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l 

A Multidimensional Version 
of Rolle's Theorem 

Massimo Furi and Mario Martelli 
l 

In this paper we obtain for functions f: Rn > RP a version of Rolle's Theorem 
which we hope the readers will find useful and interesting for the following 
reasons. Three fundamental results from Calculus: namely Rolle's Theorem, the 
Mean Value Theorem and the Cauchy Generalized Mean Value Theorem can be 
easily derived from it. The version has intuitive geometrical applications and the 
proof is very simple. 

Teachers may find it appropriate to incorporate our result in a course on 
Multivariable Calculus, since it provides an example of how certain one-dimen- 
sional theorems can be rephrased in higher dimensional spaces, and it shows that 
by expanding our mathematical horizon we frequently gain in organization and 
unity. Professional mathematicians are all familiar with these facts, but students 
will surely derive from them a motivation to learn more. 

The basic idea of our result is to assume a certain behavior of f on the 
boundary dR of a n-dimensional region R (in the real line this behavior reduces to 
the familiar condition f(a) = f(b)) to obtain information on the derivative of f at 
an interior point of R. Of particular relevance to the result is the Mean Value 

Theorem of Sanderson [10] for a function v: [a, b] RP. We extend his theorem 

to functions of several variables. 
The paper ends with an additional, more general version of Rolle's Theorem, 

and with an open problem and a conjecture which will hopefully stimulate the 
reader's mathematical curiosity. 

We now list the terminology used and the results needed in the sequel. 
O(m x n) stands for the zero matrix with m rows and n columns. x * y denotes the 
Euclidean inner product between x and y and the norm of x is lixil = . We 
repeatedly make reference to the following sets: 

D(xo, r) = {x c Rn: lix-Xo|| < r), B(xo, r) = {x c Rn: lix-Xo|| < r), 

and S(xO, r) = {x c Rn: lix-Xo|| = r) = dD(xo, r). 

The two propositions below play a key role in the proof of our multi-dimen- 
sional version of Rolle's Theorem. 

Propostion 1. Let f: D(xo, r) c Rn > R and let c c B(xo, r) be an extremum point 
of f. Assume that f is differentiable at c. Then f '(c) = 0(1 x n). 

Proposition 2. Let f: D(xo, r) c Rn > R be continuous. Then the image of f is a 
closed and bounded interval [m, M]. 
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We point out that the proof of Rolle's Theorem in R is based on the one-dimen- 
sional version of the two propositions. 

Results. The following simple example shows that a straightforward reformulation 
of Rolle's Theorem in Rn, n 2 2, fails. 

Example 1. Let f: R2 R2 be defined by 

f(x, y) = (X(X2 + y2-1) y(x2 + y2-1)) 

The function f is continuous on D(0, 1), is differentiable on B(0, 1) and f(x) = O 
for every x E S(0, 1). However, f '(x) + 0(2 x 2) for all x E B(0, 1). 

We are now ready to state and prove our main result. 

Theorem 1. Let f: D(xo, r) c Rn > RP be continuous on D(xo, r) and differen- 
tiable on B(xo, r). Assume that there exists a vector V E RP such that 

i) v is orthogonal to f (x) for every x E S(xO, r) . 

Then there exists a vector c E B(xo r) such that v * f '(c)u = O for every u E Rn. 

Proof: Let k: RP R be defined by k(x) = v * x. Set g(x) = k( f(x)). By Proposi- 

tion 2 the image of g is a bounded and closed interval [m, M]. Assumption i) 
implies that g is 0 on S(xO, r). Hence we may assume, without loss of generality, 
that g reaches its maximum value, M, at a point c E B(xo, r), namely M = g(c). 
By Proposition 1 g'(c) = 0(1 x n), i.e. v * f '(c)u = 0 for every u E Rn. QED. 

Remark 1. Assumption i) can be replaced by the equivalent statement 

"ii) v * f (x) is constant on S(xO, r)"; 

and the conclusion of the theorem can be expressed in the equivalent but 
geometrically more intuitive way 

df df df 
"v is orthogonal to the vectors d (c), d (c), . . . a d (c)". 

Remark 2. D(xo, r) can be replaced by the closure of any open, bounded and 
connected set R of Rn. 

Rolle's Theorem, the Mean Value Theorem and the Cauchy Generalized Mean 
Value Theorem are easily derived from Theorem 1. 

