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Stimulated hyper-Raman adiabatic passage. II. Static compensation of dynamic Stark shifts

S. Guérin,* L. P. Yatsenko,† T. Halfmann, B. W. Shore,‡ and K. Bergmann
Fachbereich Physik der Universita¨t, 67653 Kaiserslautern, Germany

~Received 11 May 1998!

When one extends the conventional stimulated Raman adiabatic passage method of population transfer;
involving a pump pulse preceded by a Stokes pulse, to situations in which the pump~or pump and Stokes!
interaction involves a two-photon transition, there occur unavoidable dynamic Stark shifts which prevent
maintenance of the relevant resonance conditions. Such shifts can prevent the desired population transfer. We
show, through numerical modeling and analytic considerations, that the detrimental effects of dynamic shifts
can be compensated by a suitable choice of~static! detunings of the carrier frequencies of the two pulses, so
that population transfer can be achieved. We present simple analytic expressions for bounding the range of
detunings for which population transfer can occur, and we present numerical results supporting the simple
picture of the two-step linewidth. We illustrate these remarks by considering specific examples.
@S1050-2947~98!09311-1#

PACS number~s!: 42.50.Hz, 33.80.Be, 42.65.Dr
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I. INTRODUCTION

In a companion paper@1# ~referred to as paper I! we have
presented the basic formalism needed to describe an e
sion of the technique of stimulated Raman adiabatic pass
~STIRAP! @2,3# to a hyper-Raman proces~STIHRAP!. The
extension can be regarded as a (211) or (212) rather than
a (111) process, a notation emphasizing the two-pho
character of the interaction@4#. Here we present model stud
ies to explain the reasons for success or failure of popula
transfer in such schemes.

The conventional STIRAP process for population trans
from state 1 to state 3 makes use of a Stokes pulse~connect-
ing intermediate state 2 with target state 3! followed by a
pump pulse~connecting initial state 1 with state 2!, each of
which induces a single-photon electric-dipole transition. A
though the individual pump and Stokes lasers need no
resonant with the associated transitions, it is important
the two carrier frequencies together should maintain tw
photon resonance with the overall Raman process.

For the extension considered here, the pump~and/or
Stokes! transition is produced by an induced dipole mome
quantified by the product of a polarizability and a pair
electric-field amplitudes~in contrast to the product of a di
pole moment and a single field amplitude which charac
izes the usual coherent excitation interaction!. This hyper-
Raman interaction inescapably introduces not o
transitions between atomic states~parametrized by genera
ized multiphoton Rabi frequencies! but also dynamic~Stark!
shifts of the atomic energies. Because the shifts vary w
time ~as established by the pulse shapes!, it is generally not
possible to maintain resonance conditions between the
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rier frequencies of the pulses and the atomic Bohr frequ
cies. Nevertheless, we demonstrate here with numer
simulation, supported with analytical expressions, that it
possible to achieve the same high degree of population tr
fer with hyper-Raman STIRAP as can be found with t
more customary~single-photon! STIRAP. The key to such
success lies in choosing appropriate values for~static! detun-
ings of the lasers.

As we will emphasize, the presence of static detunin
implies that successful population transfer takes place v
combination of adiabatic and nonadiabatic time evolutio
This requirement stands in contrast to the customary im
sition of adiabatic evolution for resonant (111) STIRAP,
and it requires a more detailed examination of the course
time evolution.

To place the more general problem in context, we fi
review the simpler conventional STIRAP involving thre
states,c1 , c2 , and c3 , linked by two successive interac
tions labeledP ~for pump! and S ~for Stokes!. As is usual,
we assume a so-calledL configuration, wherein the energ
of intermediate statec2 lies above that of the other statesc1
and c3 , but the conclusions hold also for ladder system
The objective of population transfer is to produce a pu
sequence such that the state vectorC(t) has the following
behavior:

C~ t !5H c1 initially ~ t→2`!,

eiwc3 finally ~ t→1`!,
~1!

wherew is a phase. When the pulses are appropriately tim
~Stokes before pump! and simple conditions are fulfilled
~two-photon resonance and large pulse area! they can pro-
duce complete population transfer from the initial statec1 to
the target final statec3 .

As noted in paper I, the simplest implementations of t
excitation mechanism are described by a rotating-wave
proximation~RWA! Hamiltonian whereby each pulse is a
sociated with the Hamiltonian interaction between only o
pair of states, as diagrammed in Fig. 1~a! in paper I. We will
discuss an extension in which the pump transition is p
duced by a two-photon transition, as diagrammed in Fig. 1~b!
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4692 PRA 58S. GUÉRIN et al.
of paper I or in which both pump and Stokes transitions
by such transitions, as shown in Fig. 1~c! ~paper I!.

II. THE BASIC „111… STIRAP

A. The „111… Hamiltonian

Upon defining a pair of single-step laser detuningsDP and
DS for the carrier frequenciesvP andvS from their assigned
Bohr transition frequencies,\DP[(E22E1)2\vP , \DS
[(E22E3)2\vS , a two-step detuningd[DP2DS , and
the accumulated one-step detuningD[DP1DS , we can
write the basic three-state RWA Hamiltonian matrix as

H~ t !5
\

2 F 2d VP~ t ! 0

VP~ t ! D VS~ t !

0 VS~ t ! d
G . ~2!

In conventional STIRAP the parameterd measures the de
parture from two-photon resonance. To allow hyper-Ram
processes we refer here tod as a two-step detuning. For th
usual STIRAP the Rabi frequenciesVP(t) and VS(t) are
products of dipole moments and electric field envelopes,

\VP~ t !52d12EP~ t !,
~3!

\VS~ t !52d32ES~ t !,

where

uEP~ t !u25~2/ce0!I P~ t !,

uES~ t !u25~2/ce0!I S~ t !.

Although it is simplest, and customary, to assume that
laser carrier frequencies are chosen to maintain two-pho
resonance,d50, such an assumption is inapplicable to t
more general hyper-Raman interaction to be considered h
In preparation for the necessity of including nonzero det
ing for the more general (212) or (211) case, we will
point out consequences of detuning in the simpler (111)
case~see@5#!.

B. The pulses

The interactions of interest comprise two pulses, the fi
of which is the Stokes and the second, acting later, is
pump. We take these to have common peak values by w
ing the pump and Stokes Rabi frequencies as

VS~ t !5Vmaxf ~ t !, VP~ t !5Vmaxf ~ t2tP! ~4!

thereby defining the time delaytP of the pump pulse with
respect to the earlier Stokes pulse. In what follows, we w
require thatf (t) has a unit peak value, and we express
elements of the RWA Hamiltonian in terms of the peak R
frequencyVmax.

Because the Rabi frequencies represent pulses, they
vanish at least in the limit of very distant past and future

V j~2`!→0, V j~1`!→0 ~ j 5P,S!. ~5!
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III. ADIABATIC EVOLUTION

The direct numerical integration of the Schro¨dinger equa-
tion with the Hamiltonian of Eq.~2! poses no great difficulty.
However, to understand the interplay of parameter choi
and population transfer it is necessary to rely on a numbe
analytic tools related to the notions of adiabatic and diab
time evolution. The following paragraphs present a cons
tent set of definitions of the needed tools.

