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A spectral density function A(k, ) for an electron in a quantum wire interacting with longitudinal-
optical-phonons is calculated in a self-consistent manner. The method gives us a natural way to
handle the singularities in the density of states and the scattering rates. The obtained spectral den-
sity function exhibits a resonant polaron effect at around w = wg, where wq is the longitudinal-
optical-phonon energy. The drift velocity is then evaluated by performing the Monte Carlo simula-
tion in (k, w)-space using the spectral density function for a GaAs quantum wire with parabolic
confining potential of 2 = 2w, at room temperature. The drift velocity for applied electric fields up
to F = 1kV/cm is found to be significantly lower than that calculated by a Monte Carlo simulation
based on the semi-classical Boltzmann transport equation.

It was theoretically pointed out that a drastic increase of electron mobility in a quantum
wire is expected at low temperatures because of suppression of impurity scattering,
which inevitably accompanies large momentum changes of 2k, for one-dimensional elec-
tron gases (1IDEG) [1]. Electron-longitudinal-optical (LO) phonon interaction, however,
plays an important role in electron transport in compound semiconductors at high tem-
peratures, and the situation is quite different from that at low temperatures. For a sys-
tem having low electron density, no sharp Fermi surface exists at high temperatures,
and the transport properties at low and moderate electric fields are governed mainly by
scattering rates, W(e), for electrons with low kinetic energy e, which contrasts with the
low temperature case where only W(e) at € = e, affects the electron mobility. Since the
scattering rates are proportional to the product of the final density of states, D(e), and
the matrix elements, the LO phonon scattering rate for 1DEG has singularity at the
onset of LO phonon emission due to the singularity of D(g) at ¢ = 0. This singularity of
Wi(e) in turn affects D(g), and thus W(e) and D(e) should be calculated self-consis-
tently. In the present study, we calculate a spectral density function for a one-dimen-
sional electron interacting with LO phonons in a self-consistent manner to obtain the
self-consistent scattering rates and density of states, and perform a Monte Carlo (MC)
simulation to evaluate the drift velocity, which is then compared with the results ob-
tained by a semi-classical MC simulation.

For an electron in a quantum wire interacting with LO phonons, the electron has a
finite lifetime when it is scattered, and there is some uncertainty in its momentum, k, or
energy, w, or both. We should, therefore, treat k and w as separate variables, and the
spectral density function, A(k, ), gives us the probability that the electron has momen-



Electron—Optical-Phonon Interaction in a Quantum Wire 269

tum k and energy w [2]. Once A(k,w) is known, we can evaluate physical quantities,
such as scattering rates and density of states in the present case, by summing over k
and/or @ with A(k, w) of the probability weight. Since A(k, w) is given by the imaginary
part of the retarded Green’s function for an electron, Gy (k, w), multiplied by —2, and
Ghet(k, w) can be calculated from the Matsubara Green’s function, G(k,iw,), through an
analytic continuation, we have
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Ak, w) = —28G(k,w +i0) = -2 (1)
where X(k,iw,) is the self-energy of the electron due to the interaction with LO pho-
nons, and €, the semi-classical energy dispersion which we assume a parabolic band
with effective mass m. Note that we use the zero field theory for evaluating A(k, ) and
therefore effects of electric field on A(k, w), such as intracollisional field effect, are com-
pletely neglected. The diagrammatic representation of the self-consistent approximation
scheme used in the present investigation is shown in Fig. 1, and the self-energy ¥ be-
comes
1
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with Ny being the LO phonon occupation number, wy the LO phonon energy, and M,
the effective one-dimensional potential for the electron—LO phonon interaction. We
solved this self-consistent equation numerically for the GaAs quantum wire with a para-
bolic confining potential of 2 = 2w, (see [3] for the of the quantum wire), and evaluated
A(k,w) by using Eq. (1). In the present study, we neglect any effects of interfaces on
phonons, and use the electron-bulk LO phonon interaction potential for M,. Fig. 2
shows a contour plot of A(k,w) for Ny = 0.3, which corresponds to room temperature,
together with the density of states D(w) = x7!>" A(k, ) in the inset. For a noninteract-