Corollary 1 (Cauchy). Let a < b and f, g: [a, b] R be continuous on [a, b] and 

differentiable on (a, b). Then there exists c E (a, b) such that 

[ t (b) - t (a)] g'(c) = f '(c) [g(b) - g(a)] v 

Proof: If f(a) = f(b) and g(a) = g(b) there is nothing to prove. 

Assume [ f(b) - f(a)]2 + [g(b) - g(a)]2 > O. Define S: [a, b] R2 by S(t) = 

(g(t), f(t)). Let v = (f(b)-f(a), g(a)-g(b)). Then v * T(a) = v * T(b) = 
f(b)g(a) - f(a)g(b). Hence, according to Theorem 1 (see Remark 1), there is a 
point c E (a, b) such that v * T'(c)t = 0 for every t E R. With t + 0 we obtain 
[ f (b) - f (a)]g'(c) = f '(c)[g(b) - g(a)]. 
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Setting g(x) =x gives the Mean Value Theorem. If, in addition f(b)=f(a), 
then we have Rolle's Theorem. QED 

The next Corollary is the Mean Value Theorem of Sanderson [10] mentioned in 
the Introduction. 

Corollary 2. Let a < b and v: [a, b] RP be k times differentiable. Assume that 

v(a), v(b) and the k - 1 derivatives of v at a are orthogonal to a non-zero vector vO. 
Then, for some c c (a, b), v(k)(c) is orthogonal to vO. 

Proof: From Theorem 1 we derive the existence of a point c1 c (a, b) such that vO 
is orthogonal to v'(c1). The theorem can now be applied to v' in the interval [a, c1] 
to yield a point c2 < c1 such that vO is orthogonal to v"(c2). This procedure can be 
repeated k - 1 times to obtain c = ck < ck_1 such that vO * v(k)(c) = O. QED 

A recent result of Evard and Jafari [4] (see also [7]) follows from Theorem 1. 

Corollary 3. Let C be the field of complex numbers and f: C C be a holomorphic 

function. Assume that there are points a + b such that t(a) = t(b). Then there exist 
Zl, Z2 in the open line segment joining a with b such that Re(t'(z1)) = Im(t'(z2)) = 
O. 

Proof: Let f(z) = f(x + iy) = u(x, y) + iv(x, y) and p c R2, P = (P1,P2) = 
(Re(a), Im(a)), q c R2, q = (ql q2) = (Re(b), Im(b)). Define g(t) = (u(q + t(p - 
q)), v(q + t(p - q))), t E [0,1]. Notice that g(O) = g(1). According to Theorem 1, 
for every x c R2, x + O, there exists to C (0,1) such that x * g'(to)t = O, for every 
t c vR. Let t = 1 and choose the vector x1 = (P1 - q1, P2 - q2) Then 

du 2 du 
O = xl * gt(to) = d (g(to))(Pl-ql) + dy (g(to))(Pl-ql)(P2-q2) 

dv dv 

+ dx (g( to) )( P1-q1) ( P2 q2) + dy (g( to) )( P2-q2) 

Since f is holomorphic, its real and imaginary part satisfy the Cauchy-Riemann 
equations (see [1]), i.e. du/dx-dv/dy and du/dy = -dv/dx. Hence 

d (g(to))[(P1-Q1) + (P2-q2) j = ° 

This implies du/dx(g(to)) = Re(t'(z1)) = O, where z1 = q + to(P - q) 
To obtain the other equality use the vector X2 = (q2 - P2, P1 - q1) QED 

Theorem 1 can be given a slightly more general form. 

Theorem 2. (Second version of Rolle's Theorem in Rn). Let f: D(xo, r) c Rn > RP 
be continuous on D(xo, r) and differentiable on B(xo, r). Let V C RP, zO E B(xo, r) 
be such that 

ii) v * (f (x) - f (zO) ) does not change sign on S(xO, r) . 

Then there exists a vector c c B(xo r) such that v * f '(c)u = O for every u E Rn. 
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Proof: We may assume, without loss of generality, that v * (f(x) - f(zO)) < O for 
all x c S(xO, r). This implies the existence of a point c c B(xo, r) such that 
v * f(c) = M, where M = max{v * f(x): x E D(xo, r)}. Consequently, v * f '(c)u = O 
for all u c Rn. QED 

Remark 3. In the case when n = p = 1 Theorem 2 says that if for some z c (a, b) 
we have 

j) either f(z) 2 maxtf(a), f(b)} jj) or f(z) < mintt(a),t(b)} t 

then there exists c c (a,b) such that f'(c) = O. Notice that every z c (a,b) 
satisfies either j) or jj) when f(a) = f(b). 

