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Stimulated hyper-Raman adiabatic passage. 1l. Static compensation of dynamic Stark shifts
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When one extends the conventional stimulated Raman adiabatic passage method of population transfer;
involving a pump pulse preceded by a Stokes pulse, to situations in which the (@urppmp and Stokes
interaction involves a two-photon transition, there occur unavoidable dynamic Stark shifts which prevent
maintenance of the relevant resonance conditions. Such shifts can prevent the desired population transfer. We
show, through numerical modeling and analytic considerations, that the detrimental effects of dynamic shifts
can be compensated by a suitable choicéstdtig detunings of the carrier frequencies of the two pulses, so
that population transfer can be achieved. We present simple analytic expressions for bounding the range of
detunings for which population transfer can occur, and we present numerical results supporting the simple
picture of the two-step linewidth. We illustrate these remarks by considering specific examples.
[S1050-294{@8)09311-1

PACS numbdss): 42.50.Hz, 33.80.Be, 42.65.Dr

[. INTRODUCTION rier frequencies of the pulses and the atomic Bohr frequen-
cies. Nevertheless, we demonstrate here with numerical
In a companion papé] (referred to as papel e have  simulation, supported with analytical expressions, that it is
presented the basic formalism needed to describe an extepossible to achieve the same high degree of population trans-
sion of the technique of stimulated Raman adiabatic passadgr With hyper-Raman STIRAP as can be found with the
(STIRAP) [2,3] to a hyper-Raman procéSTIHRAP). The  more customarysingle-photoh STIRAP. The key to such
extension can be regarded as a-(R) or (2+2) rather than  success lies in choosing appropriate valuegstatio detun-
a (1+1) process, a notation emphasizing the two-photorings of the lasers.
character of the interactidd]. Here we present model stud- ~ As we will emphasize, the presence of static detunings
ies to explain the reasons for success or failure of populatiofinplies that successful population transfer takes place via a
transfer in such schemes. combination of adiabatic and nonadiabatic time evolution.
The conventional STIRAP process for population transferThis requirement stands in contrast to the customary impo-
from state 1 to state 3 makes use of a Stokes qumhect- sition of adiabatic evolution for resonant '(‘]1) STlRAP,
ing intermediate state 2 with target statefBllowed by a  and it requires a more detailed examination of the course of
pump pulse(connecting initial state 1 with state,2ach of time evolution.
which induces a single-photon electric-dipole transition. Al-  To place the more general problem in context, we first
though the individual pump and Stokes lasers need not beeview the simpler conventional STIRAP involving three
resonant with the associated transitions, it is important tha$tates,s;, ¢, and s, linked by two successive interac-
the two carrier frequencies together should maintain twolions labeledP (for pump andS (for Stokes. As is usual,
photon resonance with the overall Raman process. we assume a so-calletl configuration, wherein the energy
For the extension considered here, the pufapd/or of intermediate staté, lies above that of the other statgs
Stokes transition is produced by an induced dipole moment,and 5, but the conclusions hold also for ladder systems.
quantified by the product of a polarizability and a pair of The objective of population transfer is to produce a pulse
electric-field amplitudesin contrast to the product of a di- Sequence such that the state vecit(t) has the following
pole moment and a single field amplitude which characterbehavior:
izes the usual coherent excitation interactiohhis hyper- o
Raman interaction inescapably introduces not only W)= g nitially (t——o),
transitions between atomic stat@smrametrized by general- ey finally (t— +),
ized multiphoton Rabi frequenciebut also dynami¢Stark)
shifts of the atomic energies. Because the shifts vary witlwheree is a phase. When the pulses are appropriately timed
time (as established by the pulse shgpésis generally not (Stokes before pumpand simple conditions are fulfilled
possible to maintain resonance conditions between the caftwo-photon resonance and large pulse ateay can pro-
duce complete population transfer from the initial stateto
the target final state;.
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of paper | or in which both pump and Stokes transitions are lll. ADIABATIC EVOLUTION

by such transitions, as shown in FigclL(paper ). The direct numerical integration of the Sctimger equa-

tion with the Hamiltonian of Eq(2) poses no great difficulty.
Il. THE BASIC (1+1) STIRAP However, to understand the interplay of parameter choices
A. The (1+1) Hamiltonian and p(_)pulation transfer it is necessary to _rely ona number pf
analytic tools related to the notions of adiabatic and diabatic

Upon defining a pair of single-step laser detunidgsand  time evolution. The following paragraphs present a consis-
Ag for the carrier frequenciesp andws from their assigned  tent set of definitions of the needed tools.

Bohr transition frequenciesiAp=(E,—E;)—fhowp, fiAg
=(E,—E3)—fwg, a two-step detuningg=Ap—Ag, and

. A. Diabatic states
the accumulated one-step detunidg=Ap,+Ag, we can

write the basic three-state RWA Hamiltonian matrix as By deleting the off-diagonal elements of any Hamiltonian
(the couplings between basis statemne obtains aliabatic
. -5  Qp(t) 0 Hamiltonian, whosédiagona) elements providédiabatic en-
Moot A Q(t ergiesu,(t). The basis states themselves provide the eigen-
H(D) p(D) SO . @ vectors of the diabatic Hamiltonialiabatic states For the
0 Q1) 6 present example, lacking dynamic Stark shifts, the three

. (constank diabatic energies and eigenstates are
In conventional STIRAP the parametérmeasures the de-

parture from two-photon resonance. To allow hyper-Raman  {u1=—5/2,i1}, {mo=A,o}, {usz=+ 82,43}
processes we refer here &as a two-step detuning. For the
usual STIRAP the Rabi frequenci€3p(t) and Qg(t) are These are also eigenvalues and eigenstates for the full
products of dipole moments and electric field envelopes, Hamiltonian before and after the pulse sequence. When the
pulses are absent, and there is no degeneracy, the probabili-
ﬁQp(t):_dlzgp(t), ties

3
Q1) = — dgpls(t), Pa(H) =K ¥ (1)) (6)

will not change. The objective of the pulse sequence is, start-
ing from the conditionP{(—2°)=1, to make the population
transfer efficiencyP3(«) as close to unity as possible.

