerate optical
parametric oscillator �DRDOPO�, where both pump and sig-
nal fields resonate in the cavity, can be described in the
mean-field approximation by �16�

�tB = ��− B + E − A2� + i
1

2
�xxB ,

�tA = − A − i�sA + BA* + i�xxA , �1�

where B and A are the pump and signal slowly varying am-
plitudes, � is the ratio between the pump and signal cavity
decay rates, and E is the amplitude of the external pump
field. �s=�+�f�x� is the total signal detuning, where � is
the average detuning and f�x�=eikpcx+e−ikpcx describes the
spatially dependent contribution of the photonic crystal �Fig.
1�.

For the singly resonant DOPO �SRDOPO�, where there is
no cavity for the pump field, the mean-field equation for the
resonating signal is �17,18�

�tA = − A − i�sA + EA* − �A�2A + i�xxA . �2�

III. LINEAR STABILITY ANALYSIS WITH PERIODIC
MEDIA: COUPLE-MODE THEORY

The linearization around the steady-state homogeneous
solution B0=E and A0=0 of Eqs. �1� and �2� leads, in both
cases, to the same equation for the perturbations of the signal
A:

�tA = − �1 + i��A − i�f�x�A + EA* + i�xxA . �3�

Without the photonic crystal ��=0�, the homogeneous solu-
tion is stable for E�1. Above threshold �E�1� a stripe pat-
tern arises with a wave number kc=�−�. Here we restrict
ourselves to negative values of the detuning. For positive
detuning the system display bistability between homoge-
neous solutions �18�. For ��0 and assuming that the ampli-
tude of the modulation is weak enough, we can write the
signal perturbations as a superposition of two waves with
opposite transverse wave numbers �6�:

A = A+�x,t�eikpcx/2 + A−�x,t�e−ikpcx/2, �4�

where A±�x ,y� are slow functions of x. This is basically
equivalent to the so-called coupled-mode theory for propaga-
tion of pulses in periodic media �3�.

By writing A±=a±
+�t�eikx+a±

−�t�e−ikx, one obtains a set of
coupled linear ordinary differential equations for the ampli-
tudes a±

+ �a±
−� of the Fourier components ±kpc /2+k �±kpc /2

−k� of the perturbations. By defining F= �a+
+ ,a−

−* ,a−
+ ,a+

−*�T

this set of equations can be written as

Ḟ = LF , �5�

where L is given by

L =�
− 1 − i� − i�k +

kpc

2
	2

E − i� 0

E − 1 + i� + i�k +
kpc

2
	2

0 i�

− i� 0 − 1 − i� − i�k −
kpc

2
	2

E

0 i� E − 1 + i� + i�k −
kpc

2
	2
 . �6�

FIG. 1. Scheme of a doubly resonant degenerate optical para-
metric oscillator with a photonic crystal. It consist of a ring cavity
filled with a quadratic ���2�� medium and a photonic crystal slab
�PC�. E is the plane-wave input field at frequency � partially trans-
mitted into the cavity. The other mirrors are assumed to be perfectly
reflecting. B and A are the pump and signal fields at frequencies �
and � /2, respectively. In the singly resonant case only the signal
field A resonates with the cavity.

D. GOMILA AND G.-L. OPPO PHYSICAL REVIEW E 72, 016614 �2005�

016614-2



In this way one reduces the stability analysis of the steady
state of the initial partial differential equations with periodic
coefficients �1� and �2� to diagonalize the 4	4 complex ma-
trix L. In the case k=0 one has to consider that a±

+=a±
−.