The following result (see Boas [3]) is an easy consequence of the above remark. 

Corollary 4. Let a < b and f: [a, b] > R be continuous on [a, b] and differentiable 
on [a, b]. Assume that f '(a) = f '(b). Then there exists a point c c (a, b) such that 

f'(c)(c - a) = f(c) - f(a). 

Proof: A straightforward computation shows that Corollary 4 is true for f if and 
only if it is true for g(x) = f(x) - xf '(a). Therefore we may assume, without loss 
of generality, that f '(a) = f '(b) = O. Define 

( f(x) - f(a) 
h(x) = 1, x - a x + a 

t O x = a 
The function h is continuous on [a, b], differentiable on (a, b] and h'(b) = 
-h(b)/(b - a). 

Assume that h(b) + O. From h(b)h'(b) < O and h(a) = O we derive the exis- 
tence of z c (a, b) which satisfies either i) or ii). In the case when h(b) = O 
(= h(a)) every point z c (a, b) will do the job. Hence, by Theorem 2 (Remark 3), 
there exists c c (a, b) such that h'(c) = O, and this implies the stated result. QED 

Geometrical Applications of Theorem 1 and Theorem 2. We present three geomet- 
rical applications. To allow for a visual representation of the results we do not 
state them in their full generality. 

Application 1. Let f: D(O, 1) c R2 , R3, f(u, v) = (x(u, v), y(u, v), z(u, v)) be 
continuous on D(O, 1) and differentiable on B(O, 1) and let G = Imf. Assume that 
there exists a plane p: ax + by + cz + d = O, such that (x(u, v), y(u, v), z(u, v)) 
c p for every (u, v) c S(O, 1). Then there is a point (uO, vO) c B(O, 1) such that the 
tangent plane to the surface G at the point t(uo, vO) is parallel to p. 

Justification. By Theorem 1 (see Remark 1) the vector vO = (a, b, c) is orthogonal 
to 

df df 
d (uo) = p and d (Huo) = q, 

for some uO c B(O, 1), uO = (uO, vO). The tangent plane to G at t(uo) is {t(uo) + 
mp + nq: m, n C R}, which is obviously parallel to p. 

Application 2. Let f: D(O, 1) c R2 R3, f(u, v) = (x(u, v), y(u, v), z(u, v)) be 

continuous on D(O, 1) and differentiable on B(O, 1). Denote by G the surface 
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G = Imf and let Go = t(dD(0, 1)). Assume that there is a plane p: ax + by + cz + 
d = 0, such that Go is on one side of p and there is a point of S on the other side 
of p. Then the tangent plane to G at some point P E S is parallel to p. 

Justification. Let ui = (ui, vi) E B(0, 1) be such that t(ui) is on the other side of p 
with respect to Go Then (a, b, c) * ( f(u) - f (ui)) does not change sign on dD(0, 1). 
The conclusion follows from Theorem 2. 

We illustrate this situation with an example 

Example 2. Let f(u, v) = (U2 + V2-u, U2 + v, U2 - u). Then Go = {(1-u, u2 + 
V, U2 - V)* U2 + V2 = 1} and 40, 0) = (o7 O, O) are on opposite sides of the plane 
p: x + y + x = 1/2. Hence there is a point P on G = Imf where the tangent 
plane is parallel to p. The point is P = f(1/6, 0). 

Application 3. Ixt x: [a, b] > R3 be continuous on [a, b] and differentiable on 
[a, b], and let P = x(a) = (x(a), y(a), z(a)), Q = x(b) = (x(b), y(b), z(b)). Then 
for every plane p passing through the line L joining P with Q there is a point 
c E (a, b) such that the vector x'(c) is parallel to p. In particular, when the plane 
p is the one containing the origin, we obtain that xt(c) satisfies the equality 

i) x(a)[y(b)z(c)-z(b)yt(c)] + y(a)[z(b)x'(c) - x(b)z'(c)] 

+ z( a) [ x( b) yt(c)-y( b)x'(c)] = O. 