A. Diabatic states

By deleting the off-diagonal elements of any Hamiltoni
~the couplings between basis states!, one obtains adiabatic
Hamiltonian, whose~diagonal! elements providediabatic en-
ergiesmn(t). The basis states themselves provide the eig
vectors of the diabatic Hamiltonian~diabatic states!. For the
present example, lacking dynamic Stark shifts, the th
~constant! diabatic energies and eigenstates are

$m152d/2,c1%, $m25D,c2%, $m351d/2,c3%.

These are also eigenvalues and eigenstates for the
Hamiltonian before and after the pulse sequence. When
pulses are absent, and there is no degeneracy, the prob
ties

Pn~ t ![ z^cnuC~ t !& z2 ~6!

will not change. The objective of the pulse sequence is, st
ing from the conditionP1(2`)51, to make the population
transfer efficiencyP3(`) as close to unity as possible.

The labels 1, 2, and 3 here identify the original atom
basis statescn , defined such thatc1 is the initial state and
c3 is the final state. The ordering of the diabatic eigenvalu
depends on the values of the detunings. Ford.0, the diaba-
tic energy ofc1 lies below that ofc3 .

B. Adiabatic states

As is evident from the meaning of the acronym STIRA
adiabatic evolution plays a central role in the STIRA
mechanism for population transfer. However, whereas co
pletely adiabatic evolution offers a satisfactory proced
when there are no dynamic Stark shifts and the resona
conditiond50 holds, it does not always produce satisfacto
population transfer when dynamic shifts occur~see Sec.
III C !. Thus it is necessary to consider deviations from fu
adiabatic evolution.

To describe adiabatic evolution we define, at each timt,
a set of~three! eigenstatesFn(t) of the instantaneous RWA
HamiltonianH(t),

@H~ t !2\Ãn~ t !#Fn~ t !50 ~n51,2,3!. ~7!

These are known as ‘‘dressed states’’ or ‘‘adiabatic state
and the eigenvalues\Ãn(t) are known as ‘‘dressed ene
gies’’ or ‘‘adiabatic eigenvalues’’@hereÃn(t) denotes a fre-
quency#. It proves useful to refer to the three numerical va
ues as top, middle, and bottom, thereby indicating
ranking in value.

We assign the labels 1, 2, and 3 on dressed states
requiring that initially, prior to the arrival of pulses, the adi
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batic stateFn(t) should coincide with the diabatic statecn ,
and thereafter the relative order of adiabatic eigenval
should remain unchanged@i.e., if statec1 has the lowest
diabatic energy initially, then at all times the adiabatic st
F1(t) is the state having lowest adiabatic energy#. With this
definition, different adiabatic energy curves can touch~be
degenerate! but cannot cross. We consider smooth pulses, s
that a plot of any of the three adiabatic eigenvalues a
function of time will be a continuous curve.

In general, the state vectorC(t), which is the solution of
a differential equation, is not a single adiabatic state, but
expressible at any time as some combination of the adiab
statesFn(t) appropriate to that timet,

C~ t !5(
n

Bn~ t !Fn~ t !. ~8!

In special cases~these are of particular interest! the state
vectorC(t) may be very nearly a single adiabatic state.

The usefulness of adiabatic states originates from the
lowing property: if at some timet the system is known to be
in the adiabatic stateFn(t) associated with thenth eigen-
value, and if the Hamiltonian varies sufficiently slowly an
no dressed-state degeneracies occur, then the system w
found at subsequent times in the adiabatic state assoc
with this same eigenvalue~i.e., the evolution is adiabatic!.
This property provides a clear prescription for predicti
time evolution, and thus plots of eigenvalues versus time
valuable tools for predicting population transfer.

If there occurs a near degeneracy of adiabatic eigenva
at time t0 , then a given pulse sequence may not be su
ciently slow to allow adiabatic evolution in any small tim
interval includingt0 . In the limit of rapid evolution~or exact
degeneracy of adiabatic eigenvalues! the state vectorC(t)
remains in a fixed superposition of basis states~the evolution
is diabatic! at t0 . This necessarily entails a change in t
dressed-state composition ofC(t) following t0 . When the
adiabatic eigenvalues are exactly degenerate, then dia
evolution pastt0 is guaranteed, with a consequent change
the label of the adiabatic curve associated withC(t) for t
,t0 and t.t0 .

C. Adiabatic conditions

Complete ~or nearly complete! population transfer be
tween basis states can occur in several ways. One possi
is that the evolution be adiabatic at all times. This condit
means that the adiabatic eigenvalueÃ1(t), which initially
~at t→2`) coincides with the diabatic eigenvaluem15
2d/2, must at final times~at t→1`) coincide with the
diabatic eigenvaluem351d/2. Because adiabatic eigenva
ues must maintain a fixed ordering, such a connection
possible only if there is degeneracy of the diabatic energ
i.e., d50. Therefore, when static detuning is presentd
Þ0) it is not possible to have good population transfer wi
out some time interval~s! ~however brief! during which the
evolution is not adiabatic@5,6#.

The conditions for adiabatic evolution can be understo
from the time-dependent Schro¨dinger equation expressed
terms of the dressed-state amplitudesBn(t),
s
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dt
Bn~ t !52 iÃn~ t !Bn~ t !2(

m
K Fn~ t !U d

dt
Fm~ t !L Bm~ t !.

~9!

For the amplitudeBn(t) to remain unchanged in magnitud
it is necessary that the separation of eigenvalueÃn(t) from
the nearest values be much larger than any of the
diagonal diabatic coupling terms^Fn(t)u(d/dt)Fm(t)& con-
nected with this dressed state. The adiabatic requirem
means, rather roughly, that the pulse areasAj

[*2`
` dtV j (t) of pump and Stokes pulses should be mu

larger than unity,AP@1, AS@1 @2,8,3#.

D. Pulse pairs

To design useful pulse sequences in the presence of
namic shifts, it is necessary to consider the various poss
ways in which the required nonadiabatic interval~s! can oc-
cur. The requirements can be seen most clearly if we c
sider pulses of finite support~i.e., pulses which vanish iden
tically outside a finite time interval!. We use half the period
of a squared trig function, specifically

f ~ t !5H sin2~pt/t! for 0,t,t,

0 otherwise.
~10!

This function has the desirable property that the time deri
tive vanishes at the endpoints~thereby avoiding numerica
artifacts associated with abrupt changes!. The functionf (t)
has a pulse area*dt f(t) equal tot/2. The full width at half
maximum of f (t)2 is 0.364t. Figure 1 sketches this se
quence.

In later sections~see Sec. V! we discuss Rabi frequencie
which originate with a two-photon transition. For a give
time-dependent intensity profileI (t), the two-photon inter-
action produces a narrower profile of the pulsed Rabi f
quency than does a one-photon interaction. Figure 1 disp
this difference.

FIG. 1. Relative Rabi frequencies vs time showing Stokes pu
(S) preceding pump pulse (P). Full lines show one-photon Rab
frequenciesVP(t) andVS(t); dashed lines show two-photon Ra

frequenciesṼP(t) and ṼS(t). The peak values occur at timestMS

and tM P . The pulses overlap between timest0P and t0S .
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4694 PRA 58S. GUÉRIN et al.
Although such finite-support pulses are convenient
theoretical analysis, we will also present examples of
commonly assumed Gaussian pulse, and will point out
consequence of having nonzero~albeit small! amplitudes of
both pulses at all times.