The eigenvalue of L with largest real part is


1 = − 1 +�E2 − �k2 + � kpc

2
	2

+ � −��2 + 4k2� kpc

2
	2�2

�7�

for −�kpc /2�2�� and


2 = − 1 +�E2 − �k2 + � kpc

2
	2

+ � +��2 + 4k2� kpc

2
	2�2

�8�

for ��−�kpc /2�2. By setting 
1=
2=0 we obtain four mar-
ginal stability curves

�1�k,E� = − d1�k� + d2�k� + d3�E� ,

�2�k,E� = − d1�k� + d2�k� − d3�E� ,

�3�k,E� = − d1�k� − d2�k� + d3�E� ,

�4�k,E� = − d1�k� − d2�k� − d3�E� , �9�

where d1�k�= �kpc /2�2+k2, d2�k�=�4k2�kpc /2�2+�2, and
d3�E�=�E2−1.

Figure 2 shows the marginal stability curves for different
values of the pump E. Note that, due to definition �4�, k
indicates the relative distance from the wave number of a
perturbation to the limit of the first Brillouin zone. Therefore
it is convenient to plot � as a function of k�= �kpc /2
−k� /kpc, which is the real wave number of the perturbations
in units of kpc. Dashed lines are the results from the coupled-
mode theory �9�, while solid lines have been obtained from a
numerical stability analysis of the full model—i.e., solving
the eigenvalue problem associated with the linear differential
operator with periodic coefficients on the right-hand side of
Eq. �3� �13�. The coupled-mode theory provides a very good
analytical approximation for thresholds and unstable wave
numbers, allowing us to predict the existence and size of a
band gap in the modulation instability analytically. In the
following we analyze the results of the coupled-mode theory
in more detail.

FIG. 2. Marginal stability curves of a DOPO for �a� E=1.0, �b�
E=1.02, �c� E=1.05, �d� E=�1+�2=1.118034, and �e� E=1.2 in
the presence of a periodically modulated media �kpc=2,�=0.5�.
Solid lines correspond to results obtained with a numerical analysis
of the full model equations, while dashed lines are the analytical
results from the coupled-mode theory �9�. For each value of � the
wave numbers within the shaded region are unstable. Note that, for
moderate values of the input intensity, there is a gap of detuning
values, indicated by the horizontal dotted lines, for which the sys-
tem is stable.

FIG. 3. Pump threshold as a function of the detuning from the
theoretical result �10� obtained by means of the coupled- mode
theory �solid black and gray lines�. The dashed line is the result
obtained from a numerical stability analysis of the full model. The
dotted line is the threshold for a DOPO without photonic crystal.
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From Eqs. �9� one can evaluate the instability threshold
Eth of the fundamental solution as a function of the detuning
� �Fig. 3�. For E�1.0 the steady-state homogeneous solu-
tion is stable for all values of the detuning. At E=1 d3�E�
=0 and the four marginal stability lines given by Eqs. �9�
become only two �see Fig. 2�a��, signaling the instability
threshold for all values of the detuning outside the band gap
�−d1�kpc /2�−d2�kpc /2����−�kpc /2�2−��−�kpc /2�2+�
���−d1�kpc /2�+d2�kpc /2��. In the band gap −�kpc /2�2−�
���−�kpc /2�2+�, the instability is, however, inhibited and
the threshold is higher. The threshold E=1 for values of �
outside the band gap is slightly underestimated. In the full
model, for this value of the pump, the system is still stable

�no solid line in Fig. 2�a��. This is due to the fact that the
spatial modulation couples the fundamental wave numbers
with their harmonics, which are dumped, introducing an ad-
ditional source of stability. Harmonics are not taken into ac-
count in the couple-mode theory and then the threshold is
slightly lower than for the full models �1� and �2�.

Increasing further the value of the pump the band gap
narrows �Figs. 2�b� and 2�c��, until at E=�1+�2 the homo-
geneous solution becomes eventually unstable for any value
of the detuning �Fig. 2�d��. The threshold value of E as a
function of the photonic crystal parameters for any value of
� is given by