ing electron, A(k,w) = 2x8(w — ;) and A(k, a];) has nonzero value only on the semi-
classical energy dispersion, that is shown as a dashed line in Fig. 2. As seen in the
figure, the electron—LO phonon interaction makes A(k,w) broaden. For o < wy, the
dispersion moves to lower energy by the polaronic binding energy, which is found to be
1.64awg, where a is the Frohlich coupling constant. As the electron energy increases
toward wy, the polaronic effective mass becomes heavier, and a resonant polaron effect
occurs at @ = wy. For wwy, extrema in A(k,®) almost follow the semi-classical energy
dispersion, while the level width is quite broad, for example I'ewun ~ 4awg at k= 1.2k
while I'pwaym = awg at k = 0.6ky. The level width becomes, however, narrower for high-
er energy, for example I'rwim ~ 20w at k = 2.4k, since we took only the lowest sub-
band into account.

We treat k£ and w as separate variables, and it is natural to simulate an electron in
(k, w)-space to study the transport properties. We adopted the MC simulation in (k, w)-

©- Jen
Fig. 1. Diagrammatic representation of the pres-

G G G G ent approximation. The wavy line represents the
—— = | interaction with LO phonons, and G the non-in-
teracting Green’s function for an electron
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Fig. 2. A contour plot of the spectral density
function, A(k, ), for an electron in a quantum
wire with a parabolic confining potential of
Q = 2w, at room temperature. @ is normalized
by the LO Phonon energy g, while k by
ko = 2ma)g) . The dashed line shows the
semi-classical energy dispersion of w = k?/2m.
The density of states D(w) is also shown in the
inset
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space [3] based on a quantum transport equation (QTE) [4] in the present analysis, and
calculated electric field dependence of the drift velocity using the spectral density func-
tion obtained above. In order to perform the MC simulation, it it necessary to evaluate
the transition probability, S(k,w;¥,®’), per unit time from (k,w) to (¥,w’), which is
given by

Sk, w; K, 0") = 2mAK , ) 21 >0 MZ(No+5+5n) (0 + 5wy — @) dp iy - (3)

n=+1 ¢

The scattering rates, W (k, ), can be calculated from S(k, w; k', ') by summing over &’
and o’ [4]. The total scattering rate on the mass shell, W(k,ey), is plotted in the inset
of Fig. 3. Note that the MC simulation was done considering S(k, w; ¥, w’) and W (k, w).
For illustration only those have been represented by W (k, ey).
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Fig. 3 shows the calculated results of drift velocity, vq, as a function of applied electric
field, F'. We also plotted vq calculated by using the semi-classical Boltzmann transport
equation (BTE), where A(k,w) is set to be 27w &(w — ¢;) since we cannot handle the
broaden A(k, ) consistently in the MC simulation based on the BTE. We find that vy
for applied electric fields up to F' = 1kV/cm is about 20% lower than that calculated by
the MC simulation based on th BTE. This reduction in vy may be attributed to the fact
that the uncertainty in w increase the number of scattering channels. For example, only
an electron having energy greater than @y can emit an LO phonon for the BTE (with
A(k,w) = 278(w — €1)), while any electron has a finite probability to emit an LO pho-
non for the QTE (with the broadened A(k,)), and for an electron with a fixed energy
only two types of emission (or absorption) processes exist, i.e. the forward and backward
scatterings, in the BTE, while any electron with a fixed energy has an infinite number of
scattering channels in the QTE.

In summary, we evaluated the spectral density function for an electron in a quantum
wire taking care of self-consistency between the density of states and the LO phonon
scattering rates. We then performed the MC simulation in (k, w)-space, and found that
vg for applied electric fields up to F = 1kV/cm is significantly lower than that calcu-
lated by a MC simulation based on the BTE.
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