The labels 1, 2, and 3 here identify the original atomic
) basis stateg),,, defined such thay, is the initial state and
|Es(D)]*=(2/ceq) I 5(1). i3 is the final state. The ordering of the diabatic eigenvalues

o depends on the values of the detunings. &o10, the diaba-
Although it is simplest, and customary, to assume that theic energy ofy, lies below that ofis.

laser carrier frequencies are chosen to maintain two-photon
resonancep=0, such an assumption is inapplicable to the
more general hyper-Raman interaction to be considered here.
In preparation for the necessity of including nonzero detun- As is evident from the meaning of the acronym STIRAP,
ing for the more general (22) or (2+1) case, we will adiabatic evolution plays a central role in the STIRAP
point out consequences of detuning in the simplet-()  mechanism for population transfer. However, whereas com-
case(see[5)). pletely adiabatic evolution offers a satisfactory procedure
when there are no dynamic Stark shifts and the resonance
conditiond=0 holds, it does not always produce satisfactory
population transfer when dynamic shifts occisee Sec.
The interactions of interest comprise two pulses, the firsfj| C). Thus it is necessary to consider deviations from fully
of which is the Stokes and the second, acting later, is th@diabatic evolution.
pump. We take these to have common peak values by writ- To describe adiabatic evolution we define, at each time
ing the pump and Stokes Rabi frequencies as a set of(three eigenstates (t) of the instantaneous RWA

Q) =Qad (1), Qp(t)=Qmaf (t—7p) 4) HamiltonianH(t),

where

|Ep(1)]?=(2/ce) (1),

B. Adiabatic states

B. The pulses

.y _ , [H() —Awy()]Py(1)=0 (n=1,23. )

thereby defining the time delay, of the pump pulse with
respect to the earlier Stokes pulse. In what follows, we willThese are known as “dressed states” or “adiabatic states,”
require thatf(t) has a unit peak value, and we express alland the eigenvaluekw,(t) are known as “dressed ener-
elements of the RWA Hamiltonian in terms of the peak Rabigies” or “adiabatic eigenvaluesTherew ,(t) denotes a fre-
frequency() pay. guency. It proves useful to refer to the three numerical val-

Because the Rabi frequencies represent pulses, they mugés as top, middle, and bottom, thereby indicating the
vanish at least in the limit of very distant past and future, ranking in value.

We assign the labels 1, 2, and 3 on dressed states by
Qj(=2)—0, Qj(+»)—=0 (j=P,9). (5) requiring that initially, prior to the arrival of pulses, the adia-
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batic stateP,(t) should coincide with the diabatic staig, 1
and thereafter the relative order of adiabatic eigenvalues 0.9}
should remain unchangdde., if statey; has the lowest 08l
diabatic energy initially, then at all times the adiabatic state B
®,(t) is the state having lowest adiabatic engrgdith this &
definition, different adiabatic energy curves can toiybb § o6r
degenerafebut cannot crossWe consider smooth pulses, so E 08¢

that a plot of any of the three adiabatic eigenvalues as ez 04
function of time will be a continuous curve. & 0slh
In general, the state vectdr(t), which is the solution of
a differential equation, is not a single adiabatic state, but it is
expressible at any time as some combination of the adiabati
statesd,(t) appropriate to that timeg, %

t/7

\P(t>=§ Ba(t)®(t). (8)

FIG. 1. Relative Rabi frequencies vs time showing Stokes pulse
(S) preceding pump pulseP(. Full lines show one-photon Rabi

In special casesthese are of particular interg¢sthe state frequenciedlp(t) andQ(1); dashed lines show two-photon Rabi

vector ¥ (t) may be very nearly a single adiabatic state. ~ frequencies)p(t) andQ(t). The peak values occur at timégs
The usefulness of adiabatic states originates from the fol@"dtme - The pulses overlap between timigg andtos.

lowing property: if at some timé the system is known to be

in the adiabatic stat®,(t) associated with thath eigen- d . d

value, and if the Hamiltonian varies sufficiently slowly and ﬁBn(t): _'wn(t)Bn(t)_% <(bn(t)‘ mq)m(t)> Bn(t).

no dressed-state degeneracies occur, then the system will be 9

found at subsequent times in the adiabatic state associated

with this same eigenvalu@.e., the evolution is adiabajic

This property provides a clear prescription for predicting

time evolution, and thus plots of eigenvalues versus time ar,

valuable tools for predicting population transfer. eggagonal diabatic coupling termis ()| (d/dt) (1)) con-

If there occurs a near degeneracy of adiabatic eigenvalu X ) . ! .
at time t,, then a given pulse sequence may not be suffiiected with this dressed state. The adiabatic requirement

ciently slow to allow adiabatic evolution in any small time Tegns, rather  roughly, - that the pulse areds
interval includingty. In the limit of rapid evolutior(or exact =J~.dt€;(t) _Of pump and Stokes pulses should be much
degeneracy of adiabatic eigenvaludise state vectorV(t) larger than unityAp>1, As>1 [2,8,3)

remains in a fixed superposition of basis stdthe evolution

is diabati¢ at t;. This necessarily entails a change in the D. Pulse pairs

dressed-state composition #(t) following t;. When the To desian useful pulse sequences in the presence of dv-
adiabatic eigenvalues are exactly degenerate, then diabatic g P q P Y

. . . - namic shifts, it is necessary to consider the various possible
evolution past, is guaranteed, with a consequent change in

) . . ways in which the required nonadiabatic intefgaktan oc-
11? Izggltgft the adiabatic curve associated wit(t) for t cur. The requirements can be seen most clearly if we con-
0 0-

sider pulses of finite suppofie., pulses which vanish iden-
tically outside a finite time interval We use half the period

For the amplitudeB,(t) to remain unchanged in magnitude,
'ghis necessary that the separation of eigenvaiyét) from
e nearest values be much larger than any of the off-

C. Adiabatic conditions of a squared trig function, specifically
Complete (or nearly complete population transfer be- siré(wt/T) for 0O<t<r,
tween basis states can occur in several ways. One possibility f(t)= 0 otherwise (10

is that the evolution be adiabatic at all times. This condition
means that the adiabatic eigenvalag(t), which initially
(at t— —) coincides with the diabatic eigenvalye; = This function has the desirable property that the time deriva-
— /2, must at final timegat t— +c0) coincide with the tive vanishes at the endpointhereby avoiding numerical
diabatic eigenvalug.;= + /2. Because adiabatic eigenval- artifacts associated with abrupt changéghe functionf (t)
ues must maintain a fixed ordering, such a connection ifias a pulse arefdtf(t) equal to7/2. The full width at half
possible only if there is degeneracy of the diabatic energiesnaximum of f(t)? is 0.364- Figure 1 sketches this se-
i.e., 6=0. Therefore, when static detuning is preseat ( quence.
#0) it is not possible to have good population transfer with-  In later sectiongsee Sec. Ywe discuss Rabi frequencies
out some time intervéd) (however brief during which the which originate with a two-photon transition. For a given
evolution is not adiabatif5,6]. time-dependent intensity profil€t), the two-photon inter-
The conditions for adiabatic evolution can be understoodaction produces a narrower profile of the pulsed Rabi fre-
from the time-dependent Sclilinger equation expressed in quency than does a one-photon interaction. Figure 1 displays
terms of the dressed-state amplitudizgt), this difference.
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Alth(_)ugh such finite-support pulses are convenient fofgnijan, H(S)(t), is constructed by omitting the pump cou-
theoretical analysis, we will also present examples of thejing between basis state and ¢,. The pump semidia-
commonly assumed Gaussian pulse, and will point out thgatic Hamiltonian,H(P)(t), is constructed by omitting the
consequence of having nonzefalbeit small amplitudes of  stokes coupling between basis statesand ¢3. The two

both pulses at all times. semidiabatic Hamiltonians are
It proves convenient to denote by the start of the pulse
overlap(the instant when the pump pulse beginad byt,g [ -6 0 0
the cessation of the pulse overl@when the Stokes pulse HS (1) = ﬁ 0 A Q1)
terminates These instants delimit the interval when both 2 '
pulses act. We denote ly;p andt, s the times when the L 0 Q4t) +46
pump and Stokes pulses, respectively, reach their maximum _ (12)
value (see Fig. L -6 Qp(t) O
Because the Stokes pulse has no direct adiathin the HP)(t)= ﬁ Qp(t) A 0
RWA) on the initial statay,, the shape of)g(t) prior to the 2 0 0 ‘s

arrival of the pump puls€ p(t) has no effect upon the popu- -
lation which resides there. As long as the Stokes pulse do . . )
not violate the conditions which allow the RWA, we need(ﬁ/e denote the respective eigenvectors (héfs (t) and