Eth
2 ��� =

1 − � kpc

2
	2

+ � � � � − d1� kpc

2
	 + d2� kpc

2
	 ,

1 + �− � kpc

2
	2

+ � − ��2

− � kpc

2
	2

� � � − � kpc

2
	2

+ � ,

1 + �� kpc

2
	2

+ � + ��2

− � kpc

2
	2

− � � � � − � kpc

2
	2

,

1 − d1� kpc

2
	 − d2� kpc

2
	 � � � − � kpc

2
	2

− � ,

� �10�

and the critical wave number is

kc
2��� =

� kpc

2
	2

− � −�− 4� kpc

2
	2

� + �2 − � kpc

2
	2

+ � � � � − d1� kpc

2
	 + d2� kpc

2
	 ,

0 − � kpc

2
	2

� � � − � kpc

2
	2

+ � ,

0 − � kpc

2
	2

− � � � � − � kpc

2
	2

,

� kpc

2
	2

− � −�− 4� kpc

2
	2

� + �2 − d1� kpc

2
	2

− d2� kpc

2
	 � � � − � kpc

2
	2

− � .

� �11�

Figure 3 shows the theoretical prediction �10� for the in-
stability threshold of the homogeneous solution �solid lines�.
The black and gray lines correspond to two different eigen-
modes. The first is a mode with energy concentrated in the
minima of the photonic crystal, while the second in the
maxima �see next section for more details�. The dashed line
is the threshold for the full system computed as explained
above.

The coupled-mode theory accurately capture the features
of the inhibition of the modulation instability by the photonic
crystal. The fact that the gap of values of the detuning for
which pattern formation is inhibited decreases with the in-
tensity of the pump is because nonlinearity always over-
comes the linear inhibition by the photonic crystal for suit-
able high input intensities. This is similar to the phenomenon
behind the formation of gap solitons. But in that case the
nonlinearity only shifts the position of the band gap, while in

our case it narrows it and makes it eventually to disappear.
From Eq. �9� we can also calculate the size g�E ,�� of the

band gap as a function of the system and photonic crystal
parameters:

g�E,�� = �2�k = 0,E� − �3�k = 0,E� = 2�� − �E2 − 1� .

�12�

The size of the band gap is proportional to the amplitude of
the modulation � and becomes smaller by increasing the
pump E �Fig. 2�, eventually disappearing for E=�1+�2 �Fig.
2�d��. For E�1+�2 the homogeneous solution is unstable
for any value of � �Fig. 2�e��. Figure 4 shows how the width
of the band gap �white region� changes as a function of the
amplitude of the modulation � for a fixed value of the pump
E. The presence of the modulated medium opens an entirely
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new stable region. Figure 4 should be compared with Fig. 6
of �13� showing that pattern inhibition is independent of the
form of the nonlinearity.

Since for negative signal detunings, in the absence of PC,
down-conversion takes place at a finite wave number, the
inhibition mechanism can be used to spatially control the
generation of signal in a way analogous to that explained in
�13�. If we set our system in a parameter region where pat-
tern formation is inhibited, the inclusion of a defect in the PC
will lead to a spot of signal generation as shown in Fig. 5.

IV. WEAKLY NONLINEAR ANALYSIS: AMPLITUDE
EQUATIONS FOR PATTERN FORMATION IN PERIODIC

MEDIA

In this section we study by means of a multiple scales
analysis the solutions that appear above threshold for values
of the detuning inside the band gap. Above threshold nonlin-
ear terms have to be considered since they saturate the linear
growth induced by the instability. In the following, for the
sake of simplicity, we consider the SRDOPO only. The quali-
tative results also apply to the case of the DOPO. By includ-
ing the nonlinear terms from Eqs. �2� in �5� we obtain

Ḟ = LF − W�F� , �13�

where W= ��a+
+a+

−*+2a−
−*a−

+�a+
+ , �2a−

+a−
−*+a+

−*a+
+�a−

−*�a−
+a−

−*

+2a+
−*a+

+�a−
+ , �2a+

+a+
−*+a−

−*a−
+�a+

−*�T is a nonlinear function of
F.

In the band gap, the critical wave number is always kc
=0 independently of the detuning. We recall that in this case
one has to consider a±

+=a±
−. In the following we will discuss

the lower �−�kpc /2�2−����−�kpc /2�2� and upper
�−�kpc /2�2���−�kpc /2�2+�� halves of the band gap sepa-
rately.