It proves convenient to denote byt0P the start of the pulse
overlap~the instant when the pump pulse begins! and byt0S
the cessation of the pulse overlap~when the Stokes puls
terminates!. These instants delimit the interval when bo
pulses act. We denote bytM P and tMS the times when the
pump and Stokes pulses, respectively, reach their maxim
value ~see Fig. 1!.

Because the Stokes pulse has no direct action~within the
RWA! on the initial statec1 , the shape ofVS(t) prior to the
arrival of the pump pulseVP(t) has no effect upon the popu
lation which resides there. As long as the Stokes pulse d
not violate the conditions which allow the RWA, we nee
not be concerned with whether the pulse, once started, al
adiabatic evolution: at an infinitesimal time prior to the a
rival of the pump pulse, the system is in the initial statec1 .
Similarly, we need not follow the subsequent time evoluti
once the Stokes pulse ceases~assuming only that the RWA
applies.! If population transfer has occurred, the terminati
of the Stokes pulse will find the state vector in statec3 .

One might guess that satisfactory population trans
would occur if the needed nonadiabatic evolution occurs
ther prior to or after the interval of pulse overlap, and th
during the overlap interval the evolution remained adiaba
Although this is a useful proposal in the limit of very lon
interaction times, it is excessively restrictive for pulses
moderate pulse area~say areas as large as several hundre!.
To treat realistic pulses, it is necessary to allow some n
adiabatic evolution during the pulse overlap.

IV. DETUNING SENSITIVITY OF „111… STIRAP

The sensitivity of population transfer to the two-step d
tuning d has been analyzed by Danileikoet al. @5# to obtain
expressions for a two-photon linewidth. Here we extend th
ideas, first for the conventional (111) STIRAP and then for
(212) and (211) STIHRAP. Initial discussion of the (1
11) process is needed to define the tools used in subseq
analysis, and to demonstrate their use in the simpler c
where dynamic Stark shifts are negligible.

When d vanishes there exists an adiabatic state with
desired property of providing a continuous connection
tween statec1 and c3 . As we shall show, it is possible t
achieve good population transfer whend, though not exactly
zero, lies within some bounds~the two-step linewidth lies
within these limits@5#!. To obtain a simple approximate e
timate of the range of parameters for which successful po
lation transfer is possible, we first examine a simple vers
of the general multilevel ‘‘connectivity’’ problem considere
by Martin et al. @6#. We then modify these results to includ
dynamic Stark shifts.

A. Semidiabatic eigenvalues

We study the evolution ofC(t) by considering separatel
the action of each laser pulse. For this purpose we de
semidiabaticHamiltonians. The Stokes semidiabatic Ham
r
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tonian, H(S)(t), is constructed by omitting the pump cou
pling between basis statesc1 and c2 . The pump semidia-
batic Hamiltonian,H(P)(t), is constructed by omitting the
Stokes coupling between basis statesc2 and c3 . The two
semidiabatic Hamiltonians are

H~S!~ t !5
\

2 F 2d 0 0

0 D VS~ t !

0 VS~ t ! 1d
G ,

~11!

H~P!~ t !5
\

2 F 2d VP~ t ! 0

VP~ t ! D 0

0 0 1d
G .

We denote the respective eigenvectors asFn
(S)(t) and

Fn
(P)(t). It is instructive to consider plots of semidiabat

eigenvalues, obtained by diagonalizing those Hamiltonia
The Stokes semidiabatic eigenvalues, obtained from the
pressions

2Ã1
~S!52d, ~12a!

4Ã2
~S!~ t !5d1D2Aud2Du214uVS~ t !u2, ~12b!

4Ã3
~S!~ t !5d1D1Aud2Du214uVS~ t !u2, ~12c!

include coupling~by the Stokes interaction! between states
c2 and c3 . We refer to these semidiabatic curves by t
labels (1S), (2S), and (3S). The pump semidiabatic eigen
values, obtained from the formulas

4Ã1
~P!~ t !52d1D2Aud1Du214uVP~ t !u2, ~13a!

4Ã2
~P!~ t !52d1D1Aud1Du214uVP~ t !u2, ~13b!

2Ã3
~P!5d, ~13c!

include coupling~by the pump interaction! between statesc2
andc1 . We refer to these semidiabatic curves by the lab
(1P), (2P), and (3P).

B. Eigenvalue curves

Figure 2 presents examples of the various eigenva
plotted against time: Here vertical lines mark the bounda
(t0P and t0S) of the pulse-overlap region. On the left of th
adiabatic-eigenvalue diagram, an arrowhead marks statec1 ,
where population initially resides. An arrowhead on the rig
marks the target statec3 . The first row shows Stokes se
midiabatic curves, the second row shows pump semidiab
curves. The lowest row shows adiabatic curves. In e
frame the curves bear labels 1, 2, and 3 to identify
asymptotic states to which they correspond. The three
umns are distinguished by three different examples of st
detunings, as obtained by three choices of carrier frequ
cies. There are no dynamic Stark shifts present in th
cases. Each of the crossings of a semidiabatic eigenvalue
a counterpart in a touching or an avoided crossing of
adiabatic curve.
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The three examples have been chosen to illustrate t
generic possibilities for the diabatic transition needed
achieve the change in the dressed-state composition ofC(t)
from F1(t) to F3(t), as can be seen from the adiaba
curves in the bottom row. For the first column, there occ
an early diabatic transition fromF1(t) to F3(t). This occurs
prior to the arrival of the Stokes pulse. After this crossin
adiabatic evolution carries the system to the desired con
sion, with population in statec3 . The second example, i
column 2, involves a similar transitionF1(t)→F3(t), but in
this case it is at the end of the pulse sequence, when only
pump pulse is present. The third example, in the right-h
column, requires an early dressed-state transitionF1(t)
→F2(t) prior to the arrival of the pump pulse, followed b
a late transitionF2(t)→F3(t) after the cessation of th
Stokes pulse.

Each of these examples shows a process in which a ch
of static detuning can make possible successful popula
transfer. As can be appreciated, different choices of de
ings lead to qualitatively different topologies of adiaba
curves, and hence of distinct mechanisms for popula
transfer. Analysis of generic properties of eigenvalue cur
is an important step in determining the range of detuni
which will allow population transfer and, when dynam
Stark shifts are present, in selecting suitable static detun
with which to ~partially! compensate the otherwise detrime
tal dynamic shifts.

C. Connectivity

There are several possible approaches to defining the
ditions which are conducive to producing good populat

FIG. 2. Examples of eigenvalues~units of Vmax) vs time ~units
of t! for three detunings: (A) d520.1Vmax, D521.5Vmax, (B)
d50.1Vmax, D51.5Vmax, and (C) d520.25Vmax, D50 ~note
the different ordinate!. First row: Stokes semidiabatic curves. Se
ond row: Pump semidiabatic curves. Third row: Adiabatic curv
Numbers on curves show basis state associated with asymp
eigenvalue. Arrowheads mark the start and end of successful p
lation transfer.
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transfer. One procedure, which we termfull-overlap connec-
tivity, requires that the evolution be strictly adiabatic duri
the entire interval of pulse overlap. Although this requir
ment correctly describes conditions in the limit of pulses
infinite area, it is overly restrictive for pulses of modera
area. A second possibility, which we termpeak-to-peak con-
nectivity, is less restrictive, and allows intervals of diaba
evolution when both pulses are present: adiabaticity is
quired only during the time between pulse maxima. Bo
approaches make use of semidiabatic eigenvalues to sug
bounds on the detunings. The differences between the
criteria become pronounced only when there occur dyna
Stark shifts.

