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ABSTRACT
The classical 19th century thermodynamic inequalities of Clausius
and Helmholtz are applied to the calculation of entropy and free
energy changes by computer simulation. The irreversibility of finite-
time thermodynamic paths is exploited to obtain upper and lower
bounds on these quantities. Schrödinger’s microscopic interpreta-
tion of heat and work provides the basis for a literal implementation
of the key historical concepts on the computer using the Monte
Carlo algorithm of Metropolis. Coupling schemes, paths, and
reference states are variationally optimized to improve the con-
vergence of the simulated properties, and a newly introduced
variational flexibility, metric scaling, is overviewed. Reasons for
expecting limiting power laws for the convergence are outlined.

I. Introduction: The Second Law
“Free energy is arguably the most important general
concept in physical chemistry”, wrote Peter Kollman in
an overview1 of the difficulties and progress in the
computational thermodynamics of hard-core fluids. Chem-
ists are well aware that entropies and free energies
determine equilibrium constants and the direction of
spontaneous chemical change. Indeed, one might think
that intellectual development of these basic concepts
ended in the 19th century. It is therefore interesting to
note that biochemists now work with standard free
energies constrained to the in vivo conditions of constant
temperature, pressure, and pH,2 rather than the traditional
but less appropriate constraints of constant temperature
and pressure, or temperature and volume. Thermody-
namics is now applied to individual macromolecules in
solution, and the protein folding problem has been
formulated in terms of free energy landscapes, upon which
the native state is thought to reside at the bottom of a
funnel.3 These developments could hardly have been

foreseen by the founding figures of thermodynamics.
Furthermore, despite being a property of equilibrium
systems, free energy also plays an important role in
kinetics, since the rate of a reaction may be controlled by
free energy barriers and entropic bottlenecks.4

The utility of free energy in determining the direction-
ality of a chemical process has its historical basis in the
Second Law of thermodynamics as elucidated by Carnot
and Clausius: spontaneous processes are those for which
the entropy of the universe, consisting of the system and
its surroundings, increases. Helmholtz and Gibbs recast
this result in terms of the properties of the system itself
under external thermodynamic constraints. In this Ac-
count, we explore the direct translation of the Clausius
and Helmholtz results, involving heat and external work
respectively, into a computational algorithm for obtaining
entropy and free energy changes. To do so, we need an
interpretation of heat, work, and thermodynamic con-
straints both at a molecular level and in the context of
computer simulation. The microscopic approach contrasts
sharply with that of traditional phenomenological ther-
modynamics, whose development is independent of any
particulate theory of matter.5

Since entropy and free energy are state functions, there
exists great freedom in the choice of thermodynamic path
for calculating changes in these properties; the result must
be independent of the path. If the path is traversed
reversibly, then the entropy and free energy changes can
be expressed in terms of the heat and work expended.
However, if we are literally to mimic thermodynamic
processes by computer simulation, the paths must be
traversed in a finite time, hence irreversibly. Under
irreversible conditions, the important expressions are the
thermodynamic inequalities rather than the equalities. In
other words, by calculating the irreversible heat and work,
one obtains bounds to entropy and free energy changes
rather than the changes themselves. The choice of path
is then no longer moot, since it determines the extent of
irreversibility and consequently the tightness of the bounds.
Thus, there is a variational principle: the path may be
optimized to produce the closest upper and lower bounds
in a specified (computer) time.

