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A spectral density function A�k;w� for an electron in a quantum wire interacting with longitudinal-
optical-phonons is calculated in a self-consistent manner. The method gives us a natural way to
handle the singularities in the density of states and the scattering rates. The obtained spectral den-
sity function exhibits a resonant polaron effect at around w � w0, where w0 is the longitudinal-
optical-phonon energy. The drift velocity is then evaluated by performing the Monte Carlo simula-
tion in �k;w�-space using the spectral density function for a GaAs quantum wire with parabolic
confining potential of W � 2w0 at room temperature. The drift velocity for applied electric fields up
to F � 1 kV=cm is found to be significantly lower than that calculated by a Monte Carlo simulation
based on the semi-classical Boltzmann transport equation.

It was theoretically pointed out that a drastic increase of electron mobility in a quantum
wire is expected at low temperatures because of suppression of impurity scattering,
which inevitably accompanies large momentum changes of 2k

F
for one-dimensional elec-

tron gases (1DEG) [1]. Electron± longitudinal-optical (LO) phonon interaction, however,
plays an important role in electron transport in compound semiconductors at high tem-
peratures, and the situation is quite different from that at low temperatures. For a sys-
tem having low electron density, no sharp Fermi surface exists at high temperatures,
and the transport properties at low and moderate electric fields are governed mainly by
scattering rates, W�"�, for electrons with low kinetic energy ", which contrasts with the
low temperature case where only W�"� at " � "

F
affects the electron mobility. Since the

scattering rates are proportional to the product of the final density of states, D�"�, and
the matrix elements, the LO phonon scattering rate for 1DEG has singularity at the
onset of LO phonon emission due to the singularity of D�"� at " � 0. This singularity of
W�"� in turn affects D�"�, and thus W�"� and D�"� should be calculated self-consis-
tently. In the present study, we calculate a spectral density function for a one-dimen-
sional electron interacting with LO phonons in a self-consistent manner to obtain the
self-consistent scattering rates and density of states, and perform a Monte Carlo (MC)
simulation to evaluate the drift velocity, which is then compared with the results ob-
tained by a semi-classical MC simulation.

For an electron in a quantum wire interacting with LO phonons, the electron has a
finite lifetime when it is scattered, and there is some uncertainty in its momentum, k, or
energy, w, or both. We should, therefore, treat k and w as separate variables, and the
spectral density function, A�k;w�, gives us the probability that the electron has momen-
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tum k and energy w [2]. Once A�k;w� is known, we can evaluate physical quantities,
such as scattering rates and density of states in the present case, by summing over k
and/or w with A�k;w� of the probability weight. Since A�k;w� is given by the imaginary
part of the retarded Green's function for an electron, Gret�k;w�, multiplied by ÿ2, and
Gret�k;w� can be calculated from the Matsubara Green's function, G�k; iwn�, through an
analytic continuation, we have

A�k;w� � ÿ2=G�k;w� i0� � ÿ2= 1

w� i0ÿ ��k;w� i0� ÿ "k ; �1�

where ��k; iwn� is the self-energy of the electron due to the interaction with LO pho-
nons, and "k the semi-classical energy dispersion which we assume a parabolic band
with effective mass m. Note that we use the zero field theory for evaluating A�k;w� and
therefore effects of electric field on A�k;w�, such as intracollisional field effect, are com-
pletely neglected. The diagrammatic representation of the self-consistent approximation
scheme used in the present investigation is shown in Fig. 1, and the self-energy � be-
comes

S�k;w� � P
h��1

P
q
�N0 � 1

2� 1
2 h�M2

q

1

wÿ hw0 ÿ "k�q ÿ S�k� q;wÿ hw0� ; �2�

with N0 being the LO phonon occupation number, w0 the LO phonon energy, and Mq

the effective one-dimensional potential for the electron±LO phonon interaction. We
solved this self-consistent equation numerically for the GaAs quantum wire with a para-
bolic confining potential of W � 2w0 (see [3] for the of the quantum wire), and evaluated
A�k;w� by using Eq. (1). In the present study, we neglect any effects of interfaces on
phonons, and use the electron±bulk LO phonon interaction potential for Mq. Fig. 2
shows a contour plot of A�k;w� for N0 � 0:3, which corresponds to room temperature,
together with the density of states D�w� � pÿ1