1. Full-overlap connectivity

For pulses of finite support, a given delay timetP fixes
two particular times:t0P when the pump laser starts, andt0S
when the Stokes laser just ceases~see Fig. 1!. At these times,
the Rabi frequencies have the valuesV0S[VS(t0P) and
V0P[VP(t0S). Between these times both pulses are pres
and there can occur no~exact! degeneracies of dressed-sta
eigenvalues. Thus it is possible, by using pulses of su
ciently large area, to have adiabatic evolution between th
two times. By full-overlap connectivitywe mean that the
adiabatic eigenvalue curve which begins~at t5t0P) as (1S)
later becomes~at t5t0S) the curve (3P). To determine the
possibility of connecting (1S) with (3P), we must examine
~as did the work of Martinet al. @6,7#! the ordered relations
among the adiabatic eigenvalues at the respective ends o
interval. These are the early semidiabatic eigenval
Ãn

(S)(t0P) and the late semidiabatic eigenvaluesÃn
(P)(t0S).

In the absence of Stark shifts, the desired connectivity occ
only when (1S) and (3P) are themiddleeigenvalues. These
conditions ~called internal connectivity!, taken with Eqs.
~12c! and ~13c!, lead to the following pair of constraints:

2D2AuDu212uV0Su2<2d<2D1AuDu212uV0Su2,
~14a!

1D2AuDu212uV0Pu2<2d<1D1AuDu212uV0Pu2.
~14b!

When static detuningsD andd fulfill these conditions, then
adiabatic evolution is possible between the stateF1

(S)(t) at
time t0P and the target stateF3

(P)(t) at timet0S . The desired
population transfer occurs with the aid of an instantane
diabatic evolution prior tot0P or after t0S .

In the parameter space defined by axesD andd, the region
of full-overlap connectivity is bounded by the four branch
of two hyperbolas. When there are no dynamic Stark sh
the boundaries are, as can be deduced from Eq.~14!,

D52d1
uV0Su2

2d
~using t5t0S! ~15a!

for the Stokes curveF(S),

D5d2
uV0Pu2

2d
~using t5t0P! ~15b!

for the pump curveF(P).

.
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u-



a
er

s
ls
e
th
in
a

ur
he

r
o
a

ke
o

n

led
the

dia-

ur
cri-

s

by

t
he
to

las
of

r
p

.

e
tion
est
best
all

ong
l of

lap
ia-
atic

of
lse

n-

k
-

-
o-

l

te

4696 PRA 58S. GUÉRIN et al.
The conditions that (1S) and (3P) be middle eigenvalues
at the ends of the pulse overlap interval mean that adiab
connectivity occurs within the region bounded by the hyp
bolas of Eq.~15!. Figure 3 displays these hyperbolas.

2. Peak-to-peak connectivity

With pulses of finite support it is often found that the be
population transfer occurs when the start of the pump pu
at t5t0P , occurs slightly before the moment of peak Stok
pulse, att5tMS , and the Stokes pulse terminates after
pump pulse reaches its peak value. With such pulse tim
there occur early and late intervals when one pulse is we
during which the needed nonadiabatic evolution can occ

The requirement for strictly adiabatic evolution during t
entire overlap interval (t0P ,t0S) thus turns out to be more
restrictive than is needed, and we therefore conside
smaller time interval. If there is to occur an intersection
Stokes semidiabatic curves~a necessity if there is to be
diabatic interval prior to the start of the pump pulse!, then
this must occur no later than the moment when the Sto
pulse is largest. Similarly, if there is to occur a crossing
pump semidiabatic curves~for diabatic evolution after the
end of the Stokes pulse!, then this must occur no earlier tha

FIG. 3. ~a! Connectivity hyperbolas bounding regions of co
nectivity for (111) STIRAP ~no dynamic Stark shifts! as a func-
tion of two-step detuningd and one-step detuningD ~detunings in
units of peak Rabi frequencyVmax). Dashed lines: peak-to-pea
connectivity hyperbolaP(P) for pump; dot-dashed lines: peak-to
peak connectivity hyperbolaP(S) for Stokes; circles: full-overlap
connectivity hyperbolaF(P) for pump; plus marks: full-overlap con
nectivity hyperbolaF(S) for Stokes. The hyperbolas are shown t
gether with contours of constant transfer efficiencyP3(`) as a
function of two-step detuningd and one-step detuningD, obtained
by numerical solution of the Schro¨dinger equation. The numerica
simulations are produced for a large pulse areaVmaxt5100 and for
the delaytd533. Note that efficiencies above 98% are in whi
Dotted linesX andY mark slices plotted in frame~c!. ~b! Transfer
efficiency P3(`) vs normalized two-step detuningd/Vmax for D
50 (X) andd/Vmax522.0 (Y), see dotted lines in frame~a!.
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the moment when the pump pulse is largest. We are thus
to require that strict adiabatic evolution occurs between
time tMS of the maximum Stokes pulse and the timetM P of
the maximum pump pulse, and that there should be an a
batic connection~peak-to-peak connectivity! between the
dressed states which asymptotically become statesc1 and
c3 . We will show that good population transfer can occ
under these less severe requirements. Although the two
teria are similar for (111) STIRAP, the distinction become
significant for (211) STIHRAP, as we will see.

The peak-to-peak connectivity region is bounded
branches of the hyperbolas,

D52d1
uVmaxu2

2d
~using t5tMS! ~16a!

for the Stokes curveP(S),

D5d2
uVmaxu2

2d
~using t5tM P! ~16b!

for the pump curveP(P). Within this region, even modes
pulse areas may suffice to maintain adiabatic evolution. T
needed interval of non- adiabatic evolution is now allowed
occur when both pulses are present~but one is weak!.

Figure 3~a! shows the region bounded by the hyperbo
of Eqs.~16!. For comparison, it also shows the hyperbolas
Eqs. ~15!, for t5100 andtP50.33t. The two hyperbolas
are quite close~they would be identical iftP50.5t). As can
be seen from Eq.~16b!, limiting cases of the bounding
curves are

the bound ofu2du is uVmaxu for uDu→0,

the bound ofu2du is uVmaxu2/D for uDu→`.

It can be seen~and is intuitively obvious! that the largest
range of two-step detuningsd occurs whenD50, meaning
that DP52DS . The range ofd which gives good transfe
then is set byVmax ~i.e., transfer is affected by single-ste
power broadening!. When two-step detuningd is zero, then
any single-step detuningD allows an adiabatic connection
Conversely, for large single-step detunings~of the same
signs!, population transfer is only possible whend is very
close to zero.