Although methods for computing free energy changes
have existed for decades, actual computations are still
time-consuming. The longest-established techniques are
thermodynamic integration6 and free energy perturba-
tion.7 Both use equilibrium simulations and invoke revers-
ible paths. Even so, the choice of path matters because
finite simulations carry statistical errors, and the path
determines the size of these errors. In this Account, we
focus on an alternative approach, developed over the past
decade in our research group. (Other methods have been
reviewed elsewhere.8) Our finite-time variational method
is manifestly nonequilibrium and provides a systematic
basis for the optimization of paths to obtain rapidly
converging bounds on entropy and free energy changes.
The introduction of irreversibility puts our method into
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the realm of finite-time thermodynamics.9 A connection
between the key results of that field and our variational
switching calculations has been provided by Schön.10

The Account proceeds as follows. In section II, the
finite-time variational method is described and applied
to the entropy change of a model system by monitoring
heat flow and invoking Clausius’s inequality (a statement
of the Second Law). In section III, the method is extended
to free energy changes using Helmholtz’s inequality and
a microscopic interpretation of work. Section IV addresses
the variational optimization of paths and reference states.
In section V, the distance metric in configuration space
is exploited as an additional variational flexibility. In
section VI, the limiting power laws for the convergence
of entropy and free energy bounds are discussed. Section
VII provides a brief summary.

II. Heat: Clausius Meets Metropolis
Thermodynamics relies on an idealization of reality and
yet yields quantitatively correct predictions for real sys-
tems at equilibrium. Perhaps the primary idealization is
the conceptual separation of an equilibrium system from
its environment. The environment is replaced by simply
stated macroscopic external constraints such as temper-
ature, pressure, pH, etc., implying that, at equilibrium, the
system attains the same values of these control param-
eters. Figure 1a exemplifies such an idealization. The
system is in contact with a thermal reservoir that has a
well-defined and controllable temperature, T. The reser-
voir is a thermostat for the system, and T is a property of
the thermostat. In what follows, we will never need to
know the temperature of the system; we merely note that
at equilibrium it is identical to T.

The state of a system may be changed by bringing it
into contact with different environments, which admit the
possibilities of heat flow and external work. In the 1850s,
Clausius analyzed the reversible heat, Qrev, transferred
while taking a system through a cycle of changes that
eventually return it to its original state,11 thereby identify-
ing entropy (the integral of dQrev/T) as a state function.
For processes where the heat flows irreversibly, an early
statement of the Second Law yielded what we now call
Clausius’s inequality:

with equality only in the limit δQ ) dQrev. We emphasize
that T in this inequality is the temperature of the heat
bath; if heat flows irreversibly, the system itself is out of
equilibrium and does not even possess a well-defined
temperature.

Rather than regarding the inequality of expression (1)
as a defect, we note that if the integration between the
two thermodynamic states is carried out in both direc-
tions, upper and lower bounds to ∆S may be obtained
from finite-time (and therefore irreversible) processes.
Thus, a quantitative assessment of the systematic error
due to irreversibility is available in addition to the ever-
present statistical errors.

To use Clausius’s inequality in a computer simulation,
we need to establish the analogue of the thermostat with
infinite thermal mass, full temperature control, and
mechanism for heat transfer with the system. Although
not usually regarded from this literal point of view, the
implicit thermostat in Metropolis Monte Carlo (MC)
simulations12 fulfills these requirements. The Metropolis
algorithm (to be exemplified shortly) generates a chain
of configurations, the probability of a given structure with
potential energy V being proportional to its Boltzmann
weight, F:

This is the weight with which structures occur in the
canonical ensemble (conditions of constant temperature,
volume, and number of particles). Hence, the canonical
value of a macroscopic observable can be found by
averaging its instantaneous value over the chain of
configurations. For example, the internal energy is the
average of the total energy at constant temperature.
Absolute entropies and free energies are harder to calcu-
late because they cannot be expressed as such averages.
The following example illustrates how the flow of heat
between the system and thermostat in an MC simulation
is interpreted and used to evaluate the integral in Clau-
sius’s inequality (1) directly.

Consider a system of N distinguishable uncoupled
quantum harmonic oscillators, each with a quantum
number v ) 0, 1, 2, ... and corresponding energy levels Ev

) (v + 1/2)pω. Specification of all N quantum numbers
constitutes a configuration of this system. The oscillators
are initially equilibrated at temperature T1 using the
following implementation of the Metropolis algorithm:

(a) An oscillator is chosen randomly.
(b) With equal probability, the quantum number of the

oscillator is either raised or lowered by 1.
(c) If the energy is lowered, the change is accepted

unless the quantum number has become negative, in
which case the change is rejected.