P
k

A�k;w� in the inset. For a noninteract-

ing electron, A�k;w� � 2pd�wÿ "k� and A�k;w� has nonzero value only on the semi-
classical energy dispersion, that is shown as a dashed line in Fig. 2. As seen in the
figure, the electron±LO phonon interaction makes A�k;w� broaden. For w� w0, the
dispersion moves to lower energy by the polaronic binding energy, which is found to be
1:64aw0, where a is the Fr�ohlich coupling constant. As the electron energy increases
toward w0, the polaronic effective mass becomes heavier, and a resonant polaron effect
occurs at w � w0. For ww0, extrema in A�k;w� almost follow the semi-classical energy
dispersion, while the level width is quite broad, for example GFWHM � 4aw0 at k � 1:2k0

while GFWHM � aw0 at k � 0:6k0. The level width becomes, however, narrower for high-
er energy, for example GFWHM � 2aw0 at k � 2:4k0, since we took only the lowest sub-
band into account.

We treat k and w as separate variables, and it is natural to simulate an electron in
�k;w�-space to study the transport properties. We adopted the MC simulation in �k;w�-
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Fig. 1. Diagrammatic representation of the pres-
ent approximation. The wavy line represents the
interaction with LO phonons, and G0 the non-in-
teracting Green's function for an electron



space [3] based on a quantum transport equation (QTE) [4] in the present analysis, and
calculated electric field dependence of the drift velocity using the spectral density func-
tion obtained above. In order to perform the MC simulation, it it necessary to evaluate
the transition probability, S�k;w; k0;w0�, per unit time from �k;w� to �k0;w0�, which is
given by

S�k;w; k0;w0� � 2pA�k0;w0� P
h��1

P
q
M2

q �N0 � 1
2� 1

2 h� d�w0 � hw0 ÿ w� dk0;k� q : �3�

The scattering rates, W�k;w�, can be calculated from S�k;w; k0;w0� by summing over k0

and w0 [4]. The total scattering rate on the mass shell , W�k; "k�, is plotted in the inset
of Fig. 3. Note that the MC simulation was done considering S�k;w; k0;w0� and W�k;w�.
For illustration only those have been represented by W�k; "k�.
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Fig. 2. A contour plot of the spectral density
function, A�k;w�, for an electron in a quantum
wire with a parabolic confining potential of
W � 2w0 at room temperature. w is normalized
by the LO phonon energy w0, while k by
k0 � �2mw0�1=2. The dashed line shows the
semi-classical energy dispersion of w � k2=2m.
The density of states D�w� is also shown in the
inset

Fig. 3. Electric field dependence of drift veloc-
ity calculated by the Monte Carlo simulation
based on a quantum transport equation (solid
circles) and the Boltzmann transport equation
(open circles). The dashed line shows the re-
sults obtained by the linear response theory.
The total scattering rate on the mass shell is
also shown as a function of "k (� k2=2m) in
the inset, together with the scattering rate for
A�k;w� � 2pd�wÿ "k� (dashed line in the in-
set)



Fig. 3 shows the calculated results of drift velocity, vd, as a function of applied electric
field, F . We also plotted vd calculated by using the semi-classical Boltzmann transport
equation (BTE), where A�k;w� is set to be 2p d�wÿ "k� since we cannot handle the
broaden A�k;w� consistently in the MC simulation based on the BTE. We find that vd

for applied electric fields up to F � 1 kV=cm is about 20% lower than that calculated by
the MC simulation based on th BTE. This reduction in vd may be attributed to the fact
that the uncertainty in w increase the number of scattering channels. For example, only
an electron having energy greater than w0 can emit an LO phonon for the BTE (with
A�k;w� � 2pd�wÿ "k�), while any electron has a finite probability to emit an LO pho-
non for the QTE (with the broadened A�k;w�), and for an electron with a fixed energy
only two types of emission (or absorption) processes exist, i.e. the forward and backward
scatterings, in the BTE, while any electron with a fixed energy has an infinite number of
scattering channels in the QTE.

In summary, we evaluated the spectral density function for an electron in a quantum
wire taking care of self-consistency between the density of states and the LO phonon
scattering rates. We then performed the MC simulation in �k;w�-space, and found that
vd for applied electric fields up to F � 1 kV=cm is significantly lower than that calcu-
lated by a MC simulation based on the BTE.
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