A. Lower-half part

Assuming the following scaling �16�:

F = �F1 + �3F3,

E = Eth + �2E2,

T = �2t ,

X = �2x , �14�

and substituting Eq. �14� into Eq. �13�, at order � one obtains
F1=F1v1, where v1 is the critical eigenmode of L associated
with 
2 �Lv1=0 and �v1�=1� and F1 is its real amplitude.
In the near field, v1 has the form ��1+Eth

− i�Eth
2 −1� /�2Eth�1+Eth��cos�kpcx /2�.

The solvability condition at order �3 yields to the follow-

ing equation for the real amplitude Ã1=�F1 of the unstable
mode:

�tÃ1 = �Eth
2 − 1�x

2Ã1 + Eth�E − Eth�Ã1 −
3

4
Ã1

3. �15�

The amplitude equation �15� is equivalent to the one ob-
tained from a secondary instability at twice the spatial period
of a cellular pattern �19�, except for the fact that in our case
the translational invariance has been broken by the presence
of the photonic crystal. The homogeneous steady-state solu-

tion of Eq. �15� is Ã1= ±2�Eth�E−Eth� /3. The solution of
Eq. �2� is then

A�x� = ±�2

3
�E − Eth

1 + Eth
�1 + Eth − i�Eth

2 − 1�cos� kpc

2
x	 .

�16�

The bifurcation diagram and spatial form of this solution
are shown in Fig. 6. The plus and minus solutions �16� are
created in a pitchfork bifurcation. The analytical solution
�16� is in very good agreement with the stationary solution of
the full model computed numerically. Note that, despite be-
ing completely equivalent, the plus and minus solutions of
Eq. �16� are not the same. One corresponds to the other
shifted by a wavelength of the photonic crystal. In a system
with translational invariance the position of a solution that
breaks such symmetry is undetermined. The photonic crystal
periodicity selects just two of this continuum of possible
solutions. These two “frequency-locked” solutions differ
now by a shift of a photonic crystal wavelength in the trans-
verse position. This situation is the spatial analog of an os-
cillatory system forced at twice its natural frequency �20�. In
a large system and starting from arbitrary initial conditions,

FIG. 4. Stability diagram of the steady-state homogeneous so-
lution for E=1.1 �solid line�. The system is unstable in the shad-
owed region. The dashed �dotted� line shows the boundary of the
stable region for E=1.0 �E=1.2�.

FIG. 5. Localized spot of signal generation due to a defect in the
photonic crystal. Here E=1.08, �=−1, kpc=2, and �=0.5.
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some sections of the system will attain the first solution
while others will move to the second one, leading to the
formation of domain walls. This is illustrated in Fig. 7. The
solid line is the result of a simulation of the full model �2�
starting from a random initial condition. The dashed line is
the steady state solution of Eq. �15� connecting the two �plus
and minus� homogeneous solutions �8� times the critical
eigenmode v1 in the near field:

A1�x� =�2

3
�E − Eth

1 + Eth
�1 + Eth − i�Eth

2 − 1�

	tanh��Eth�E − Eth�
2

x

�Eth
2 − 1�1/4�cos� kpc

2
x	 .

�17�

The dot-dashed line in Fig. 7 is the envelope of Eq. �17�. The
analytical result �17� is in very good agreement with the
domain wall obtained from the numerical simulations of the
full model �2�.