- (P) . . . . T .
not be concerned with whether the pulse, once started, allow&n ' (1)- It is instructive to consider plots of semidiabatic
adiabatic evolution: at an infinitesimal time prior to the ar- €igénvalues, obtained by diagonalizing those Hamiltonians.
rival of the pump pulse, the system is in the initial stgte The Stokes semidiabatic eigenvalues, obtained from the ex-

Similarly, we need not follow the subsequent time evolutionP"€SSIons
once the Stokes pulse ceagassuming only that the RWA s

applies) If population transfer has occurred, the termination 2wy =9, (129
of the Stokes pulse will find the state vector in state

One might guess that satisfactory population transfer 4o d(t)=6+A—[5-APP+4]Qqb)[%,  (12b
would occur if the needed nonadiabatic evolution occurs ei-
ther prior to or after the interval of pulse overlap, and that 4w (t)=6+A+\|6—AP+4]Q41)?, (129

during the overlap interval the evolution remained adiabatic.

Although this is a useful proposal in the limit of very long include coupling(by the Stokes interactigrbetween states
interaction times, it is excessively restrictive for pulses ofy, and ;. We refer to these semidiabatic curves by the
moderate pulse arggay areas as large as several hundred labels (1S), (2S), and (35). The pump semidiabatic eigen-
To treat realistic pulses, it is necessary to allow some nonvalues, obtained from the formulas

adiabatic evolution during the pulse overlap.

4w P(t)=—6+A—\[6+A]+4]Qp(D)]?, (133
IV. DETUNING SENSITIVITY OF (1+1) STIRAP

4w P (t)=— s+ A+ [+ AZ+4[Qp(1)? (13D
The sensitivity of population transfer to the two-step de-

tuning & has been analyzed by Danileiled al. [5] to obtain 2=, (130

expressions for a two-photon linewidth. Here we extend their

(2+2) and (2+1) STIHRAP. Initial discussion of the (1 andy,. We refer to these semidiabatic curves by the labels
+1) process is needed to define the tools used in subsequentp) “(2p), and (P).

analysis, and to demonstrate their use in the simpler case
where dynamic Stark shifts are negligible.

When § vanishes there exists an adiabatic state with the
desired property of providing a continuous connection be- Figure 2 presents examples of the various eigenvalues
tween statef; and ;. As we shall show, it is possible to plotted against time: Here vertical lines mark the boundaries
achieve good population transfer whénthough not exactly (top andtys) of the pulse-overlap region. On the left of the
zero, lies within some boundghe two-step linewidth lies adiabatic-eigenvalue diagram, an arrowhead marks gtate
within these limits[5]). To obtain a simple approximate es- where population initially resides. An arrowhead on the right
timate of the range of parameters for which successful popumarks the target stat¢;. The first row shows Stokes se-
lation transfer is possible, we first examine a simple versiommidiabatic curves, the second row shows pump semidiabatic
of the general multilevel “connectivity” problem considered curves. The lowest row shows adiabatic curves. In each
by Martin et al. [6]. We then modify these results to include frame the curves bear labels 1, 2, and 3 to identify the
dynamic Stark shifts. asymptotic states to which they correspond. The three col-
umns are distinguished by three different examples of static
detunings, as obtained by three choices of carrier frequen-
cies. There are no dynamic Stark shifts present in these

We study the evolution o¥ (t) by considering separately cases. Each of the crossings of a semidiabatic eigenvalue has
the action of each laser pulse. For this purpose we defina counterpart in a touching or an avoided crossing of an
semidiabaticHamiltonians. The Stokes semidiabatic Hamil- adiabatic curve.

B. Eigenvalue curves

A. Semidiabatic eigenvalues
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()] transfer. One procedure, which we tefafi-overlap connec-
tivity, requires that the evolution be strictly adiabatic during
the entire interval of pulse overlap. Although this require-

;/ ment correctly describes conditions in the limit of pulses of
v— infinite area, it is overly restrictive for pulses of moderate

(=]
(=]

]
o
o
|
et
@
o

area. A second possibility, which we tejpeak-to-peak con-
nectivity, is less restrictive, and allows intervals of diabatic

]
-

1
=

Pump Semi-diabatic Stokes Semi-diabatic

1 3| 05 ; evolution when both pulses are present: adiabaticity is re-
¢ 3 O 1 /\ quired only during the time between pulse maxima. Both
05 08 o approaches make use of semidia'batic eigenvalues to suggest
5 5 3 bounds on the detunings. The differences between the two
-1 -1 criteria become pronounced only when there occur dynamic
-08 Stark shifts.
] 05
o 0 :;D D\; Ofb/ Dj 1 Z/\\{ 1. Full-overlap connectivity
£ s -05 o5 A For pulses of finite support, a given delay timg fixes
3 2 2 5 . .
= N RN L] N 3 two particular timestyp when the pump laser starts, and
- ol 05 when the Stokes laser just ceagese Fig. 1 At these times,
0 05 1 0 05 1 0 05 1 the Rabi frequencies have the valu8s=Qg(tgp) and
t/T t/T t/7 Qop=Q0p(tys). Between these times both pulses are present,

and there can occur n@xac) degeneracies of dressed-state

FIG. 2. Examples of eigenvaluésnits of (),5,) vs time(units  eigenvalues. Thus it is possible, by using pulses of suffi-
of 7) for three detunings:A) 6= —0.10nay, A=—150n., (B)  ciently large area, to have adiabatic evolution between these
0=0.10ma, A=1.50ma, and €C) 6=—-0.2%pq, A=0 (note  two times. By full-overlap connectivitywe mean that the
the different ordinate First row: Stokes semidiabatic curves. Sec- adiabatic eigenvalue curve which begi@st=t,p) as (1S)
ond row: Pump semidiabatic curves. Third row: Adiapatic curves | gty becomesgat t=t,g) the curve (). To determine the
Numbers on curves show basis state associated with asympto%ossibility of connecting (8) with (3P), we must examine
eigenvalue. Arrowheads mark the start and end of successful poplcés did the work of Martiret al. [6,7]) the ordered relations
lation transfer. among the adiabatic eigenvalues at the respective ends of the