D. Choosing the delay

The choice of delay is important for minimizing th
power of the lasers needed to achieve complete popula
transfer for given detunings. In order to have the larg
separation between adiabatic eigenvalues, and hence the
chance for adiabatic evolution, this delay should be as sm
as possible. However, this need for strong coupling am
basis states is balanced by the need to have an interva
diabatic evolution at the start or end of the pulse-over
interval ~i.e., close to the beginning for the Stokes semid
batic diagram and close to the end for the pump semidiab
diagram!.

When the delay is half the pulse length, then the times
pulse maxima coincide with the start or end of the pu
overlap,t0P5tMS andt0S5tM P . There is then no distinction

.
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between the two criteria we have proposed for establish
intervals of adiabatic evolution. Shorter delay will improv
the transfer efficiency for a given pulse area and peak va
We find, from numerical simulation with pulse areas
Vmaxt/2550, that the largest two-step width for a give
power is obtained for delay in the range of approximately
to 0.4 of the pulse length. We also find that, for any delay
the range of 0.3 to 0.4 of the pulse length, the hyperbola
the peak-to-peak connectivity always give satisfact
boundaries for population transfer, in the sense that for
tuning values outside this connectivity region there is lit
likelihood of population transfer, and that the highest pop
lation transfer occurs for detunings within this region.

E. Numerical results

Given reliable values for atomic parameters~dipole mo-
ments and polarizabilities! and pulses, it is, in principle, a
straightforward procedure to obtain numerical solutions
the time-dependent Schro¨dinger equation. By producing
many such numerical solutions for a range of the static
tunings D and d, one can view the general dependence
population transfer upon these controllable parameters.

Figure 3~a! presents an example of this dependen
shown as a set of contour lines of constant population tra
fer P3(`) in the parameter space ofD andd. These numeri-
cal simulations use the sine-squared pulses of Eq.~10! with
pulse areasVmaxt/2550 and delaytP5t/3. As would be
expected, population transfer is high along a ridge~in param-
eter space! where two-photon resonance occurs,d50. For
any d, the highest population transfer occurs for the cho
D50, making first-step detuning resonant. As can be se
the contours follow closely the various hyperbolas, eith
those deduced from the requirement of full-interval conn
tivity, Eq. ~15!, or those deduced from the requirement
peak-to-peak connectivity, Eq.~16!. The former give slightly
tighter bounds on the detunings.~As will be noted, the two
sets of hyperbolas have greater differences when there
dynamic Stark shifts present.!

The bottom frame Fig. 3~b! shows plots of transfer effi
ciencyP3(`) vs two-step detuningd, for two choices ofD.
The two-photon linewidth, defined as the full width at ha
maximum of such a curve, lies within the bounds given
the hyperbolas.

The results presented in this figure are for the pulse a
of 50. As the area grows larger, the contours become stee
In the limit of infinite pulse area the full-overlap parabol
serve as the boundaries between transfer efficiencies of u
~within the enclosed region! and zero.

F. Power broadening

The connectivity area has been plotted for normaliz
variables, detunings divided by the peak Rabi freque
Vmax. This means, for example, that a doubling of the pe
Rabi frequency~by increasing the laser power! will double
the range of detunings which will produce a given populat
transfer. When there are no dynamic Stark shifts, so that
best population transfer occurs for the resonance cond
d50, the increased range ofd can be understood as pow
broadening of the two-photon linewidth. However, wh
there are dynamic shifts, and one overcomes these by s
g
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detunings, then a doubling of peak Rabi frequency a
doubles the two required static detunings needed to prod
the best population transfer. In such cases the notion
two-photon linewidth loses usefulness.

V. THE HYPER-RAMAN STIHRAP

We study here the extension of STIRAP in which one~or
both! Rabi frequency is produced by a two-photon transitio
as described in paper I. We will show that although t
conventional (111) STIRAP process achieves the highe
transfer efficiency when the two-step resonance conditiod
50 holds, this choice is not the best when dynamic St
shifts are present, as is inevitable with a hyper-Raman p
cess~STIHRAP!.

A. The „212… Hamiltonian

As discussed in paper I, the RWA Hamiltonian for th
hyper-Raman (212) STIHRAP can be written

H~ t !5
\

2F 2 d̃~ t ! ṼP~ t ! 0

ṼP~ t ! D̃P~ t !1D̃S~ t ! ṼS~ t !

0 ṼS~ t ! d̃~ t !

G . ~17!

In place of the simple product of dipole and field amplitud
that characterizes the interactions of basic STIRAP, the t
photon Rabi frequency requires the product of a polariza
ity matrix element and a pair of field amplitudes@i.e., the
intensityI P(t)#. For linear polarization~along thez axis! the
formulas read

\ṼP~ t !52
1

2ce0
^1uazz~vP!u2&I P~ t !,

~18!

\ṼS~ t !52
1

2ce0
^2uazz~vS!u3&I S~ t !.

Note that because the interaction is proportional to the squ
of the electric field amplitude, the associated Rabi freque
has a more sharply peaked pulse shape than is the cas
ordinary STIRAP~Rabi frequencies have narrower width
for the given peak value; see Fig. 1!.

The definition of the static detunings becomes that o
two-photon transition

\DP[~E22E1!22\vP , \DS[~E22E3!22\vS .
~19!

In place of the static diagonal elements of the RWA Ham
tonian, there now occur dynamically shifted single-step
tunings

D̃P~ t !5DP1@S2S~ t !1S2P~ t !#2@S1S~ t !1S1P~ t !#,
~20!

D̃S~ t !5DS1@S2S~ t !1S2P~ t !#2@S3S~ t !1S3P~ t !# ~21!

and a dynamically shifted two-step detuning
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d̃~ t !5DP2DS1@S3S~ t !1S3P~ t !#2@S1S~ t !1S1P~ t !#.
~22!

Like the two-photon Rabi frequency, the dynamic shi
are proportional to the product of an atomic polarizabil
and a field intensity. When computing shifts it is important
consider the effect ofeach field upon each transition, i.e.,
both the Stokes laser and the pump laser cause shifts of
the initial and final level. We denote the shift in energy
statei caused by pulsea at timet as\Sia(t). This shift can
be computed from appropriate componentsazz(v) of the
frequency-dependent polarizability tensor and the intens

\Sia~ t !52
1

2ce0
^ i uazz~va!u i &I a~ t !

~a5P,S; i 51,2,3!. ~23!

Figure 1~c! of paper I diagrams the relevant transitions f
(212) STIHRAP.

The hyper-Raman Hamiltonian matrix has the same
mal expression as the matrix~2! for (111) STIRAP. It is
only necessary to make the substitutionsD→D1sa

(D)(t) and
d→d1sa

(d)(t) where the dynamic shifts are collected in
two terms~herea is eitherS or P),

sa
~D!~ t !5@S1a~ t !2S2a~ t !#1@S3a~ t !2S2a~ t !#,

~24!
sa

~d!~ t !5S1a~ t !2S3a~ t !.

The influence of the dynamic Stark shifts is studied by us
the same tools as developed in Sec. IV.

B. The „211… Hamiltonian

In paper I we considered examples of hyper-Ram
STIHRAP in which the pump transition takes place via
two-photon transition, but the Stokes interaction remains
conventional one-photon transition@see Fig. 1~b! in paper I#.
The resulting (211) hyper-Raman RWA Hamiltonian ca
be written

H~ t !5
\

2F 2 d̃~ t ! ṼP~ t ! 0

ṼP~ t ! D̃P~ t !1D̃S~ t ! VS~ t !