Justification. The first part is an immediate consequence of Theorem 1, since for 
every plane passing through L there is a vector u orthogonal to L and to the 
plane. For the second part observe that the direction v of a line orthogonal to p is 
given by the cross product of the two vectors x(a) and x(b), i.e. v = x(a) x x(b). 
Thus there exists c E (a, b) such that x(a) x x(b) * x'(c) = 0, which implies i). For 
a different justification of the result presented in Application 3 see [2]. 

Open problem and conJecture. We conclude the paper with an open problem and 
a conjecture. Theorem 1 and Theorem 2 remain valid if RP is replaced by a 
Hilbert space H. No changes are needed in the proof. They are also true when RP 
is replaced by a Banach space F with the vector v substituted by a linear 
continuous functional +. 

We conjecture that the theorems are false when Rn is replaced by an infinite- 
dimensional Banach space E, because Proposition 2, which plays a key role in both 
proofs, fails in E. In fact, the unit closed ball D(0,1) of E is not compact 

Consequently, there exists continuous functions t: D(0, 1) R such that Imf is an 

open inten7al, as illustrated by the following example. 

Example 3. Let H be the Hilbert space of square summable sequences of real 
numbers and let D be the disk of H centered at the origin and with radius 1, 
D = D(O, 1). Define 

T: D H, T(x) = T(x1, x2, . . . ) = (5/1-llX112 7 Xl, X2, . . . ). 

The map T does not have any fixed point on D. In fact, since IIT(x)ll = 1 for all 
x E D, every potential fixed point x must be located on the boundary of D, i.e. x is 
fixed for T only if liXll = 1. This implies T(x) = (o7 x1, . . . ). Combining this result 
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with the equality T(x) = x gives x - O, against the assumption lixil = 1. The 
fixed-point free map T allows us to define the continuous function 

f: D R, f(x)- llx-T(x)ll 

Let us show that the image of f is the open half-line (0.5, oo). 
We already know that lix - T(x)ll > 0 for every x E D. To verify that the 

greatest lower bound (glb) of {lix - T(x)ll: x E D} is O consider the elements 
Xn E D(O, 1) whose entries after the n position are all 0, while the first n are all 
equaltol/4: 

1 1 1 1 1 
Xn = _ _, - , . . ., - -, O, . . . . 

4 4 4 4 4 
Clearly lixnil = 1 and liXn - T(Xn)ll = . Hence the greatest lower bound is 0. 

To see that ||x - T(x)(|l < 2 for every x E D, notice that lix-T(x)ll = 2 re- 
quires ||xil = 1 and x = - T(x), i.e. 

(X1, X2, . . . ) = (O,-X1,-X2, * ' * )¢ 

The above equality implies x = O, a contradiction with lixil - 1. To verify that the 
least upper bound (lub) of {lix-T(x)ll: x E D} is 2 consider the elements Yn whose 
entries after the n position are all 0, while the first n are alternatively equal to 
+ 1/ W: 

x = I' _ _ 1 1 1 ( _ l)n+l _ () A n 5 S 5 v r ^ rS S , ,*- . vn vn vn vn vn 

Then lixn-T(xn)ll = Vt4 - (2/n), which implies that the least upper bound is 2. 
Hence the image of t is the open half-line (0.5, oo). 

It would be nice to have an example which shows that Theorems 1 and 2 fail in 
infinite dimension. So far we have been unable to construct it. 

In the References we mention other contributions (see [5] pg. 19, [6], [8], [9], 
[11]) regarding Rolle's Theorem, the Mean Value Theorem and the Cauchy 
Generalized Mean Value Theorem. They are not directly related to this paper, but 
the reader may find them useful to get a better overview of the work done in this 
area. 

ACKNOWLEDGMENT. We would like to thank the referee for many valuable comments, which have 
greatly improved the paper, and in particular for calling our attention to the result of Sanderson. 
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Reply to CD's 
;'These are indeed exciting times in the wt)rld e f M<lthematics.'7 1 sveuld lik£¢ lo resp(ttd tew thL: '4 I'ale 

of rw<) Ct's" by D<ln Kenneely. "The winds cf ch;ngc are blowing threugh ... tho curriculum t timJ 
sme of us; lecl like thc Frcnch citizenx in the Llte 193()'s that wc might bc bettcr oll withelit serme (lf 
the coming e:hangcs. I am a praclicing msithematician of 1 dazzen years experiencc writing simulsitieene;, 
oplinlizationx, and analyscs; in wireles; and landline telephony, printeel circuit bourd pductivxn <irlinc 
fleet as;signtent, yicid managemcnt, cind maintenance e}elays. I alse) have cnsiderable cSpzisilrG to 
Matheinatice; cducution (w te3nsumer sind prtlLlucer. 