The three examples have been chosen to illustrate thré@tgrval' These are the early semidiabatic Pe|genva|ues
generic possibilities for the diabatic transition needed 1@ (top) and the late semidiabatic e_lgenvalue$ )_('Fos)-
achieve the change in the dressed-state compositidn(of In the absence of Stark shifts, the.deswed connectivity occurs
from ®4(t) to ®4(t), as can be seen from the adiabatic ONly when (IS) and () are themiddleeigenvalues. These
curves in the bottom row. For the first column, there occursonditions (called internal connectivity, taken with Egs.
an early diabatic transition from, (t) to ®4(t). This occurs (120 and(130), lead to the following pair of constraints:

rior to the arrival of the Stokes pulse. After this crossing,
gdiabatic evolution carries the sysﬁem to the desired conglu- —A—V|APP+2[Q0g*=20<—-A+ V|A|2+2|QOS|2(’14a

sion, with population in state/;. The second example, in

column 2, involves a similar transitioh(t) — ®5(t), but in AP+ 2[00 JAPT 2[00
this case it is at the end of the pulse sequence, when only the A=A+ 2{Qop|*<26=+ A+ 1[4 +2|Q°P|(i4b)
pump pulse is present. The third example, in the right-hand

column, requires an early dressed-state transilof(t)  \when static detuningd and & fulfill these conditions, then

—®,(t) prior to the arrival of the pump pulse, followed by 4giapatic evolution is possible between the staf@(t) at
a late transition®,(t)—®5(t) after the cessation of the time top and the target stat@gp)(t) at timet,s. The desired

Stoéaeshpélfﬁése examples shows a process in which a choi é:)opulation transfer occurs with the aid of an instantaneous
P P diabatic evolution prior tdgp Or aftertyg.

e s s of e, N e parameer space defned b S, h rein

ings Ieed to ualitativperl) differe’nt topologies of adiabatic of full-overlap connectivity is bounded by the four branches
9 q y d polog -~ of two hyperbolas. When there are no dynamic Stark shifts,

curves, and hence of distinct mechanisms for population) '

i . . ) the boundaries are, as can be deduced from(H,

transfer. Analysis of generic properties of eigenvalue curves

is an important step in determining the range of detunings Qg2

which will allow population transfer and, when dynamic A=—-6+ 25 (using t=tpg) (159

Stark shifts are present, in selecting suitable static detunings

with Whlch to(p_art|ally) compensate the otherwise detrimen- for the Stokes curve=.

tal dynamic shifts.

| Qopl®
25

C. Connectivity A=6— (using t=tgyp) (15b)

There are several possible approaches to defining the con-
ditions which are conducive to producing good populationfor the pump curveF®).
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the moment when the pump pulse is largest. We are thus led
to require that strict adiabatic evolution occurs between the
time ty,5 of the maximum Stokes pulse and the tityg of
the maximum pump pulse, and that there should be an adia-
batic connection(peak-to-peak connectivitybetween the
dressed states which asymptotically become stgtesand
3. We will show that good population transfer can occur
under these less severe requirements. Although the two cri-
teria are similar for (¥ 1) STIRAP, the distinction becomes
significant for (2+1) STIHRAP, as we will see.

The peak-to-peak connectivity region is bounded by
branches of the hyperbolas,

A/Qmaz

|Qmal® .
- A=—6+ 55 (using t=tyg) (163
=
%U for the Stokes curve*®,
o) 2
15 0 05 1 15 A=6— | zmg)J (using t=typ) (16b)

6/Shnas
for the pump curvePP). Within this region, even modest
pulse areas may suffice to maintain adiabatic evolution. The
needed interval of non- adiabatic evolution is now allowed to
occur when both pulses are presémit one is weak

Figure 3a) shows the region bounded by the hyperbolas

FIG. 3. (&) Connectivity hyperbolas bounding regions of con-
nectivity for (1+1) STIRAP (no dynamic Stark shifisas a func-
tion of two-step detuning and one-step detuningy (detunings in
units of peak Rabi frequenc{).). Dashed lines: peak-to-peak

connectivity hyperbola®™ for pump; dot-dashed lines: peak-to- . .
peak connectivity hyperbol@® for Stokes; circles: full-overlap of Egs.(16). For comparison, it also shows the hyperbolas of

connectivity hyperbola®) for pump; plus marks: full-overlap con- E9S- (19), for 7=100 and7=0.33r. The two hyperbolas
nectivity hyperbolaZ® for Stokes. The hyperbolas are shown to- &re quite closéthey would be identical ifp=0.57). As can
gether with contours of constant transfer efficiery(=) as a 0€ seen from Eq(16b), limiting cases of the bounding
function of two-step detuning and one-step detuningy, obtained ~ Curves are

by numerical solution of the Schiimger equation. The numerical

simulations are produced for a large pulse ddgg,r=100 and for the bound of[24] is [Qmad for |A|—0,

the delayry=33. Note that efficiencies above 98% are in white. ]

Dotted linesX andY mark slices plotted in framé). (b) Transfer the bound of|2d] is [Qnaf?/A  for [A]—o.
efficiency P5() vs normalized two-step detuning/ ()., for A o .

=0 (X) and 8/Q,=—2.0 (Y), see dotted lines in fram@). It can be seer(and is intuitively obvious that the largest

range of two-step detuning$ occurs whemA =0, meaning

The conditions that () and (3) be middle eigenvalues thatAp=—As. The range ofs which gives good transfer
at the ends of the pulse overlap interval mean that adiabati®€n is set by}n, (i-e., transfer is affected by single-step
connectivity occurs within the region bounded by the hyperfower broadening When two-step detuning is zero, then

bolas of Eq.(15). Figure 3 displays these hyperbolas. any single-step detuning allows an adiabatic connection.
Conversely, for large single-step detuningsf the same
2. Peak-to-peak connectivity signs, population transfer is only possible whéhis very

. - - close to zero.
With pulses of finite support it is often found that the best

population transfer occurs when the start of the pump pulse,
att=typ, occurs slightly before the moment of peak Stokes
pulse, att=ty5, and the Stokes pulse terminates after the The choice of delay is important for minimizing the
pump pulse reaches its peak value. With such pulse timinggower of the lasers needed to achieve complete population
there occur early and late intervals when one pulse is weakransfer for given detunings. In order to have the largest
during which the needed nonadiabatic evolution can occur.separation between adiabatic eigenvalues, and hence the best
The requirement for strictly adiabatic evolution during the chance for adiabatic evolution, this delay should be as small
entire overlap intervaltgp ,tys) thus turns out to be more as possible. However, this need for strong coupling among
restrictive than is needed, and we therefore consider hasis states is balanced by the need to have an interval of
smaller time interval. If there is to occur an intersection ofdiabatic evolution at the start or end of the pulse-overlap
Stokes semidiabatic curveés necessity if there is to be a interval (i.e., close to the beginning for the Stokes semidia-
diabatic interval prior to the start of the pump pulsthen  batic diagram and close to the end for the pump semidiabatic
this must occur no later than the moment when the Stokediagran).
pulse is largest. Similarly, if there is to occur a crossing of When the delay is half the pulse length, then the times of
pump semidiabatic curvedor diabatic evolution after the pulse maxima coincide with the start or end of the pulse
end of the Stokes pulsethen this must occur no earlier than overlap,top=tys andtos=typ. There is then no distinction

D. Choosing the delay
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between the two criteria we have proposed for establishingletunings, then a doubling of peak Rabi frequency also
intervals of adiabatic evolution. Shorter delay will improve doubles the two required static detunings needed to produce
the transfer efficiency for a given pulse area and peak valudhe best population transfer. In such cases the notion of a
We find, from numerical simulation with pulse areas of two-photon linewidth loses usefulness.