(d) If the energy is raised, the Boltzmann factor F )
exp(-pω/kT1) is computed, and the change is accepted
with probability F by comparing a random number
between 0 and 1 with F.

(e) If a move is rejected, the previous configuration is
recounted.

FIGURE 1. (a) Traditional thermodynamic idealization of an isolated
system coupled to a heat bath. (b) Scheme for finite-time variational
calculations of free energy changes. The parametrized Hamiltonian,
H(λ), defines the system. The particle positions, q, and momenta,
p, are coupled to the heat bath, and the switching parameter, λ,
couples the system to a source of external work.

∫δQ/T e ∆S (1)

F ) exp(-V/kT) (2)
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(f) Steps (a)-(e) are repeated until the populations of
the quantum states stop evolving, i.e., equilibrium is
attained. Each cycle through these steps adds a configu-
ration to the chain being generated.

Now let us calculate the entropy change for a simple
process in which the temperature increases to T2. This is
accomplished by continuing the simulation as prescribed
above, but incrementing the temperature after each step.
We perform this gradual switching over M simulation
steps, adding (T2 - T1)/M to the temperature at each step.

As the temperature rises, there must be a net flow of
heat into the system. At this point we take the Metropolis
thermostat literally: if an MC move is accepted, the energy
of the system changes, and the only source of this energy
is the notional heat bath. Hence, the change in energy of
the system can be identified with the flow of heat from
the bath to the system. If a move is rejected, there is no
heat flow. For each element of heat, δQ, the temperature
of the heat bath is known, and the integrand in Clausius’s
inequality (1) can be evaluated. Note that when the
temperature stops changing, the system is out of equilib-
rium. Heat will continue to flow until equilibration at
temperature T2 is achieved, and it is important to continue
the simulation and collect the remaining heat at constant
temperature after T2 has been reached.

This procedure directly furnishes a lower bound to ∆S
for the temperature change. By equilibrating at T2 and
then gradually lowering the temperature to T1, again
accumulating δQ/T until equilibrium is regained at the
end, one obtains a lower bound to the entropy change
for the reverse process, -∆S, i.e., an upper bound to ∆S
itself. Hence, switching in both directions between two
thermodynamic states yields both lower and upper bounds
to the entropy change.

The solid lines in Figure 2 show the upper and lower
bounds to the entropy change of a system of quantum
harmonic oscillators whose temperature is doubled. Suc-
cessive points were derived from simulations with an
increasing number, M, of switching steps plus a fixed
number of additional steps for final re-equilibration. For
small M, the change to the temperature at each MC step
is relatively large and the system falls far from equilibrium,
resulting in a wide separation of the bounds. For larger
M, the temperature increments are smaller and the
process is more reversible, resulting in tighter bounds. The
bounds gradually converge to the correct value, which is
analytically known for this simple system.

What can be done to make the bounds converge more
rapidly? Although the Metropolis algorithm is not con-
cerned with the physical nature of the thermostat, it does
require a mechanism for the coupling of the thermostat
to the system. The coupling is manifest in the MC move
set; in the above example, trial moves consisted of
changing the quantum number of a randomly chosen
oscillator by (1. The dashed lines in Figure 2 show how
the convergence of the bounds is improved by allowing
changes in the quantum number of up to (kT1/pω. This
modification corresponds to a stronger coupling with the

heat bath and the ability to explore state space more
rapidly, enabling faster equilibration of the system.

From this simple numerical experiment, we conclude
that the Metropolis thermostat may be treated like a real
thermostat, and that by keeping track of heat flowing in
and out of the bath, one may calculate bounds to entropy
changes by direct application of Clausius’s fundamental
inequality. Since the Helmholtz free energy is defined by
A ) U - TS, where U is the internal energy (in principle,
a straightforward ensemble average), the ability to calcu-
late ∆S as above could be seen as a route to obtaining
free energy changes. However, this turns out to be highly
inefficient. In addition to the potentially time-consuming
necessity of accumulating heat after the final conditions
have been reached, and of calculating ∆U separately, the
bounds to ∆S never converge more rapidly than a constant
divided by M1/2 (see section VI). The next section shows
that we can do better by considering external work.