0 VS~ t ! d̃~ t !

G . ~25!

This expression is a variant of Eq.~17!, but with VS(t) in
place ofṼS(t) and with dynamic detunings defined as

D̃P~ t !5DP1S2P~ t !2S1P~ t !, ~26!

D̃S~ t !5DS1S2P~ t !2S3P~ t ! ~27!

with \DS5E22E32\vS and\DP5E22E122\vP . Thus
the dynamic Stark shifts are induced only by the pump fi
~through the two-photon process!, meaning that we se
sS

(d)(t)[sS
(D)(t)[0. This is the Hamiltonian we shall use i

numerical examples.
th
f

,

r-

g

n

e

d

VI. DETUNING SENSITIVITY
OF HYPER-RAMAN STIHRAP

A. Connectivity regions

As in Sec. IV, we analyze the system with the semid
batic eigenvalues, first when only the Stokes laser acts,
second when only the pump laser acts. The region of f
overlap connectivity is bounded by the four branches of t
hyperbolas, which now read

D2sS
~D!52~d2sS

~d!!1
uV0Su2

2~d2sS
~d!!

~using t5t0P)

~28a!

for the Stokes curveF̃(S),

D2sP
~D!5~d2sP

~d!!2
uV0Su2

2~d2sP
~d!!

~using t5t0S)

~28b!

for the pump curveF̃(P). The regions of peak-to-peak con
nectivity are now defined by the hyperbolas

D2sS
~D!52~d2sS

~d!!1
uVmaxu2

2~d2sS
~d!!

~using t5tMS)

~29a!

for the Stokes curveP̃(S),

D2sP
~D!5~d2sP

~d!!2
uVmaxu2

2~d2sP
~d!!

~using t5tM P)

~29b!

for the pump curveP̃(P). Because the Hamiltonian~25! is
unchanged, apart from an irrelevant sign, under the trans
mation ~herea5S,P)

sa
~d!→2sa

~d! , sa
~D!→2sa

~D! , D→2D, d→2d,
~30!

the study of all the generic situations is reduced to the st
of the cases involving positivesa

(d) and positivesa
(D) ~same-

sign shifts! or positives(d) and negativesa
(D) ~opposing-sign

shifts!. The casessa
(d),0 are deduced from the previou

ones by applying the transformationsa
(D)→2sa

(D) , D→
2D, andd→2d.

The effect of the dynamic Stark shifts, entering the eq
tions as values ofsa

(D)(t) andsa
(d)(t) at specific times, is to

offset the hyperbolas from the positions they occupy in
absence of dynamic shifts. When the hyperbolas are offse
this way, there occur new options for connectivity. Spec
cally, in addition to the internal semidiabatic connectivi
already described for the (111) STIRAP, it becomes pos
sible to have semidiabatic connectivity if the eigenvalu
Ã1

(S) andÃ3
(P) are either the top or the bottom values. The

are two possibilities for such anexternal connectivity region.
First, curves (S1) at t5tMS and (P3) at t5tM P are each the
bottom eigenvalues. This condition is satisfied in a param
region defined by the intersection of the right outside of
Stokes hyperbolaP̃(S) with the left outside of the pump hy
perbola P̃(P). Alternatively, curves (S1) at t5tMS and
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(P3) at t5tM P are each the top eigenvalues. This conditi
means the intersection of the left outside of the Stokes
perbola with the right outside of the pump hyperbola. No
that for given Stark shifts, neither of these conditions c
hold for the same set of parameters~i.e., on the same dia
gram!. It is significant that the two-step resonance condit
d50 never permits adiabatic connectivity with the
external-connectivity conditions.

Figure 4 shows examples of the connectivity regio
~hashed areas! defined by the semidiabatic hyperbolas, f
several choices of the dynamic Stark shifts of (211)
STIRAP. We assume that shifts arise only from the pu
pulse, and we denotes(d)[sP

(d) , s(D)[sP
(D) .

Frame (A0), center left, repeats the case of Fig. 3, wh
the Stark shifts are negligible. The columns (A), (B), and

FIG. 4. Connectivity hyperbolas and regions~hashed! of peak-
to-peak connectivity for (211) STIHRAP ~with dynamic Stark
shifts! as a function of two-step detuningd and one-step detuningD
~detunings in units of peak Rabi frequencyVmax). The various
frames differ in the Stark shiftss(D) ands(d). The column label (A)
holds for s(d)50, (B) for s(d)50.5Vmax, and (C) for s(d)

52Vmax; the row label ~0! holds for s(D)50, ~2! for s(D)5
2Vmax, and~1! for s(D)54Vmax.

TABLE I. Values of the Stark shifts (s(D),s(d)) in units ofVmax

for Fig. 4.

A B C

~1! ~4,0! ~4,0.5! ~4,2!
~0! ~0,0! ~0,0.5! ~0,2!
~2! (21,0) (21,0.5) (21,2)
y-
e
n

n

s

p

e

(C) take increasing values of the shift parameters(d), while
the rows~1!, ~0!, and ~2! take positive, null, and negativ
values for the shift parameters(D). In the top row the Stark
shifts s(d) ands(D) have the same signs, while in the botto
row the two shifts have opposite signs. Table I gives expl
values.

As can be seen, the presence of dynamic Stark sh
causes the bounded region to separate into two nonove
ping regions, one including large positive values ofD and the
other including large negative values. There is no symme
between positive and negativeD, nor is the border exactly a
D50. For anys(d) the widths of the hashed regions increa
with increasing shifts(D).

In presenting Fig. 4, we have assumed that shifts a
only from the pump pulse. The graph can be used also w
the shifts are induced by the Stokes pulse, after making
transformationd→2d and s(d)→2sS

(d) . That is, one must
reflect the individual frames aroundd50 ~and consider then
sS

(d),0).
For the (212) STIHRAP, shifts can arise from bot

pump and Stokes pulses. This produces the same frame
Fig. 4 in the new coordinate systemd→d1sS

(d) andD→D
1sS

(D) , the relative shifts for the pump hyperbolas becomi
(sP

(d)2sS
(d) , sP

(D)2sS
(D)) in this coordinate system.

B. Stark compensation

The occurrence of dynamic Stark shifts produces tim
dependent two-step detunings which make population tra
fer difficult. It is possible to choose static detunings whi
overcome the deleterious effects of the dynamic detunin
In that sense, the static shifts provide a partial compensa
for the dynamic Stark shifts.

It is instructive to rewrite the conditions of internal con
nectivity @bounded by the four branches of hyperbolas~29!#
as

~S3S2S1S1d!1S S2S2S1S1
d1D

2 D,
uVmaxu2

4

~using t5tMS!, ~31a!

~S3P2S1P1d!S S3P2S2P1
d2D

2 D,
uVmaxu2

4

~using t5tM P!. ~31b!

We see clearly from these formulas that, to satisfy the c
ditions of internal connectivity, the static two-step detuningd
can be used to compensate the dynamic Stark shift betw
the initial and final state, andd6D can compensate dynami
Stark shifts involving the intermediate level. This is an im
portant result of our analysis: rather than attempt the diffic
task of producing a frequency-varying pulse which comp
sates dynamic Stark shifts at each moment, it is possibl
employ detuned constant-frequency pulses.