Q2= 50, that the largest two-step width for a given

power is obtained for delay in the range of approximately 0.3 V. THE HYPER-RAMAN STIHRAP

to 0.4 of the pulse length. We also find that, for any delay in

the range of 0.3 to 0.4 of the pulse length, the hyperbolas of . . o

the pe%k—to—peak connectivip'zy alwa)gs give )égtisfactorajom) Rab_| freq_uency is produced _by a two-photon transition,
boundaries for population transfer, in the sense that for deds desf.”be? 'EL Eapse_fn:éA;Ne will showh_that atILhOLrjlghhthi
tuning values outside this connectivity region there is little CONVENtona (¥ 1) process achieves the highes

o : . transfer efficiency when the two-step resonance condifion
likelihood of lation transfer, and that the highest - . L .
1<einooc o1 POpUTation ranster, and mat e highest popu =0 holds, this choice is not the best when dynamic Stark

lation transfer occurs for detunings within this region. ; Lo .
shifts are present, as is inevitable with a hyper-Raman pro-
cess(STIHRAP).

We study here the extension of STIRAP in which doe

E. Numerical results

Given reliable values for atomic parametédipole mo- A. The (2+2) Hamiltonian
ments and polarizabiliti¢sand pulses, it is, in principle, a ) ) o
straightforward procedure to obtain numerical solutions to AS discussed in paper I, the RWA Hamiltonian for the
the time-dependent Schfimger equation. By producing hyper-Raman (2 2) STIHRAP can be written
many such numerical solutions for a range of the static de-

tunings A and &, one can view the general dependence of . —3(t) Qp(t) 0
population transfer upon these controllable parameters. _ s < < ~

Figure 3a) presents an example of this dependence, H(Y) 2 Qp(t)  Ap(+ASL) Q1) . (17)
shown as a set of contour lines of constant population trans- 0 ﬁs(t) (1)

fer P5(0) in the parameter space Afand 6. These numeri-

cal simulations use the sine-squared pulses of(EQ. with  |n place of the simple product of dipole and field amplitudes
pulse aread)m,,2=50 and delayrp=7/3. As would be  that characterizes the interactions of basic STIRAP, the two-
expected, population transfer is high along a ridgeparam-  photon Rabi frequency requires the product of a polarizabil-
eter spacewhere two-photon resonance occuéss 0. For ity matrix element and a pair of field amplitudgise., the
any &, the highest population transfer occurs for the choicentensityl 5(t)]. For linear polarizatioralong thez axis) the
A =0, making first-step detuning resonant. As can be seeffgrmulas read
the contours follow closely the various hyperbolas, either
those deduced from the requirement of full-interval connec- ~ 1
tivity, Eq. (15), or those deduced from the requirement of hQp(t)=— E<l|azz(wp)|2>lp(t),
peak-to-peak connectivity, EGL6). The former give slightly 0
tighter bounds on the detuning®s will be noted, the two
sets of hyperbolas have greater differences when there are 20 (t)=— L<2|a {w9)|3)1(t)
dynamic Stark shifts presept. S 2ceg 22 5S S\
The bottom frame Fig. ®) shows plots of transfer effi-
ciency P3(o0) vs two-step detuning, for two choices ofA. Note that because the interaction is proportional to the square
The two-photon linewidth, defined as the full width at half of the electric field amplitude, the associated Rabi frequency
maximum of such a curve, lies within the bounds given byhas a more sharply peaked pulse shape than is the case for
the hyperbolas. ordinary STIRAP(Rabi frequencies have narrower widths
The results presented in this figure are for the pulse aretor the given peak value; see Fig). 1
of 50. As the area grows larger, the contours become steeper. The definition of the static detunings becomes that of a
In the limit of infinite pulse area the full-overlap parabolas two-photon transition
serve as the boundaries between transfer efficiencies of unity
(within the enclosed regigrand zero. hAp=(Es—E ) —2fiwp, AAg=(E,—Ej3)—2hws.
(19

(18

F. Power broadening o ]
n place of the static diagonal elements of the RWA Hamil-

The connectivity area has been plotted for normalize4onian there now occur dynamically shifted single-step de-
variables, detunings divided by the peak Rabi frequencyfuning'S y y g P

Qmax- This means, for example, that a doubling of the peak

Rabi frequency(by increasing the laser powewill double ~

the range of detunings which will produce a given population ~ 2P(D)=A8pF [Ss(t) + Spp() ] = [Sis(t) + Sip(D)],
transfer. When there are no dynamic Stark shifts, so that the

best population transfer occurs for the resonance condition  _

5=0, the increased range éfcan be understood as power Ag(t)=Ag+[Sps(t) + Spp(t) ] = [ Sss(t) +Ssp(t)] (2D
broadening of the two-photon linewidth. However, when

there are dynamic shifts, and one overcomes these by statind a dynamically shifted two-step detuning

(20
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VI. DETUNING SENSITIVITY

H=8p~ A5+ (S0 + Sp(D) S0 +SrV], T TV

. . . . A. Connectivity regions
Like the two-photon Rabi frequency, the dynamic shifts

are proportional to the product of an atomic polarizability AS in Sec. IV, we analyze the system with the semidia-
and a field intensity. When computing shifts it is important toPatic eigenvalues, first when only the Stokes laser acts, and
consider the effect ogachfield uponeachtransition, i.e., Second when only the pump laser acts. The region of full-
both the Stokes laser and the pump laser cause shifts of boffYerap connectivity is bounded by the four branches of two
the initial and final level. We denote the shift in energy of NyPerbolas, which now read

statei caused by pulsa at timet as7S;,(t). This shift can ok
be computed from appropriate components(w) of the A_S<SA>:_(5_S<85>)+L(5) (usingt=typ)
frequency-dependent polarizability tensor and the intensity, 2(6—sg”) (289
1 ~
hSa(t)=— E(Hazz( wa) i) (1) for the Stokes curveé-®,
0
|Q0g/®
A) _ S P —
(a=P,Si=1,2,3). (23) A—sy )_(5_3%))_2(5——353‘”) (using t=t,g)
(28b)

Figure Xc) of paper | diagrams the relevant transitions for

(2+2) STIHRAP. for the pump curve®P. The regions of peak-to-peak con-
The hyper-Raman Hamiltonian matrix has the same fornectivity are now defined by the hyperbolas

mal expression as the matr{®) for (1+1) STIRAP. It is

only necessary to make the substitutidns: A +s{*)(t) and Ay oy | Qmad® .
65— 6+s(t) where the dynamic shifts are collected into ~SsT=(0mss 2(5—sY)) (using t=tws)
two terms(herea is eitherS or P), (293
$(0) =[S1a(t) = Spal1) 1 +[Ssa(t) = Spa(D)], for the Stokes curvé*®,
24 |Qmad?
s&(1)=Sya(t) — Sza(t). A=—sp)=(8-sp) =5 =15 (using t=typ)
(6—=sp”)