III. Work: Enter Helmholtz and Schro1dinger
Often, rather than simply changing the temperature, as
in the example of section II, one wants to change the
interactions between the particles that constitute the
system itself. For example, knowing the free energy
difference between a liquid and the ideal gas, where the
molecules do not interact at all, puts the free energy of
the liquid on an absolute scale, since the absolute free
energy of the ideal gas is analytically known. In a solution,
modification of the solvent-ion interaction potential
permits direct comparison of the solvation free energies
of different ions.

Such processes may be formulated by devising a
parametrized Hamiltonian, H(λ), which switches smoothly
between the system of interest at λ ) 0 and the reference
state at λ ) 1. The traditional techniques8 of thermody-

FIGURE 2. Bounds to the entropy change of 4000 quantum harmonic
oscillators (pω ) 1) for a linear temperature change from kT ) 10
to kT ) 20. The horizontal axis shows the number of MC moves
over which the temperature was changed. An additional 10 000
moves per particle were performed at the end of each simulation
to accumulate the remaining heat required for equilibration. (Solid)
Weak coupling to the heat bath (δn ) (1 allowed); (dashed) strong
coupling (δn ) (1, (2, ..., (20). The bars indicate the standard
error over 25 runs.
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namic integration and free energy perturbation express
the free energy difference between the two states in terms
of equilibrium ensemble averages at a series of intermedi-
ate values of the switching variable, λ. In the limit where
a single configuration is taken to represent each average,
but the number of intermediate points between λ ) 0 and
1 is very large, both techniques reduce to the slow growth
method.13 At this extreme, the system lags behind the
changing Hamiltonian, producing hysteresis when the
direction of change is reversed.

A fresh physical perspective was introduced in 1992 by
Reinhardt and co-workers14,15 in an analysis summarized
by Figure 1b. Here, the system is coupled not only to a
thermostat, but also to a source of external work. Both
heat transfer and external work alter the energy of the
system, and the distinction between these two processes
in statistical mechanics is provided by Schrödinger’s
interpretation.16 In the example of section II, the flow of
heat caused the quantum numbers of the oscillators to
change, thereby altering the populations of the quantum
states. In that example, the Hamiltonian was fixed, and
the energies of the states remained constant as the
temperature was changed. If the Hamiltonian changes, the
populations of the states remain instantaneously fixed, but
the energies of the states change. It is the corresponding
change in the system’s energy that Schrödinger classified
as work. This interpretation is shown schematically in
Figure 3 and is summarized by the equation

where nv and Ev are the population and energy of level v,
respectively. The first sum in eq 3 is the work, and the
second is the heat.

By changing the Hamiltonian gradually from H(λ ) 0)
to H(λ ) 1) over the course of an MC simulation, one can
accumulate the external work, W, required to take the
system between the two states in analogy with section II,
where the temperature was slowly switched and the heat
was accumulated. Since the Hamiltonian must be changed
at a finite rate, the work is irreversible, and under
conditions of constant volume, temperature, and number
of particles, it is an upper bound to the free energy change,

according to Helmholtz’s inequality:17

where A is the Helmholtz free energy, and the equality
applies only in the reversible limit. A lower bound to ∆A
may be obtained by switching in the reverse direction,
from H(λ ) 1) to H(λ ) 0).

Figure 4 shows upper and lower bounds to the free
energy change of the quantum harmonic oscillator system.
In this example, the temperature is held fixed, but the
frequency, pω, of the oscillators is doubled over the course
of the simulation. As soon as the Hamiltonian stops
changing, no further work is done. Therefore, there is no
need to continue the simulation until equilibrium has
been reached at the final state.

