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magnetic fields
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Abstract. A detailed theoretical study of the density of states (DOS) is presented for free
electrons in terahertz- (THz-) driven three-dimensional electron gases (3DEGs) in the presence of
static magnetic fields. Applying the Green’s function approach to a specific sample configuration
where the electron–photon interactions can be included exactly, we have derived the steady-state
DOS for electrons in a THz-driven 3DEG. The results obtained show that the presence of intense
THz electromagnetic radiations will result in a reduction of the DOS in the low-energy regime in
a 3DEG in quantizing magnetic fields. A photon-modified electron DOS will lead to the lifting of
the Fermi level in a 3DEG system and, consequently, to the occupation of higher Landau levels
at a fixed magnetic field. A more pronounced effect can be observed for relatively low-frequency
and/or high-intensity radiations.

A very recently achieved experimental set-up [1] has made it possible to perform
measurements under intense far-infrared (FIR) or terahertz (THz) laser radiations in the
presence of strong magnetic fields. At present, free-electron lasers (FELs) can provide
a tunable source of linearly polarized THz electromagnetic (EM) radiations, and static
magnetic fields can be generated up to 60 T. It can be foreseen that the combination
of intense THz radiations with high magnetic fields will make a major impact on the
investigation and characterization of condensed matter materials, such as low-dimensional
semiconductor systems and nanostructures.

When an electronic system (e.g. a semiconductor structure) is subjected to THz EM
radiations and to quantizing magnetic fields, we enter a regime with different competing
energies, such as the Fermi energy(EF ), cyclotron energy(h̄ωc), photon energy(h̄ω), and
phonon energy(h̄ωQ). These energies (frequencies) can be on the scale of meV (THz).
This offers us the possibility of observing photon-induced quantum resonance effects such
as photon-modified Shubnikov–de Haas oscillations [2], FIR cyclotron absorptions [3], and
magneto-photon–phonon resonances [4].

Like in other studies, in the study of THz-driven three-dimensional electron gases
(3DEGs) in strong magnetic fields, the electronic density of states (DOS) is one of the
central quantities required to determine and to understand almost all physically measurable
properties. Hence, it is of value to examine how EM radiation affects such a fundamental
quantity as the DOS for electrons in strong static magnetic fields, and this is the motivation
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of the present study. In the absence of a magnetic field, thedynamicalDOS in 3DEG and
ideal 2DEG structures has been investigated very recently [5] by using the approach of the
gauge-invariant spectral function. In the presence of a quantizing magnetic field, there is no
gauge in which the electron Hamiltonian is translationally invariant [6]. Therefore, it may
be difficult to derive the corresponding DOS using the gauge-invariant spectral function. In
this study, we present a simple theoretical treatment for calculating the steady-state DOS
for free electrons in a THz-driven 3DEG in the presence of high magnetic fields.

We consider the following configuration: the magnetic fieldB is applied along the
z-direction of a 3DEG and the EM radiation field is polarized parallel to the magnetic field.
In this case, the most convenient gauge for describing the two uniform fields is

φ(R, t) = 0 and A(R, t) = (0, Bx,Az(t)) (1)

whereR = (x, y, z). Here, we have used the Landau gauge (Coulomb gauge) for the vector
and scalar potentials induced by the static magnetic field (radiation field). The usage of the
Coulomb gauge [7] allows us to choose the vector potentialA1 = (0, 0, Az(t)) and the scalar
potentialφ1 for the radiation field such that∇·A1 = 0 andφ1 = 0. The gauge chosen here
corresponds to a situation in which the charge densityρ = 0 and the current densityj = 0,
which is true for the case of free electrons (i.e. in the absence of scattering, inhomogeneities,
external driving fields, etc). Furthermore, after using the dipole approximation for the EM
field, we can writeAz(t) = A0 sin(ωt) with ω being the frequency of the radiation. Thus,
the single-electron Hamiltonian in this gauge can be written as