C. Example: Opposite-sign shifts

In any intended application of hyper-Raman STIHRAP
is important to obtain reliable estimates of polarizabilitie
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from which one can obtain estimates of two-photon R
frequencies and dynamic Stark shifts. To elucidate som
the properties of population transfer, we consider here so
simple model examples of Stark shifts. The effects are c
tained within two parameterss(d)(t) and s(D)(t). To study
the peak-to-peak connectivity, these parameters are ev
ated at the fixed timetM P corresponding to the peak pum
pulse. We will then use in the following the convenient n
tation

s~d![s~d!~ tM P!, s~D![s~D!~ tM P!. ~32!

As will be seen, there are important differences betwe
cases when these two parameters have the same sign o
posite signs.

1. Contours

To show the usefulness and relevance of the various c
nectivity relations, we present examples of numerical so
tions to the Schro¨dinger equation, for various choices of th
excitation parameters. We show contour plots of transfer
ficiency P3(`) for fixed pulse delaytP ~and fixed peak
valueVmax) but varyingD andd. The plots also display the
hyperbolas which bound the region of peak-to-peak conn
tivity and of full-overlap connectivity.

Figure 5 shows an example of a contour plot of trans
efficiency P3(`) when the Stark shiftss(d) and s(D) have
opposite signs~here s(d)52.0Vmax, s(D)521.0Vmax; note
that these values are not far from the ones for heliums(d)

51.87Vmax, s(D)521.57Vmax @1#!, as occurs for the frame

FIG. 5. Contours of constant transfer efficiencyP3(`) for vary-
ing relative detuningsD/Vmax and d/Vmax and the conditions of
region (C2) of Fig. 4. Efficiencies above 98% are shown as whi
Dashed lines: peak-to-peak connectivity hyperbolaP(P) for pump;
dot-dashed lines: peak-to-peak connectivity hyperbolaP(S) for
Stokes; circles: full-overlap connectivity hyperbolaF(P) for pump.
Points A and B mark parameter values of highest transfer e
ciency. PointC marks a third point, for display in Fig. 6.
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(C2) of Fig. 4. One readily sees that the contours follo
quite well the hyperbolas of peak-to-peak connectivityP(P)

and P(S): little population transfer occurs when the corr
sponding constraints are not met. It is clear that the fu
overlap connectivity hyperbolasF are not relevant for
bounding the contours. For simplicity we have not plott
the ~nonshifted! Stokes full-overlap hyperbola, which i
close to theP(S) curve @as in (111) STIRAP#.

As expected from the hashed region (C2) of Fig. 4, there
occur two disjoint regions of population transfer. There a
thus two distinctly different choices for optimal values ofd
andD. For the upper region, good values~point A) are near
D50.5Vmax, d51.2Vmax. For the lower region, good value
~point B) are nearD521.5Vmax, d51.4Vmax.

One can see that the region of highest population tran
is well within the predicted region for peak-to-peak conne
tivity ~the hashed regions of Fig. 4!.

One can also see that there does occur some popula
transfer for detuning values which lie outside the peak-
peak connectivity region. The point labeledC is an example.
Although the parameter choices here do not meet the p
to-peak connectivity criteria, they do still fall within bound
set by full-overlap connectivity.

2. Eigenvalues

It is instructive to examine plots of eigenvalue curves
particular cases of the parameter choices.

Figure 6 shows three examples of time histories of eig
values. Columns (A) and (B) are for choices of detuning

.

FIG. 6. Eigenvalues~units of Vmax) vs time ~units of t! for the
parameter choices (A), (B), and (C) of Fig. 5. (A) D50.5Vmax,
d51.2Vmax; (B) D521.5Vmax, d51.4Vmax; and (C) d
50.75Vmax, D521.5Vmax. First row: diabatic curves; secon
row: Stokes-diabatic curves; third row: pump-diabatic curves; b
tom row: adiabatic curves. Numbers on curves show basis s
associated with an asymptotic eigenvalue. Arrowheads mark
start and end of successful population transfer.
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which produce the highest transfer efficiency.~In both cases,
we have found numerical efficiency of more than 99%.! The
adiabatic curves in column (A) are an example involving
diabatic transitionsF1(t)→F2(t)→F3(t), whereas column
(B) is a transitionF1(t)→F3(t). In each of these case
there occurs, just before the end of the Stokes pulse, a
degeneracy of eigenvalues. Were the evolution to be a
batic, population transfer would fail. But because the Sto
pulse is weak at this time, the system evolves diabatic
and transfer succeeds.

Column (C) shows an example in which the conditions
adiabatic connectivity are met, yet little transfer occurs~an
efficiency of 32% is found!. The difficulty here is, again, a
near degeneracy when the Stokes pulse is weak. If the
lution were adiabatic, then transfer would be complete. W
the given pulse areas, some diabatic coupling occurs betw
statesF1(t) and F2(t), and so population transfer is no
complete.

D. Example: Same-sign shifts

1. Contours

Figure 7 shows an example of a contour plot of const
transfer efficiency when the Stark shiftss(d) and s(D) have
the same signs~heres(d)52.0Vmax, s(D)54.0Vmax) as oc-
curs for the frame (C1) of Fig. 4. As with the preceding
figure, the contours fit within a region bounded by peak-
peak hyperbolas, and little population transfer occurs outs
these regions. There does exist a residual population tran
~diminishing with distance from the peak-to-peak connec
ity hyperbolas! outside the peak-to-peak connectivity boun
aries.

There occur two disjoint regions of population transf
For the upper region, a good choice~point A) for static de-
tunings is nearD54.5Vmax, d51.35Vmax. For the lower
region, a good choice~point B) is near D51.4Vmax, d

FIG. 7. Contours of constant transfer efficiency for varyingD
andd as in Fig. 5 but for the conditions of region (C1) of Fig. 4.
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50.2Vmax. This latter choice is less sensitive to small var
tions in detunings, and thus it offers a more robust choic

Within the region bounded by peak-to-peak connectiv
hyperbolas, the contour lines show a clear asymmetry of
dependence of transfer efficiency upond. The region border-
ing ~to the left! the hyperbolasP(P) is favored over regions
with smallerd.

2. Eigenvalues

Figure 8 shows three examples of time histories of eig
values.

Column (A) shows an example of high transfer efficien
~99% is found numerically!. As can be seen from the adia
batic curves, successful transfer requires that the diab
evolutionF1(t)→F3(t) occur at near-degeneracy at the e
of the Stokes pulse.

Column (B) shows an example of relatively high effi
ciency ~97% is found! which requires three intervals of di
abatic evolution, one of which occurs just after the pum
pulse begins. The sequence may be viewed as the cha
F1(t)→F3(t)→F1(t)→F3(t).

Column (C) shows an example in which there is no ad
batic connectivity, either full-overlap or peak-to-peak, y
appreciable transfer occurs~41% is found for this example!.
As can be seen from the adiabatic curves, there occu
moment of close approach of two adiabatic curves, at wh
time the lack of completely adiabatic evolution can produ
the needed changeF1(t)→F3(t).

E. General observations

As with the (111) STIRAP, our numerical simulation
of (211) STIHRAP suggest that it is best to have delay
the range of 0.3 and 0.4 of the pulse length.