Another way to obtain the work is to invoke the First
Law: ∆U ) W + Q. ∆U is simply the energy difference
between the initial and final configurations in the simula-
tion, and Q can be obtained as in section II. When the
Hamiltonian has stopped changing, any further changes
in Q exactly match changes in ∆U, leaving W unchanged.
This identity will be useful in the next section, where
classical interacting systems are considered. In classical
statistical mechanics, the analogue of a quantum state is
the configuration, so that heat is the energy required to
change the configuration, whereas work is the energy
change at fixed configuration due to a change in the
classical Hamiltonian. For such systems, it is usually more
convenient to accumulate the heat transferred in each MC
step than to compute the work, since δQ must already be
calculated to evaluate the acceptance probability at each
step.

The parametrization of the Hamiltonian presents a
variational freedom in addition to the coupling with the
thermostat described in section II. A well-chosen path
between the two thermodynamic states of interest will
minimize the irreversibility of the work, resulting in tighter
bounds on the free energy. For the simple oscillator
system described here, a simple linear change of pω with
the switching variable, λ, is effectively optimal, but for

FIGURE 3. Schematic energy levels and populations in Schröd-
inger’s interpretation of heat and work in statistical mechanics.
Starting at the center, heat supplied to the system promotes
molecules to higher states, whereas work done on the system raises
the energies of the levels at constant population.

δW ) ∑
v

nv δEv + ∑
v

Ev δnv (3)

FIGURE 4. Bounds to the free energy change of 4000 quantum
harmonic oscillators at kT ) 10 for a change in oscillator frequency
from pω ) 1 to pω ) 2.

W g ∆A (4)
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interacting systems the choice is more complex. The next
section addresses these issues.

IV. Optimization of Paths and Reference States
We now apply finite-time variational switching to a
classical 55-atom argon cluster,19 Ar55, modeling the
interatomic Hamiltonian by the Lennard-Jones potential,18

VLJ. We focus on determining the absolute free energy of
this cluster by calculating the free energy difference from
a non-interacting reference state of known free energy.
This is achieved by gradually reducing the strength of
particle interactions to zero during the simulation. We will
see that the rate of convergence of the bounds on ∆A is
affected by the choices of reference state19 and switching
path.

An obvious choice of reference state here is a system
of 55 non-interacting atoms, i.e., an ideal gas confined to
a specified volume. The volume constraint is easily
achieved in an MC simulation by rejecting any moves that
take an atom outside the container. This same container
must also be applied to the interacting cluster, resulting
in a volume-dependent free energy as the atoms move
around the box. We eliminate overall translation by
defining the container relative to the location of the
cluster. If a single atom is used to define the location, the
free energy of the ideal gas reference state under the same
volume constraint can be calculated analytically.19 How-
ever, the box must then be at least twice the size of the
cluster to accommodate all possible cluster rotations. A
large box is not optimal because the phase space that must
be explored becomes enormous, impairing the simulation.
If the location of the cluster is instead defined by the
cluster’s center-of-mass, then a box only slightly larger
than cluster itself is required to accommodate overall
rotation. The center-of-mass constraint requires a slightly
more sophisticated MC algorithm that consumes more
time per simulation step. Furthermore, the free energy of
the ideal gas reference state with this constraint is not so
straightforward. However, there exists an exact solution
containing a one-dimensional integral that must be evalu-
ated numerically.20 Because the box is much smaller in
the center-of-mass constrained calculation, we expect
faster convergence of the bounds to ∆A. In Figure 5, we
see precisely this behavior for a calculation at T ) 45K.
In (a) the simulation box is centered on the center-of-
mass, and in (b) it is centered on one atom. The values of
∆A for the two calculations are different because the
reference states are different, but the resulting absolute
free energies are the same. The data are averages over 20
runs with different initial configurations, and the error
bars represent the associated statistical uncertainty. Only
such ensemble averages constitute bounds to ∆A; indi-
vidual runs fluctuate about the mean.15