B. Upper-half part

In the upper-half part of the photonic band gap the critical
mode v1 is associated with 
1 and has the form ���Eth

2 −1
+ i�Eth−1�� /�2Eth�Eth−1��sin�kpcx /2�. As in the previous
case, we obtain a similar amplitude equation for the real

amplitude Ã1 of the unstable mode:

�tÃ1 = �Eth
2 − 1�x

2Ã1 + �E − Eth�Ã1 −
3

4
Ã1

3. �18�

In this case the pattern solutions is

A1�x� = ±�2

3
� E − Eth

Eth�Eth − 1�
��Eth

2 − 1

+ i�Eth − 1��sin� kpc

2
x	 . �19�

The bifurcation diagram and spatial form of this solution
is shown in Fig. 8. The analytical solution �19� is in very
good agreement with the stationary solution of the full model
computed numerically. As in the previous case, in large sys-
tems, fronts between the plus and minus solutions are
formed. The shape of the front is given in this case by

A1�x� = 2�2

3
� E − Eth

Eth�Eth − 1�
��Eth

2 − 1

+ i�Eth − 1��tanh��E − Eth

2

x

�Eth
2 − 1�1/4�

	sin� kpc

2
x	 . �20�

Note that while the cosine solution in the lower-half part
of the band gap has the maxima of the intensity at the

FIG. 6. Left: bifurcation diagram for the pattern arising above
threshold in the lower-half of the band gap. Here �=−1.2. For this
value of the detuning Eth=1.04403. Right: real �solid line� and
imaginary �dashed line� parts of the pattern solution of the full
model for E=1.2. The dot-dashed and dotted lines correspond to the
real and imaginary parts of the pattern from the coupled-mode
theory. The gray solid line illustrates the modulation of the photonic
crystal for comparison.

FIG. 7. Two domains corresponding to the plus and minus sign
solutions �16� separated by domain walls. The final state is the
result of a numerical simulation starting from an arbitrary initial
condition. Left: real part of the field. Right: close-up of the intensity
around a domain wall. The dotted line shows the modulation of the
photonic crystal. Here �=−1.1, E=1.15, �=0.5, and kpc=2.0.
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maxima of the photonic crystal modulation, the sine solution
in the upper part has them at the minima. This different dis-
tribution of energy in the photonic crystal is at the basis of
the creation of the band gap. An interesting point is the
middle of the band gap ��=−�kpc /2�2�. At this particular
value of the detuning, for E=Eth=�1+�2 both 
1 and 
2
vanish, and the sine and cosine modes become simulta-
neously unstable. This is a codimension-2 point where Eqs.
�15� and �18� become coupled. The unfolding of such a criti-
cal point is, however, beyond the scope of this paper and it is
left for future investigation.

V. CONCLUSIONS

In this paper we have studied pattern formation in nonlin-
ear optical cavities in presence of a photonic crystal—i.e., a

spatial modulation of the refractive index. The linear phe-
nomenon of the band gap inhibits pattern formation for a
certain range of cavity detunings �band gap�. For high
enough intensities nonlinearity finally overcomes the inhibi-
tion by the photonic crystal and a pattern arises. By means of
a couple-mode theory approach we have obtained analytical
expressions for the new �shifted� threshold and the form of
the unstable modes. The band gap is naturally divided in two
halves, the lower-half one in which the unstable mode has a
cosine shape—i.e., its intensity maxima are in correspon-
dence with the maxima of the photonic crystal modulation—
and the upper-half where the unstable mode is a sine; the
intensity maxima are in correspondence with the minima of
the photonic crystal modulation. By means of a multiple-
scale analysis we also found the pattern solution above
threshold. In each part of the band gap there is bistability
between the plus and minus cosine or sine solutions. This
bistability stems from the breaking of the translational sym-
metry of the photonic crystal. In large systems domain wall
between this two solutions are typically form. The shape of
the defect wall is given by an hyperbolic tangent. While the
particular form of the coefficients are model dependent, the
shape of the unstable modes and the splitting of the band gap
in two different regions are generic. We have checked that
the same phenomenon is present in a completely different
model: namely, the Kerr cavity model studied in �13�. Finally
we also have shown that photonic crystal can be useful to
engineer particular spatial signal outputs in frequency down
conversion. An interesting extension of this work is to con-
sider the case with two transverse dimensions. In this case,
some of the features studied here, such us the two different
modes in each part of the band gap, will remain the same,
while new features, like the coupling of the geometry of the
photonic crystal and that of the spontaneous pattern, will
come into play.