It is apt theat he chee>icx the compact (CD) (1s his analeng (pun tntendcd) fi)r the llCWCSt New Math. 
The CD is truly a triumph (f marketing (scr t£:chnology. 1t is quict and cute, xhiny cind high-tcch. If the 
mcdiunl werc truly digital, then the sound weuldn t be dramatically aItered hy Fvitting a rubber mat on 
top painting the rim green or teversing lhe prong. of thc AC cord. Bw sluflilig lhoux;nelx elf tlollClrs of 
digital signal processors (OSPs) int the xignal path, ciover &ngineer; have surpa!;sed chcap turnt.lblos 
z) the point ztherc the best SlU()UO CD players outperform 5JOU(I tilrntat?le;. Btst vf courscs yeu're 

listening tu the DSPs rather than thc CD. 
Tho.c of us who keep ce?ncert seats year after year in spitc vt the surf;ace nzzise (audience rustlilig) 

:snd clicks £1nd pt)pS (coughs and sneezes) tend aIso tv find ourscives labellcd as 'iczzilectors't and 
"Luddites' £lS we continue to purchase rectwrds. I havc (zver two thousand phs)nengraph records cind <1 
Linn, LOCII, <nd FWK-I lz) play them. The huge sudvzintage of CD over receard i; the kw m.lnufactilring 
ctest which should have brought the cuisumer chcap rccorulings, lzut somch(>w lhis nevcr happenetJ. 

The &elucational anakagy tes "compact'7 sound is a sinsplified curriculm rclying zn tcchnoloLty t} 
replaco the drudgery vf traditicznal teaching methexds. We are offeritlg better high schuel mathematics 
programs than betbre5 alas, to cellege students ands occasionally, te) grauelsito ssludent!i. Keducing 
student involvement in ttlath courses has; falled to attract better Ot' mrc motissited studento ts) our 
cl;sei>;rclems; did s4c really expect it to de so? 

In our Aral,X New K>rld (Aldoux Huxley, 1'932) of pos;t-Moderil cducalionb thL: emphclsis is on 
maintaining the studente;' willingness tzl enmil in our courses and cerme tl3 a>tlr cktsses We musit 
entertain them and we muxtn't v .care them .ltay so machilles de) thoir 4timeses cind gazintas" sind ̂ ;olve 
equalion<. for them and invert matrices br them and even graph functi(ne; fr them. IJoing xible te) 
balance a checkblok wttht)ut a machine is A sen.ve eR+' Pwer (Asimow 1957) in tceday'x M<1them;ltics 
classroom. 

Mathematics is not a spec:tator sport; we learn it by eloing it While my l inear Prengrelmming students 
this fall will learn to use PsMPL modeling language, thoy also will gr£lph polytopes K:nd cr,Clnk out 
Simpiox <>ptimizations hy handb 

Do I suppose Neurtsn would be flattered to see olar students walking a road to disc<)scz2y estienti.ll} 
the same sas hi.S? I (etuinly do. I know Ism {lattered te) see my zawn elisc(3very process (including my 
software) used ten yours kiter to teach new sttidents in cellular mobile telophone systenz enL:incering as 
its t;ucces;s irs pedegogy affirms my own ceznfidence in my knowledge. Ixanc Newtons results are 
cortainly mc)re th£n thirty tirnes as wnrthy zzi posterity as mine and C:<llculus <nd Phvsie:.s xtuaicnts 
should see them his way. 

()lzr Molthem2llict; education and curricillum certainly ccould use a elose of enthusi;csm antl supprt 
from both teacher anel seudents, but I doubt it requires much revision ()mputationl sind display leels 
can enhancc and deepen our insights and czur delight, but we must romcmber thcit student*; lesirn hy 
traveling thc rnad to discovely with their azwn cyes, csirs, ancl limbs and nol ly wtilching machincs ((r 
prck.Ss(rs) do it for them. 
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