When the temperature is low and the cluster is solid-
like,21 the phase space can be trimmed even further. Since
atoms do not exchange, instead of constraining all the
atoms to one large box, each atom can be constrained to
its own small box. Furthermore, the boxes can be defined
not only with respect to the translational motion of the

cluster but also with respect to its rotation. In this case,
defining the location of the cluster at the center-of-mass
results in a reference state with an unknown free energy
that must be estimated numerically. Using a single atom
to define the location, however, does produce a reference
state with an analytically known free energy.19 Because
the whole cluster is not enclosed in this case, the volume
penalty taken for this latter strategy is quite small, and
the convergence of the bounds on ∆A (Figure 6) is actually
better due to algorithmic complications with the center-
of-mass constraint.

Another way to improve the convergence of the bounds
is to optimize the switching path. We return to Ar55 at T
) 45 K in a single container, defined with respect to the
center-of-mass. A simple switching path between the
initial Hamiltonian, H(λ ) 0) ) VLJ, and the reference
Hamiltonian, H(λ ) 1) ) 0, can be made by prefixing VLJ

with a coefficient, c(λ), which changes continuously from
unity at λ ) 0 to zero at λ ) 1. In contrast to thermody-
namic integration, which employs the derivative ∂H/∂λ,
there are fewer restrictions22 on the choice of c(λ).
However, the obvious choice of a linear relationship
proves troublesome for small M (rapid switchings) because
the atoms overlap in the ideal gas reference state, con-
tributing arbitrarily strong repulsive interactions when the
potential is turned on. When c(λ) ) (1 - λ)3, this problem
is mostly overcome, as shown by the solid line in Figure
5a. The dashed line in Figure 5a represents calculations
where c(λ) was decreased linearly but VLJ itself was also

FIGURE 5. Upper and lower bounds19 to ∆A for Ar55 f ideal gas
at T ) 45 K. (Solid) Switching path is V(λ) ) c(λ)VLJ with c(λ) ) (1
- λ)3; (dashed) path with core-softening.23 (a) Container centered
at the center of mass; (b) container centered on one atom. The
vertical ranges in (a) and (b) are the same for comparison of the
convergence rates.
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modified during the switching so as to mitigate the
repulsive core problem.22 This more complicated func-
tion23 improves the convergence.

De Koning et al. have pointed out an advantage of
choosing paths where the Hamiltonian is simply prefixed
by a switching coefficient.24 Moving along such paths is
equivalent to changing the temperature, since only the
ratio of the Hamiltonian to the thermal energy appears
in the Boltzmann factor. Therefore, all points along the
path are physically meaningful, yielding the free energy
as a continuous function of temperature from a single
simulation.

V. Metric Scaling:25 An Additional Path
Flexibility
The work done in a variational switching calculation is
irreversible because the changing Hamiltonian continually
redefines the equilibrium distribution of configurations.
Switching at finite speed forces the system to lag behind
the instantaneous equilibrium. A good path minimizes
departure from equilibrium when traversed at reasonable
rates.

In some applications, general information is available
about the two thermodynamic states to be connected. For
example, if the shape of the system’s container changes,
particles must move out of areas that are to be eliminated
and into new vacant ones. Such reorganizations often
constitute the bottleneck in switching calculations; highly
nonequilibrium configurations are generated if the par-
ticles jam together, and relaxation can be slow. Knowledge

of the overall transformation to be effected can assist in
guiding the system through the change.

Consider the Ar55 cluster of section V confined to a fairly
tight spherical container at low temperature. To calculate
the free energy change when this microcrystal is com-
pressed, we might run a switching simulation in which
the container wall interacts repulsively with the atoms and
its radius is gradually decreased. Overall, the atoms would
be forced inward, while undergoing the usual thermal
fluctuations.