H0(t) = 1

2m∗
[p2
x + (py − eBx)2+ (pz − eAz(t))2] (2)

wherem∗ is the effective electron mass andpxj = −i h̄ ∂/∂xj is the momentum operator.
The time-dependent Schrödinger equation: i ¯h ∂9/∂t = H0(t)9 can be solved analytically
and the electron wavefunction is obtained as

|N, ky, kz; t〉 = |N, ky, kz; 0〉e−i[EN(kz)+2γ h̄ω]t/h̄eir0kz[1−cos(ωt)]eiγ sin(2ωt) (3a)

where

|N, ky, kz; 0〉 = (2NN !π1/2l)−1/2ei(kyy+kzz)e−ξ
2/2HN(ξ) (3b)

which has been normalized. Here,kxj is the electron wavevector along thexj -direction,
l = (h̄/eB)1/2 is the radius of the ground cyclotron orbit,ξ = (x + l2ky)/ l, theHN(x)
are the Hermite polynomials,EN(kz) = h̄2k2

z /2m
∗ + EN is the electronic energy spectrum,

EN = (N + 1/2)h̄ωc is the energy of theN th Landau level (LL) whereωc = eB/m∗ is
the cyclotron frequency,r0 = eF0/m

∗ω2 whereF0 is the strength of the radiation electric
field, γ = (eF0)

2/(8m∗h̄ω3), and 2γ h̄ω is the energy of the radiation field. We have used
the relationF = ∂A1/∂t = F0 cos(ωt) with F0 = ωA0.

With the time-dependent electron wavefunction obtained from the solution of the time-
dependent Schrödinger equation, one can derive the Green’s function in(N, kz; t)-space
for the system. In the present study, we generalize the general approaches documented in
reference [8] to derive the Green’s function for the current situation. From equation (3),
we can calculate the probability amplitude, which describes a process in which if one adds
an electron in a state|k′y, k′z, N ′〉 at timet ′ to the system then the system will be in a state
|ky, kz, N〉 at time t , through

〈t ′; k′z, k′y;N ′|N, ky, kz; t〉 = δN ′,Nδk′y ,ky δk′z,kzR(N, kz; t, t ′) (4a)

where

R(N, kz; t, t ′) = e−i[EN(kz)+2γ h̄ω](t−t ′)/h̄e−ir0kz[cos(ωt)−cos(ωt ′)]eiγ [sin(2ωt)−sin(2ωt ′)] . (4b)
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Hence, by definition, the corresponding retarded propagator or Green’s function for electrons
should have the features

G+(N ′, k′y, k′z;N, ky, kz; t > t ′) = δN ′,Nδk′y ,ky δk′z,kzG+(N, kz; t > t ′) (5)

and

G+(N, kz; t > t ′) = − i

h̄
2(t − t ′)R(N, kz; t, t ′) (6)

where2(x) is the unit-step function. Equation (6) is a two-time Green’s function and
satisfies [

i h̄
∂

∂t
−H0(t)

]
G+(N, kz; t > t ′)|N, ky, kz; 0〉 = δ(t − t ′)|N, ky, kz; 0〉

because{[p2
x + (py − eBx)2]/2m∗ − EN }ψN,ky (x, y) = 0 has been solved in real space.

The Fourier transform (or average over timet − t ′) of the retarded Green function is
given by

GN,kz (E, t
′) =

∫ ∞
−∞

d(t − t ′) ei(E+iδ)(t−t ′)/h̄G+(N, kz; t > t ′)

=
∞∑

m=−∞

Fm(kz, t ′)
E − EN(kz)− 2γ h̄ω −mh̄ω + iδ

(7a)

where an infinitesimal quantity iδ has been introduced to make the integral converge. Here

Fm(kz, t ′) = (−1)mFm(kz)
∞∑

n=−∞
inJm+n(r0kz)ei[nωt ′−γ sin(2ωt ′)] (7b)

whereJm(x) is a Bessel function and

Fm(kz) =
∞∑
n=0

Jn(γ )

1+ δn,0 [J2n−m(r0kz)+ (−1)m+nJ2n+m(r0kz)]. (7c)

In this study, we are interested in a steady state where we can average over the initial time
t ′. After averagingt ′ over a period of the radiation field [5], the averaged Green function
becomes

G∗N,kz (E) =
∞∑

m=−∞

F 2
m(kz)

E − EN(kz)− 2γ h̄ω −mh̄ω + iδ
. (8)

The DOS for electrons in theN th LL is determined by the imaginary part of the Fourier
transform of the Green’s function, namely

DN(E) = −gs
π

1

2πl2
∑
kz

ImG∗N,kz (E)