The influence of the dynamic Stark shifts is studied by using (29D

the same tools as developed in Sec. IV. for the pump curveP™™). Because the Hamiltonia(25) is

unchanged, apart from an irrelevant sign, under the transfor-
B. The (2+1) Hamiltonian mation (herea=S,P)

In paper | we considered examples of hyper-Raman
STIHRAP in which the pump transition takes place via a Sa ’30
two-photon transition, but the Stokes interaction remains the (30
conventional one-photon transitigsee Fig. 1) in paper I.  the study of all the generic situations is reduced to the study
The resulting (2-1) hyper-Raman RWA Hamiltonian can ¢ ihe cases involving positivé‘” and positivesﬁf) (same-

—-—s, M- A-—-A, 6--6

be writien sign shift$ or positives(® and negativesff) (opposing-sign
—=3(t) Qp(t) 0 shifty. The casess,”<0 are deduced from the previous
A R ones by applying the transformatiosf®)— —s{*), A—
HO=3| Qp(t) Bp()+Ag(t) Qs |. (259 —A, ands—-4.
0 Q1) 1) The effect of the dynamic Stark shifts, entering the equa-

tions as values of{*)(t) ands{’)(t) at specific times, is to
offset the hyperbolas from the positions they occupy in the

This expression is a variant of EQL7), but with Q(t) in absence of dynamic shifts. When the hyperbolas are offset in

place ofQ)(t) and with dynamic detunings defined as this way, there occur new options for connectivity. Specifi-

5 cally, in addition to the internal semidiabatic connectivity
Ap(t)=Ap+Syp(t) —Sip(t), (26) already described for the @11) STIRAP, it becomes pos-

sible to have semidiabatic connectivity if the eigenvalues

A(t)=Agt Syp(t) = Sap(t) @7 @i andw{ are either the top or the bottom values. There

are two possibilities for such axternal connectivity region
with #As=E,— Es—fiws andfiAp=E,— E,— 2hwp. Thus First, curves §1) att=tysand (P3) att=typ are each the

the dynamic Stark shifts are induced only by the pump fieldoottom eigenvalues. This condition is satisfied in a parameter
(through the two-photon procéssmeaning that we set region defined by the intersection of the right outside of the

s (t)=s)(t)=0. This is the Hamiltonian we shall use in Stokes h~yperbola~>(s) with the left outside of the pump hy-
numerical examples. perbola PP).  Alternatively, curves $1) at t=tys and
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FIG. 4. Connectivity hyperbolas and regiofieshed of peak-
to-peak connectivity for (2 1) STIHRAP (with dynamic Stark
shifts) as a function of two-step detuningand one-step detuniny
(detunings in units of peak Rabi frequen€y,.). The various
frames differ in the Stark shifis'®) ands{?. The column label &)
holds for s(?=0, (B) for s(?=0.50.., and C) for s(¥
=20 .y the row label (0) holds for s*)=0, (—) for s®)=

(C) take increasing values of the shift paramefét, while

the rows(+), (0), and(—) take positive, null, and negative
values for the shift parametsf®). In the top row the Stark
shiftss® ands'®) have the same signs, while in the bottom
row the two shifts have opposite signs. Table | gives explicit
values.

As can be seen, the presence of dynamic Stark shifts
causes the bounded region to separate into two nonoverlap-
ping regions, one including large positive values\aind the
other including large negative values. There is no symmetry
between positive and negative nor is the border exactly at
A=0. For anys'” the widths of the hashed regions increase
with increasing shifs®).

In presenting Fig. 4, we have assumed that shifts arise
only from the pump pulse. The graph can be used also when
the shifts are induced by the Stokes pulse, after making the
transformations— — 6 ands(®— —s{) . That is, one must
reflect the individual frames aroun®=0 (and consider then
s{)<0).

For the (2+2) STIHRAP, shifts can arise from both
pump and Stokes pulses. This produces the same frames of
Fig. 4 in the new coordinate systef-5+s{” andA— A
+s) | the relative shifts for the pump hyperbolas becoming
(s —s) | s — sy in this coordinate system.

B. Stark compensation

The occurrence of dynamic Stark shifts produces time-
dependent two-step detunings which make population trans-
fer difficult. It is possible to choose static detunings which
overcome the deleterious effects of the dynamic detunings.
In that sense, the static shifts provide a partial compensation
for the dynamic Stark shifts.

It is instructive to rewrite the conditions of internal con-

—Q and(+) for =40, | nectivity [bounded by the four branches of hyperbadlas)]

as

(P3) att=typ are each the top eigenvalues. This condition
means the intersection of the left outside of the Stokes hy-
perbola with the right outside of the pump hyperbola. Note
that for given Stark shifts, neither of these conditions can
hold for the same set of parametédi®., on the same dia-
gram. It is significant that the two-step resonance condition
6=0 never permits adiabatic connectivity with these
external-connectivity conditions.

Figure 4 shows examples of the connectivity regions
(hashed areasdefined by the semidiabatic hyperbolas, for
several choices of the dynamic Stark shifts of H2)

(S3s—Sist9)1

S+A\ | Qmad?
S)s— S5t T)< Za

(using t=tys), (313

(Szp—S1pt9)

6—A\  [Qmad?
S3P_SZP+T)< Za

(using t=typ). (31b

STIRAP. We assume that shifts arise only from the pump/e see clearly from these formulas that, to satisfy the con-
pulse, and we denot?=s{?  s*)=s®) ditions of internal connectivity, the static two-step detunéhg
Frame @0), center left, repeats the case of Fig. 3, wherecan be used to compensate the dynamic Stark shift between

the Stark shifts are negligible. The column&)( (B), and the initial and final state, and+ A can compensate dynamic
’ Stark shifts involving the intermediate level. This is an im-

TABLE I. Values of the Stark shiftss(®),s) in units of ),  Portant result of our analysis: rather than attempt the difficult

for Fig. 4. task of producing a frequency-varying pulse which compen-
sates dynamic Stark shifts at each moment, it is possible to
A B C employ detuned constant-frequency pulses.
(+) (4,0 (4,05 4,2 . o .
©) 0.0 0,05 0.2 . C. ExampI(.e. OF)p05|te sign shifts -
(-) (—1,0) (—1,0.5) -1,2) In any intended application of hyper-Raman STIHRAP, it

is important to obtain reliable estimates of polarizabilities,
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FIG. 6. Eigenvaluesunits of Q,,,,) vs time (units of 7) for the
parameter choicesd), (B), and C) of Fig. 5. (A) A=0.5Q .
6=1.20 a; (B) A=—=150pa, 6=1404.: and C) &
=0.75) yax, A=—1.50,.,. First row: diabatic curves; second
row: Stokes-diabatic curves; third row: pump-diabatic curves; bot-
tom row: adiabatic curves. Numbers on curves show basis state
associated with an asymptotic eigenvalue. Arrowheads mark the
start and end of successful population transfer.