FIG. 8. Eigenvalues vs time, as in Fig. 6, but for parame
choices (A), (B), and (C) of Fig. 7. (A) d51.35Vmax, D
54.5Vmax, (B) d50.2Vmax, D51.4Vmax, and (C) d
50.75Vmax, D51.3Vmax.



o
fe

th

n

n
hi
n

e-
er
he
f
la
c
e

ba
he
v

ei-
ng

p

tim
n

h
.

at
r

-

o

y

b

x
u

xi-
s in
y
E

ba-
. We
s

.

ap-

-
ch

4702 PRA 58S. GUÉRIN et al.
In the limit of infinite pulse area, leading to the absence
diabatic following during the pulse overlap, the good trans
area is bounded by the full-overlap hyperbolas.

Several other features of the contour plot are notewor
and are typical of features found for other Stark shifts.

In each example good population transfer is possible o
within a limited range of detuningsD. However, within this
range there are values ofD for which no choice ofd can
produce good transfer.

It is also notable that the right-hand portion of the co
nectivity region shows a pronounced ripple structure. T
observation is discussed in more detail in the next sectio

VII. OTHER CONSIDERATIONS

A. Regions of interferences

Although the simple notion of connectivity suffices to d
limit regions where good population transfer can occur, th
are interesting patterns of valleys visible along two of t
boundaries~see, for example, Fig. 5!. These are regions o
parameter space lying between two boundary hyperbo
those of peak-to-peak and full-overlap connectivity. In su
cases there occur a pair of diabatic curve crossings. Succ
ful population transfer requires that the system pass adia
cally through the first interval and diabatically through t
second. Figure 10 shows an example of adiabatic eigen
ues exhibiting this possibility. However, the evolution is n
ther completely adiabatic nor completely diabatic. Duri
the evolution, the basis-state composition ofC(t) splits into
two parts after the first avoided crossing and these am
tudes interfere when time evolution bringsC(t) to the sec-
ond avoided crossing. The interferences depend on the
between the two avoided crossings, and through this upod
andD.

B. Population in the intermediate state

It is usually desirable to minimize the population whic
occurs transiently in statec2 during the population transfer
In ordinary (111) STIRAP, under the conditionsd50, such
population occurs as a consequence of~unintentional! non-
adiabatic evolution, which introduces some dressed st
F2(t) or F3(t) into the composition of the state vecto
C(t). When detunings are present,dÞ0, even adiabatic evo
lution of C1(t) will introduce some contribution toC(t)
from basis statec2 .

Here we note, for the examples considered above, h
the maximum contribution ofc2 to C(t) is affected by the
choice of static detuningsd andD.

Figure 9 shows contours of peak valueP2(t) for the same
conditions used in producing Fig. 5.

The peak population in statec2 depends most strongl
upon the single-photon detuningD, which brings this state
into resonance with the~two-photon! pump frequency. The
population is relatively insensitive tod, the two-step detun-
ing.

Unlike the contours ofP3(`), these contours ofP2 do
not show a population confined within a region bounded
connectivity hyperbolas.

We can give simple analytic expressions which appro
mately bound parameter regions where appreciable pop
f
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tion occurs in state 2 during the process. In a first appro
mation, we can argue that appreciable population occur
state 2 during the process whenthe pump two-photon energ
2vP is swept by the time-shifted two-photon resonance2
1S2P(t)2@E11S1P(t)#, i.e., when

uDPu,uS1P~ tM P!2S2P~ tM P!u. ~33!

The previous condition is equivalent to saying that the dia
tic curve connected to 1 crosses the one connected to 2
thus find that the region of high population in level 2 lie
between the two lines~see Fig. 9!,

FIG. 9. Contours of constant maximum populationP2(t) during
the pulse process, for varyingD andd and the conditions of Fig. 5
Dashed lines: peak-to-peak connectivity hyperbolaP(P) for pump;
dot-dashed lines: peak-to-peak connectivity hyperbolaP(S) for
Stokes. The lines marked with a plus are the bound region of
preciable populationP2(t) during the process.

FIG. 10. Adiabatic eigenvalues~units ofVmax) vs time~units of
t! for D522.5 Vmax, d52 Vmax. At the left-hand avoided cross
ing, there occurs a splitting of the population in two parts whi
recombine and interfere at the right-hand avoided crossing.
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D52d, ~34a!

D52d1@s~d!~ tM P!1s~D!~ tM P!#. ~34b!

We note that this approximation is valid inside the conn
tivity region, but not in the left-hand outside.

C. Pulse shape effects

The analysis of adiabatic following for pulse pairs is sim
plest when the pulses have finite temporal support, so
there exists only a limited time during which both pulses a
Gaussian pulses, by contrast, extend indefinitely in time
comparison of the finite-support sine pulses~used in the pre-
ceding analysis! with Gaussian pulses is therefore instru
tive. We use a Gaussian pulse having the same half-wi
0.5t, as the sine-squared pulse,

f ~ t !5exp@216 ln 2~ t/t!2#. ~35!

This pulse is normalized to have area*dt f(t)
5tAp/16 ln 2'0.53t; the full width at half maximum of
f (t)2 is 0.354t.

Figure 11 shows the two classes of pulses being con
ered. The full lines show the finite support pulses, the das
lines show the Gaussian pulses.

Figure 12 shows an example of population transfer e
ciency contours. The conditions are those of Fig. 5 exc
that pulses are Gaussian in shape.

As can be seen, there are choices ofD andd which pro-
duce high transfer efficiency. However, it is also notewor
that for a range of parameter choices the process is no
robust as with pulses of finite support: small changes in
tuning ~or in pulse area! can produce large changes in pop
lation transfer. This sensitivity is to be expected from t
nature of the curve intersections. In ideal cases there wo
be an avoided crossing followed by a degeneracy at wh
diabatic evolution would occur. However, with Gaussi
pulses there are never any adiabatic degeneracies, be
there is always some finite amplitude of each pulse,
hence diabatic evolution cannot be guaranteed.

FIG. 11. Rabi frequencies vs time for (211) STIHRAP. Full
lines are Gaussian pulses, dashed lines are sine-squared puls
-
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VIII. CONCLUSIONS

We have considered coherent population transfer p
duced by delayed pulses~a generalization of STIRAP! with
two-photon coupling between the initial and intermedia
states. Although the use of a two-photon transition in pla
of a one-photon transition introduces few novel mathem
cal distinctions, the physics of the excitation process can
quite different from conventional STIRAP. Because the tw
photon Rabi frequency is, like the dynamic Stark shifts, p
portional to intensity and polarizability matrix elements, it
essential to consider the effects of such shifts. They can
matically alter the possibility for successful population tran
fer.

We have shown how to choose a~static! detuning from
the two-step resonance to reduce the detrimental effec
time-dependent Stark shifts.

We have presented some simple analytic expressions
bounding the range of detunings~one- and two-step! where
successful population transfer can occur. Though the not
behind the formulas are very simple~connectivity of adia-
batic eigenvalues for a specified time interval!, they provide
useful approximations, as our numerical modeling dem
strates.

In the present work we have discussed the phenome
ogy. Clearly, suitable choices for static detunings and pu
delays can only be identified when the relevant polariza
ities are known. Calculations are needed to ascertain the
ability of a given choice of laser parameters.
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