= gs

4π2l2

√
2m∗

h̄2

∑
m

2(E − EN − 2γ h̄ω −mh̄ω)√
E − EN − 2γ h̄ω −mh̄ω

× F 2
m

(√
2m∗(E − EN − 2γ h̄ω −mh̄ω)

h̄2

)
(9)

wheregs = 2 accounts for the spin degeneracy, and we have taken into account the fact that
the degeneracy of each LL is given by 1/2πl2 in unit area. WhenF0 = 0 (i.e. r0 = γ = 0),
equation (9) becomes the well-known result obtained in the absence of the radiation, due
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Figure 1. The total density of states(D(E) =∑N DN(E)) as a function of the electron energy
E at a fixed radiation frequencyω and a fixed magnetic fieldB for different radiation intensities:
F0 = 0 (dotted curve) andF0 = 5 kV cm−1 (solid curve).ωc is the cyclotron frequency. When
ω = ωc/4 atB = 9 T, ω/2π ' 0.95 THz, h̄ω ' 3.92 meV andγ ' 0.60 atF0 = 5 kV cm−1.
The effective electron mass is taken asm∗/me = 0.0665 (for the material GaAs) withme the
electron rest mass.

Figure 2. The total density of states as a function of the electron energy at a fixed radiation
intensity and a fixed magnetic field for different radiation frequencies:ω/ωc = 0.4 (dotted
curve; here ¯hω ' 6.27 meV andγ ' 0.15) and 0.25 (solid curve; see figure 1).

to the feature thatJm(0) = δm,0. In the above equations,m = 1, 2, 3, . . . (−1,−2,−3, . . .)
corresponds to the absorption (emission) of 1, 2, 3, . . . photons with the frequencyω.

The influence of the strength(F0) and frequency(ω) of the THz radiation on the total
DOS (i.e.D(E) = ∑N DN(E)) for electrons in a 3DEG at a fixed magnetic field(B) is
shown in figures 1 and 2. From equation (9), we see that: (i) in the presence of the EM
radiations, the energy of the electronic system is shifted by the energy of the radiation field
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Figure 3. The Fermi energyEF as a function of the radiation intensityF0 at a fixed
magnetic field for different radiation frequencies. Here,Ne is the electron density and
EN = (N + 1/2)h̄ωc is the energy of theN th Landau level.

Figure 4. The Fermi energy as a function of the radiation frequencyω/2π at a fixed magnetic
field for different strengths of the radiation.

2γ h̄ω ∼ (F0/ω)
2. This is analogous to the blue shift of the absorption edge observed in,

e.g., the dynamic Franz–Keldysh effect in the absence of the magnetic field [5]; (ii) the
electrons in the system can interact with the radiation field via the processes with photon
absorption and emission; and (iii) with increasing electron energyE, a contribution from the
process ofm-photon absorption(−) or emission(+) to the DOS becomes possible when the
conditionE−EN −2γ h̄ω∓mh̄ω > 0 is satisfied. These can be observed in figure 1 (solid
curve) whenE/h̄ωc is aroundγ /2+N , γ /2+N + 0.25, γ /2+N + 0.5, γ /2+N + 0.75
andγ /2+N + 1 (which correspond, respectively, to the processes withm = −2,−1, 0, 1
and 2). A similar feature can be seen in figure 2. We note that in sharp contrast to the
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case ofF0 = 0 (see figure 1), in the presence of the EM radiation the electron DOS can be
present in the energy regime whereE −EN − 2γ h̄ω < 0 due to the contributions from the
processes of the photon emission. The processes of optical absorption and emission may
result in an increase in the DOS. However, in the presence of intense THz EM radiations
and of strong magnetic fields, the maximum DOS appears whenE approachesEN + 2γ h̄ω
for the zero-photon process (because limx→0 Jm(x) = δm,0). As a consequence, the overall
DOS in the low-energy regimewill be reduced, due to a large blue-shift induced by the
radiation field(2γ h̄ω ∼ (F0/ω)

2) and to the fact that|Jm(x)| 6 1, in comparison with the
fact that atF0 = 0 (see figure 1). The DOS measures the maximum number of electrons
which can occupy an energy range. The EM field applied will drive electrons out of the
low-energy regime, so a reduced electron DOS in the low-energy regime can be achieved.
Due to the limiting feature limx→0 Jm(x) = δm,0, for radiation with relatively high frequency
and/or low intensity, which leads tor0 � 1 andγ � 1, the effects of the radiation on the
DOS can be suppressed. Moreover, becauser0 ∼ F0/ω

2 and γ ∼ F 2
0 /ω

3, the radiation
frequency has a stronger effect on the DOS.

Figure 5. The Fermi energy in a 3DEG as a function of the magnetic field at a fixed radiation
frequency for different radiation intensities.