FIG. 5. Contours of constant transfer efficierigy(«) for vary-
ing relative detunings\/Q ., and 6/Q,.x and the conditions of
region (C—) of Fig. 4. Efficiencies above 98% are shown as white.
Dashed lines: peak-to-peak connectivity hypertB{® for pump;
dot-dashed lines: peak-to-peak connectivity hyperbBf@ for
Stokes; circles: full-overlap connectivity hyperbot™ for pump.
Points A and B mark parameter values of highest transfer effi-
ciency. PointC marks a third point, for display in Fig. 6.

from which one can obtain estimates of two-photon Rabi ) )
frequencies and dynamic Stark shifts. To elucidate some dfc ) Of Fig. 4. One readily sees that the contours ch;IIow
the properties of population transfer, we consider here som@UIte vgell the hyperbolas of peak-to-peak connectivity
simple model examples of Stark shifts. The effects are con@nd P: little population transfer occurs when the corre-
tained within two parameters'®(t) and s)(t). To study sponding constraints are not met. It is clear that the full-
the peak-to-peak connectivity, these parameters are eval@QVerap connectivity hyperbolas” are not relevant for
ated at the fixed timéyp corresponding to the peak pump bounding the contours. For simplicity we have not_plot_ted
pulse. We will then use in the following the convenient no-the (nonshifted Stokes full-overlap hyperbola, which is
tation close to theP® curve[as in (1+1) STIRAP].
As expected from the hashed regidd-{) of Fig. 4, there
s=s9(typ), sM=sM(typ). (32)  occur two disjoint regions of population transfer. There are
thus two distinctly different choices for optimal values ®f
As will be seen, there are important differences betweer@ndA. For the upper region, good valugsoint A) are near
cases when these two parameters have the same sign or dp= 0.5y, 6=1.2) 4. For the lower region, good values
posite signs. (point B) are neaA = — 1.5Q 1.y, 6= 1.4Q ax-
One can see that the region of highest population transfer
1. Contours is well within the predicted region for peak-to-peak connec-
tivity (the hashed regions of Fig).4

To show the usefulness and relevance of the various con- .
o . : One can also see that there does occur some population
nectivity relations, we present examples of numerical solu-

tions 1o the Schidinaer eauation. for various choices of the transfer for detuning values which lie outside the peak-to-
excitation aramete?s qu ShOV\; contour plots of transfer efpeak connectivity region. The point label€ds an example.

" P g P ) Although the parameter choices here do not meet the peak-
ficiency P4(e0) for fixed pulse delayrp (and fixed peak

value ()., but varyingA and 6. The plots also display the tsoe'tpgaliuﬁﬁ chﬁ:,[;v'tgoﬂr;ts;?\}i:hey do still fall within bounds
hyperbolas which bound the region of peak-to-peak connec- y P Y

tivity and of full-overlap connectivity.

Figure 5 shows an example of a contour plot of transfer 2. Eigenvalues
efficiency P3() when the Stark shifts(® and s®) have It is instructive to examine plots of eigenvalue curves for
opposite signghere s?=2.00 ., sS®)=—1.00,,; Note  particular cases of the parameter choices.
that these values are not far from the ones for helaifh Figure 6 shows three examples of time histories of eigen-

=187 oy, SY)=—1.5M . [1]), as occurs for the frame values. ColumnsA) and B) are for choices of detunings
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FIG. 7. Contours of constant transfer efficiency for varyihg FIG. 8. Eigenvalues vs time, as in Fig. 6, but for parameter
and é as in Fig. 5 but for the conditions of regio€ ) of Fig. 4. choiceé é\) (B), and C) of i:ig 7 (A). 5‘_1 350 A
) ’ - 1 -+ max:
. . - =450 (B 0=0.20 00, A=140.,., and C) &
which produce the highest transfer efficien@y. both cases, _ 753 . A(:)l.sﬂ o max ©
we have found numerical efficiency of more than 99%he mee max

adiabatic curves in columnA) are an example involving  _q o) This latter choice is less sensitive to small varia-
diabatic transitions,(t) — ®,(t) — ®5(t), whereas column yions in detunings, and thus it offers a more robust choice.
(B) is a transition®,(t) —®@4(t). In each of these cases \yjthin the region bounded by peak-to-peak connectivity
there occurs, just before the end of the Stokes pulse, a Neg e olas, the contour lines show a clear asymmetry of the
degeneracy of eigenvalues. Were the evolution to be ad'adependence of transfer efficiency up&rThe region border-

batic, population transfer would fail. But because the Stoke1¢,ng (to the lefy the hyperbolag™®) is favored over regions
pulse is weak at this time, the system evolves diabaticall)(Ni,[h smallers.

and transfer succeeds.

Column (C) shows an example in which the conditions of 2. Eigenvalues
adiabatic connectivity are met, yet little transfer occ(as
efficiency of 32% is found The difficulty here is, again, a
near degeneracy when the Stokes pulse is weak. If the evy@lues. , o
lution were adiabatic, then transfer would be complete. With  €olumn (A) shows an example of high transfer efficiency

the given pulse areas, some diabatic coupling occurs betwedf9% is found numerically As can be seen from the adia-
states®,(t) and ®,(t), and so population transfer is not batic curves, successful transfer requires that the diabatic
complete. evolution®,(t) — P 4(t) occur at near-degeneracy at the end

of the Stokes pulse.

Column B) shows an example of relatively high effi-

ciency (97% is found which requires three intervals of di-
1. Contours abatic evolution, one of which occurs just after the pump

%ulse begins. The sequence may be viewed as the changes

1g)|_)q)3((tc))_)(r?1(t)_@3(t)' le in which there is no adi
) 5 A) olumn shows an example in which there is no adia-
::r:ﬁss%rp?hz%?ﬁ:g%i; _oflgg mj" is)v;ifﬁﬁgagr:(fegicr; batic connectivity, either full-overlap or peak-to-peak, yet

9. 2. P 9 appreciable transfer occu(41% is found for this example

figure, the contours fit within a region bounded by peak—tp—AS can be seen from the adiabatic curves, there occurs a

peak hyperbolas, and little population transfer occurs outsid

Figure 8 shows three examples of time histories of eigen-

D. Example: Same-sign shifts

Figure 7 shows an example of a contour plot of constan
transfer efficiency when the Stark shi&” ands®) have

(diminishing with distance from the peak-to-peak connectiv-
ity hyperbola$ outside the peak-to-peak connectivity bound-the needed chang®y(t) —®5(t).

aries. )
There occur two disjoint regions of population transfer. E. General observations
For the upper region, a good choi@eoint A) for static de- As with the (1+1) STIRAP, our numerical simulations

tunings is nearA =4.5Q .., 6=1.3%) 5. For the lower of (2+1) STIHRAP suggest that it is best to have delay in
region, a good choicépoint B) is near A=1.40..., 6 the range of 0.3 and 0.4 of the pulse length.
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In the limit of infinite pulse area, leading to the absence of
diabatic following during the pulse overlap, the good transfer
area is bounded by the full-overlap hyperbolas.

Several other features of the contour plot are noteworthy,
and are typical of features found for other Stark shifts.

In each example good population transfer is possible only
within a limited range of detuningA. However, within this
range there are values df for which no choice ofé can
produce good transfer.