ACKNOWLEDGMENTS

We thank A. J. Scroggie for useful discussions. We ac-
knowledge financial support from EPSRC �Grant Nos. GR
S28600/1 and GR R04096/01�, SGI, the Royal Society,
Leverhulme Trust, and the European Commission
�FunFACS�.

�1� J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic
Crystals �Princeton University Press, Singapore, 1995�; J. D.
Joannopoulos, P. R. Villeneuve, and S. Fran, Nature �London�
386, 143 �1997�.

�2� J. C. Knight, Nature �London� 424, 846 �2003�.
�3� Nonlinear Photonic Crystals, edited by R. E. Slusher and B. J.

Eggleton �Springer, Berlin, 2003�.
�4� Y. S. Kivshar and G. P. Agrawal, Optical Solitons: From Fi-

bers to Photonic Crystals �Academic Press, San Diego, 2003�;
Spatial Solitons, edited by S. Trillo and W. Torruellas
�Springer, Berlin, 2001�.

�5� R. F. Nabiev, P. Yeh, and D. Botez, Opt. Lett. 18, 1612 �1993�.
�6� A. V. Yulin, D. V. Skryabin, and W. J. Firth, Phys. Rev. E 66,

046603 �2002�.
�7� M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851

�1993�.

FIG. 8. Left: bifurcation diagram for the pattern arising above
threshold in the lower half of the band gap. Here �=−0.9. For this
value of the detuning Eth=1.07703. Right: real �solid line� and
imaginary �dashed line� parts of the pattern solution of the full
model for E=1.2. The dot-dashed and dotted lines correspond to the
real and imaginary parts of the pattern from the coupled-mode
theory. The gray solid line illustrates the modulation of the photonic
crystal for comparison.

COUPLED-MODE THEORY FOR PHOTONIC BAND-GAP… PHYSICAL REVIEW E 72, 016614 �2005�

016614-7



�8� D. Walgraef, Spatio-temporal Pattern Formation �Springer-
Verlag, New York, 1997�.

�9� W. J. Firth and C. O. Weiss, Opt. Photonics News 13�2�, 54
�2002�; S. Barland et al., Nature �London� 419, 699 �2002�.

�10� R. Martin, A.J. Scroggie, G.-L. Oppo, and W.J. Firth, Phys.
Rev. Lett. 77, 4007 �1996�.

�11� G. Harkness et al., Opt. Photonics News 9, 44 �1998�.
�12� R. Neubecker and A. Zimmermann, Phys. Rev. E 65,

035205�R� �2002�.
�13� D. Gomila, R. Zambrini, and G.-L. Oppo, Phys. Rev. Lett. 92,

253901 �2004�.
�14� M. Dabbicco, T. Maggiopinto, and M. Brambilla, Appl. Phys.

Lett. 86, 021116 �2005�.

�15� T. S. Kim, A. J. Danner, D. M. Grasso, E. W. Young, and K. D.
Choquette, Electron. Lett. 40, 1340 �2004�.

�16� G.-L. Oppo, M. Brambilla, and L. A. Lugiato, Phys. Rev. A
49, 2028 �1994�; G.-L. Oppo et al., J. Mod. Opt. 41, 1151
�1994�.

�17� S. Longhi, J. Mod. Opt. 43, 1089 �1996�.
�18� G.-L. Oppo, A. J. Scroggie, and W. J. Firth, Phys. Rev. E 63,

066209 �2001�.
�19� P. Coullet and G. Iooss, Phys. Rev. Lett. 64, 866 �1990�.
�20� P. Coullet, J. Legga, B. Houchmanzadeh, and J. Lajzerowicz,

Phys. Rev. Lett. 65, 1352 �1990�; P. Coullet and K. Emilsson,
Physica D 61, 119 �1992�.

D. GOMILA AND G.-L. OPPO PHYSICAL REVIEW E 72, 016614 �2005�

016614-8