A direct and important application of the DOS is that in determining the Fermi energy
in an electronic system. Using the condition of electron number conservation, the Fermi
energyEF for a 3DEG subjected to EM radiation and to a magnetic field can be determined,
for the case of the low-temperature limit(T → 0) and of where the total electron density
Ne in the system is not varied by the presence of the radiation field and of the magnetic
field, by

Ne = 1

π2l2

∑
N,m

2(EF − EN − 2γ h̄ω −mh̄ω)
∫ √2m∗(EF−EN−2γ h̄ω−mh̄ω)/h̄2

0
dx F 2

m(x).

(10)

The dependence of the Fermi energy in a 3DEG on the strength and frequency of the
THz driving fields at a fixed magnetic field is shown in figures 3 and 4. Because of the
reduction of the DOS in the low-energy regime by the radiation field, especially in the
low-frequency and high-intensity regimes, the electron occupation of the higher LLs can be
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observed for radiation with low frequency (see figure 4) and/or high intensity (see figure 3).
For high-frequency (e.g.ω/2π = 4 THz in figure 3 andω/2π > 6 THz in figure 4)
and/or low-intensity (e.g.F0 → 0 in figure 3) EM fields, the Fermi energy depends
very weakly on the radiation. The theoretical results indicate that in the low-frequency
(ω � 1) and/or high-intensity(F0 � 1) limit where 2γ h̄ω is much larger thanEN and
h̄ω, EF ∼ 2γ h̄ω ∼ (F0/ω)

2. A significant conclusion that we draw from these results
is that by varying the strength and/or frequency of the THz EM radiation, one can tune
the electron population in different LLs very efficiently and, consequently, photon-modified
Shubnikov–de Haas oscillations may be observed. In figure 5 we show the dependence
of the Fermi energy in a 3DEG on the magnetic field at a fixed radiation frequency for
different radiation intensities. It can be seen again thatEF increases with increasingF0

for magnetic fields up to 14 T. The physical reason behind the strong effect of the EM
radiation on the electron DOS and the Fermi energy can be understood on the basis of the
fact that for a GaAs-based electron gas driven by an EM field withF0 ∼ 1 kV cm−1 and
ω ∼ 1 THz, conditions such asr0[2m∗(EF − EN − 2γ h̄ω ∓ mh̄ω)/h̄2]1/2 ∼ 1 andγ ∼ 1
can be satisfied. As a consequence, (i) the energy of the electronic system is shifted by the
energy of the EM field; (ii) the electrons in the system can interact with the radiation field
via the processes of photon absorption and emission; and (iii) the features that are specific
to electron–photon interactions can be exposed.

In the present study we have derived the DOS for noninteracting electrons in a THz-
driven 3DEG in quantizing magnetic fields, using a Green’s function approach and including
the electron–photon interaction exactly. We have studied the influence of intense THz
radiation and a strong magnetic field on the electron DOS and Fermi energy in a 3DEG
structure. We found that: (1) the DOS and the Fermi energy for a THz-driven 3DEG will
be strongly modulated by the frequency and strength of the radiation field; (2) applying
an EM driving field to a 3DEG will result in a decrease in the DOS in the low-energy
regime and, consequently, in an increase in the Fermi energy, due to the nature of the
interactions between the electrons and EM radiation fields; (3) a stronger effect of the
radiation on the DOS and the Fermi energy can be observed at relatively low frequencies
and/or high intensities; (4) the processes of optical absorption and emission, including
multiphoton absorption and emission, have a relatively weak effect on the Fermi energy
in comparison with the effects caused by the energy shift; (5) by varying the frequency
and/or strength of the THz radiation, the electron population in different Landau levels can
be varied; and (6) the effects of the EM radiation on the electron DOS in strong magnetic
fields are very similar to those observed in the dynamic Franz–Keldysh effect atB = 0
[5]. The Green’s function and the DOS for noninteracting electrons in a THz-driven 3DEG
in strong magnetic fields, obtained from this study, can be used for further investigations
of the magneto-transport and magneto-optical properties in, e.g., semiconductor materials.
It should be noted that, in the present study, we did not include the effects of electron
correlations on the filling of the LLs. It is well known [9, 10] that, in the absence of an
EM radiation field, these effects can change the population of the LLs significantly when
EF approaches the edge of a Landau band. The single-electron Green’s function obtained
here can also be used to study this problem when an EM field is present.

The phenomena predicted and discussed in this letter may be observed within the
radiation intensity and frequency regimes of recently developed free-electron lasers such
as the UCSB FELs [11] and the FELIX [1, 12]. We hope that the phenomena presented
and discussed in this letter will be verified experimentally.
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