It is also notable that the right-hand portion of the con-
nectivity region shows a pronounced ripple structure. This
observation is discussed in more detail in the next section.

A/anczaz'

VIl. OTHER CONSIDERATIONS
A. Regions of interferences

Although the simple notion of connectivity suffices to de-
limit regions where good population transfer can occur, there
are interesting patterns of valleys visible along two of the
boundariegsee, for example, Fig.)5These are regions of
parameter space lying between two boundary hyperbolas:
those of peak-to-peak and full-overlap connectivity. In such FIG. 9. Contours of constant maximum populat®(t) during
cases there occur a pair of diabatic curve crossings. SuccedBe pulse process, for varyinyand § and the conditions of Fig. 5.
ful population transfer requires that the system pass adiabatRashed lines: peak-to-peak connectivity hyperts@f& for pump;
cally through the first interval and diabatically through thedot-dashed lines: peak-to-peak connectivity hyperbBf@ for
second. Figure 10 shows an example of adiabatic eigenvapiokes. The lines marked with a plus are the bound region of ap-
ues exhibiting this possibility. However, the evolution is nei- Preciable populatiofP,(t) during the process.
ther completely adiabatic nor completely diabatic. During ) . i i
the evolution, the basis-state compositioroft) splits into 0N occurs in state 2 during the process. In a first approxi-
two parts after the first avoided crossing and these amplifation, we can argue that appreciable population occurs in

tudes interfere when time evolution bring&(t) to the sec-  State 2 during the process whtire pump two-photon energy
ond avoided crossing. The interferences depend on the tim&®p IS Swept by the time-shifted two-photon resonange E
between the two avoided crossings, and through this wpon 1 S2p(t) —[E1+S;p(1)], i.e., when

andA. |Ap|<|Sip(tmp) — Sop(tmp)|- (33

6/ Qm(u:

B. Population in the intermediate state The previous condition is equivalent to saying that the diaba-

It is usually desirable to minimize the population which tic curve connected to 1 crosses the one connected to 2. We
occurs transiently in statg, during the population transfer. thus find that the region of high population in level 2 lies
In ordinary (1+1) STIRAP, under the condition$=0, such  between the two linetsee Fig. 9,
population occurs as a consequencgwfintentional non-
adiabatic evolution, which introduces some dressed state:
®,(t) or d4(t) into the composition of the state vector
¥ (t). When detunings are present: 0, even adiabatic evo-
lution of ¥,(t) will introduce some contribution tob(t)
from basis statey,.

Here we note, for the examples considered above, how.
the maximum contribution ofy, to W (t) is affected by the
choice of static detuning8 and A.

Figure 9 shows contours of peak valBg(t) for the same
conditions used in producing Fig. 5.

The peak population in statg, depends most strongly ,
upon the single-photon detunin, which brings this state — : :
into resonance with thé&wo-photon pump frequency. The o o2 o o6 0B 1 12
population is relatively insensitive t6, the two-step detun-
ing. tfr

Unlike the contours of5(0), these contours oP, do
not show a population confined within a region bounded by F|G. 10. Adiabatic eigenvalugsinits of Q,,,) Vs time (units of
connectivity hyperbolas. 7 for A= =250 a0, 6=2 Qax- At the left-hand avoided cross-

We can give simple analytic expressions which approxi-ing, there occurs a splitting of the population in two parts which
mately bound parameter regions where appreciable populaecombine and interfere at the right-hand avoided crossing.

lues

1genval

Adiabatic e




PRA 58 STIMULATED HYPER-RAMAN ... . Il. ... 4703

Rabi frequencies

t/T

FIG. 11. Rabi frequencies vs time for {2L) STIHRAP. Full
lines are Gaussian pulses, dashed lines are sine-squared pulses.

8/ Qmaa

A=-5, (349
FIG. 12. Contours of constant transfer efficiency as in Fig. 5 but
A=—6+[s9(typ) +sM(typ)]. (34b) for Gaussian pulses.

We note that this approximation is valid inside the connec-
tivity region, but not in the left-hand outside. VIIl. CONCLUSIONS
C. Pulse shape effects We have considered coheren_t p(_)pulation transf_er pro-
) _ ) ) .. duced by delayed pulsdéa generalization of STIRAPwith
The analysis of adiabatic following for pulse pairs is sim-y_photon coupling between the initial and intermediate
plest when the pulses have finite temporal support, so thaates. Although the use of a two-photon transition in place
there exists only a limited time during which both pulses actof 5 gne-photon transition introduces few novel mathemati-
Gaussian pulses, by contrast, extend indefinitely in time. A-5| gjstinctions, the physics of the excitation process can be
comparison of the finite-support sine pulsased in the pre-  qyjte different from conventional STIRAP. Because the two-
ceding analysiswith Gaussian pulses is therefore instruc- hhoi0n Rabi frequency is, like the dynamic Stark shifts, pro-
tive. We use a Gaussian pulse having the same half-widthyrtional to intensity and polarizability matrix elements, it is
0.57, as the sine-squared pulse, essential to consider the effects of such shifts. They can dra-
f(t)=exd — 16 In At/ 7)2]. (35) ;gimcally alter the possibility for successful population trans-
This pulse is normalized to have aregdtf(t) We have shown how to choose(statig detuning from
B b i . ; the two-step resonance to reduce the detrimental effect of
= 7ym/16 In 2~0.53r; the full width at half maximum of time-dependent Stark shifts
f(t)2 is 0.354 T . .
Figure 11 shows the two classes of pulses being considg We have presented some simple analytic expressions for

: o ounding the range of detuningsne- and two-stepwhere
e_red. The full lines shqw the finite support pulses, the dashe uccessful population transfer can occur. Though the notions
lines show the Gaussian pulses.

Figure 12 shows an example of population transfer effi behind the formulas are very simpleonnectivity of adia-

. . . atic eigenvalues for a specified time intejyahey provide
ciency contours. The _condmons are those of Fig. 5 excel{;Eseful approximations, as our numerical modeling demon-
that pulses are Gaussian in shape.

As can be seen, there are choiceso@ind 6 which pro- strates.

q hiah transfer efficiency. However. it is also noteworth In the present work we have discussed the phenomenol-
uce nigh transier efliciency. However, It IS also noteworthy,, y. Clearly, suitable choices for static detunings and pulse
that for a range of parameter choices the process is not s

robust as with pulses of finite support: small changes in ded elays can only be identified when the relevant polarizabil-
u with pu Inite support. ges| ities are known. Calculations are needed to ascertain the suit-
tuning (or in pulse areacan produce large changes in popu-

lation transfer. This sensitivity is to be expected from theablllty of a given choice of laser parameters,
nature of the curve intersections. In ideal cases there would
be an avoided crossing followed by a degeneracy at which
diabatic evolution would occur. However, with Gaussian

pulses there are never any adiabatic degeneracies, becauseS.G. thanks the European Union HCM Network “Laser
there is always some finite amplitude of each pulse, an€ontrolled Dynamics of Molecular Processes and Applica-
hence diabatic evolution cannot be guaranteed. tions” (Grant No. ERB-CHR-XCT-94-0603and “La Fon-
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