We can easily measure the average radial position of
an atom at any point during the switching by performing
a short simulation. Then, rather than leaving the atoms
to find their way during a switching simulation, we can
gradually scale their coordinates to bring them, on aver-
age, to the correct positions. This process can be regarded
as a scaling of the distance metric in configuration space.25

If viewed in the unscaled coordinates, the cluster would
simply appear to undergo equilibrium fluctuations with
no systematic evolution; by guiding the atoms to their
natural positions in the switching, gross departure from
equilibrium is avoided. Metric scaling effects a volume
change, and an ideal-gas work-like correction of kT ln S
must be subtracted from the free energy for each atom
subjected to the scaling, where S is the ratio of the final
scaled volume to the original volume available to the
atom.25

Scaled coordinates have been used for some time in
constant-pressure simulations, where the simulation cell
dimensions fluctuate.26 Such scaling is necessary to pre-
vent periodic gaps or overlaps between cell images when
periodic boundary conditions are used. In contrast, when
metric scaling is applied to finite systems, the scaling
schedule may be optimized independently of the con-
tainer changes and may even differ from atom to atom,
as illustrated in the following example.

At its global potential energy minimum, the Ar55 cluster
has four geometrically distinct groups of atoms: 12
vertices, 30 edge atoms, a 12-atom icosahedral inner shell,
and the central atom.27 Each group responds differently
when the cluster is compressed at low temperature. Figure
7 shows how metric scaling can improve the convergence
of the free energy bounds. The long-dashed lines show
the convergence for a volume change with no metric
scaling. We then determined the average radial coordinate
as a function of container radius during a rapid compres-
sion. The evolving average was fitted to a cubic polynomial
in the switching parameter, λ. This function was then used
to scale all the coordinates uniformly during a longer
production run. The considerably tighter short-dashed
bounds were obtained. Fitting a cubic to each of the four
geometrically distinct groups of atoms separately and
scaling the metric nonuniformly according to group yields
some further improvement,25 as shown by the solid lines.

Metric scaling has been successfully applied to cluster
volume changes at higher temperatures and larger vol-
umes. It has also been used to compare the free energy
of body-centered cubic and face-centered cubic crystals
directly.25 These structures can be interconverted smoothly

FIGURE 6. Upper and lower bounds19 to ∆A for Ar55 f ideal gas
at T ) 10 K with individual boxes for each atom. (a) Boxes defined
with respect to the center of mass; (b) boxes defined with respect
to one atom.
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by a Bain distortion,28 which is easily formulated as an
anisotropic metric scaling.

One caution is advisable: metric scaling schedules
must be determined only by the average response of a
system to the changing Hamiltonian, and not by the
trajectory under scaling itself. Use of specific or on-the-
fly information introduces a Maxwell’s daemon and
systematic error.15

VI. How Quickly Can ∆S and ∆A Be
Calculated?
If the computer time invested in a free energy calculation
is doubled, how much improvement in precision can be
expected? The foregoing sections showed that tighter
bounds can be obtained by imaginative choice of coupling
schemes, switching paths, and reference states. We now
turn to the rate of convergence with M, the number of
simulation steps.

Recall the quantum harmonic oscillator calculations of
section III. We saw that the free energy bounds converge
most rapidly when the state of the system is kept as close
as possible to the instantaneous equilibrium at all points
during switching. For harmonic oscillators, we know the
distribution over states for any T and pω analytically.
Therefore, instead of using a trial change in quantum
number as the MC step, we could simply replace the
existing quantum number of the randomly chosen oscil-
lator with a new value chosen from the exact distribution.
We expect this process to reduce the lag of the system to
an absolute minimum and give us the best possible
convergence of bounds.

Figure 8 shows the separation of the free energy bounds
as a function of M for a change in oscillator strength from
pω ) 1 to pω ) 2. Also shown is the standard error in the
upper bound. The logarithmic plot reveals that both the
bound separation and their uncertainty obey power laws;
i.e., they converge as CM-R, where C and R are constants.
Comparing the results of section III on the same plot

shows that using the exact distribution to perform the MC
steps lowers the prefactor, C, in the power law, but does
not affect the exponent, R. The bounds converge with R
≈ 1 and the error with R ≈ 1/2. We have never observed
higher respective values in any MC finite-time switching
simulation, even in more complex systems, suggesting that
these are limiting rate laws.

These limits can be rationalized. When the energy of a
quantum state is changed by ∆E, the work done is
proportional to the population of the state and to ∆E. The
free energy change can be expanded as a Taylor series in
∆E, and the first term (linear in ∆E) is equal to the work.
From Helmholtz’s inequality, we know that the work is
greater than the free energy change, and the Taylor series
tells us that the first term in the discrepancy is propor-
tional to (∆E)2. If the overall change in the state’s energy
is divided into M equal steps of ∆E/M, the work at each
step will therefore exceed the free energy change by a term
of order (∆E/M)2. The discrepancy between the work and
the free energy is in the same direction for each of the M
steps, so the total difference is of order M(∆E/M)2 ) (∆E)2/
M; i.e., the work converges to the free energy from above
as M-1. This rate is borne out in practice as a limit for
MC simulations, although worse convergence is certainly
possible if the system is far from equilibrium at interme-
diate steps, as might result from a poor choice of path or
reference state.

The actual work observed in a single step, where the
energy level changes by ∆E/M, depends on the instanta-
neous population of the level. Members of an ensemble
exist in different states, and the work done in one step
varies between members with a distribution whose width
is proportional to the energy change, ∆E/M. The direction
of fluctuations is random, so that the distribution of the
total work done in M consecutive steps is obtained by
adding the contributions in quadrature. The result is an
overall distribution width proportional to M1/2(∆E/M) )
∆E/M1/2 to a first approximation. This width is propor-

FIGURE 7. Bounds to the free energy change25 of Ar55 for a
container radius change between 0.817 and 0.612 nm at kT ) 24 K.
(Long dashes) No metric scaling; (short dashes) uniform metric
scaling; (solid) nonuniform metric scaling. Corrections due to the
intrinsic work of scaling are included.

FIGURE 8. Convergence laws for the free energy of quantum
harmonic oscillators when the energy level spacing changes from
pω ) 1 to pω ) 2. (Solid symbols) Bound separation; (open symbols)
uncertainty (standard error) in upper bound; (circles) conventional
MC moves; (squares) moves chosen from the exact distribution. The
lines are fits of y ) Cx-R.
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tional to the uncertainty observed when measuring either
of the upper or lower bounds in a simulation of M steps,
in agreement with the limiting M-1/2 convergence ob-
served in Figure 8.

In contrast with the work, which reflects a change in
the Hamiltonian, heat flows between the system and the
heat bath even in a system at equilibrium. At equilibrium,
the cumulative heat by definition has an average of zero
but experiences fluctuations from a distribution of fixed
width. When the external conditions are changed, for
example due to work, the fluctuations in the heat persist,
no matter how slowly the changes are made. This explains
the relatively poor quality of the entropy bounds in Figure
2, which rely on accumulating δQ/T, compared with the
free energy bounds in the other figures. Hence, finite-time
variational switching is far more rewarding for the ac-
curate calculation of free energies than of entropies.

VII. Summary
The fact that M-1 convergence of the free energy bounds
is the fastest that can be obtained in stochastic simulations
of the type investigated here, even with full knowledge of
the equilibrium distribution, is an indication of how
difficult it is to calculate free energies. Ultimately, the
bound separation approaches the statistical error in the
bounds themselves, and further precision is limited by the
latter, which fall only as M-1/2. This behavior is no worse
than thermodynamic integration or free energy perturba-
tion calculations, which are inherently statistical ap-
proaches and also converge as M-1/2.

Despite the limiting law, sections IV and V have shown
that imaginative choice of reference state and switching
path can go far in reducing the prefactor of the conver-
gence law, providing significant enhancements in overall
efficiency. Certainly much is to be gained by identifying
the physical bottlenecks that are specific to a given
application.
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