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Collisions in Zero Temperature Fermi Gases
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We examine the collisional behavior of two-component Fermi gases released at zero temperature
from a harmonic trap. Using a phase-space formalism to calculate the collision rate during expansion,
we find that Pauli blocking plays only a minor role for momentum changing collisions. As a result, for a
large scattering cross section, Pauli blocking will not prevent the gas from entering the collisionally
hydrodynamic regime. In contrast to the bosonic case, hydrodynamic expansion at very low tempera-
tures is therefore not evidence for fermionic superfluidity.
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cold, interacting, two-spin fermionic mixture [7–9] has for x � 0�x > 0�, and EF � �h�6N i!i� is the Fermi
The last few years have seen rapid progress in the field
of ultracold atomic Fermi gases [1–6]. Most recently,
strong interactions have been observed in these gases
[7–10]. Studies of these systems are of particular impor-
tance because of the possibility of creating BCS-like
superfluids [11,12]. Such a realization would establish
highly controllable model systems for studying novel
regimes of fermionic superfluidity.

A unique feature of atomic systems is the ability to
analyze the gas by turning off the trapping potential and
observing the expansion. The expansion behavior can
reveal the momentum distribution and the effects of
mean-field interactions and collisions. Hydrodynamic
behavior can be easily detected when the gas is released
from an anisotropic atom trap. In that case, the spatial
anisotropy of the cloud reverses during free expansion.
This is caused by the larger pressure gradient along the
tightly confining direction, which leads to a faster ex-
pansion, and subsequent reversal of the spatial anisotropy.
This anisotropic expansion was used to identify the for-
mation of the Bose-Einstein condensate (BEC) [13,14].

A BEC obeys the hydrodynamic equations of a super-
fluid [15]. However, collisional hydrodynamics arising
from a high elastic collision rate can cause the normal
component to expand anisotropically [16–18]. For the
bosonic case, two key points make the distinction be-
tween the two fractions obvious: (i) At the typical tran-
sition temperature, the BEC has much less energy than
the normal cloud, so the two components are clearly
separated in size. (ii) The scattering rate needed to
achieve condensation is usually not large enough that
the normal gas is in the hydrodynamic regime. For these
two reasons, the appearance of a dense anisotropic cloud
during expansion is considered to be the ‘‘smoking gun’’
for the formation of a BEC.

A superfluid Fermi gas is predicted to obey the super-
fluid hydrodynamic equations of motion [19–22] and
therefore should show strong anisotropic expansion when
released from an anisotropic harmonic trap [22]. The
recent observation of anisotropic expansion of an ultra-
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created considerable excitement and raised the question
under what conditions is this expansion a signature of
fermionic superfluidity and not of collisional hydrody-
namics. There are two major differences from the bosonic
case: (i) Since the energy of ultracold fermions always
remains on the order of the Fermi energy, the size in
expansion for both normal and superfluid components
will be similar. (ii) Current efforts towards inducing
BCS pairing all take place in strongly interacting sys-
tems. This results in a large scattering rate modified only
by the effects of Pauli blocking at low temperatures.

The interpretation of the observed anisotropic expan-
sion in strongly interacting Fermi gases is therefore criti-
cally dependent on the role of Pauli blocking of collisions
during the expansion. The tentative interpretation of
anisotropic expansion as superfluid hydrodynamics [7]
was based on the assessment that collisions are strongly
suppressed at sufficiently low temperatures [7,23–28].

Here we show generally that the collision rate becomes
independent of temperature and prevails even at zero
temperature, if the local Fermi surface is strongly de-
formed. This happens in an extreme way during ballistic
expansion. In the small cross-section limit, less than half
of the total number of momentum changing collisions is
suppressed. For a large scattering cross section, the ab-
sence of suppression results in strong collisional behavior
of normal Fermi gases during expansion for all initial
temperatures. This result has the important consequence
of rendering expansion measurements of Fermi gases
near Feshbach resonances ambiguous for differentiating
between superfluid and normal components.

We first consider the expansion of a single component
Fermi gas. At ultralow temperatures, fermionic antisym-
metry prevents s-wave scattering in a single component
and renders the gas completely collisionless. The phase-
space occupation f�x1; x2; x3; p1; p2; p3� � f�x;p� at zero
temperature in a harmonic trap with frequencies
�!1; !2; !3� can be written as f�x;p� � ��EF �P
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energy for N particles. At time t � 0, the trapping po-
tential is turned off suddenly, allowing the gas to expand
freely. At t � 0, the momentum-space Fermi surface at
x � �x1; x2; x3� isX
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a sphere of radius
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interacting system, the evolution of the Fermi surface can
be derived from the simple evolution law for ballistic
expansion x�0� � x�t� � pt=m, as long as the Fermi
wavelength is much smaller than the cloud size.
Substituting this in Eq. (1), we obtain
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FIG. 1. (a) Deformation of the momentum-space Fermi sur-
face at x � 0, from a sphere to an ellipsoid during expansion
from an anisotropic harmonic trap. The case of cylindrical
symmetry is shown, where the three-dimensional distribution
is symmetric about the vertical axis. The parameters chosen are
an aspect ratio � � 0:2 and expansion times !?t � 0, 1, 3, and
10. (b) The deformation at a position radially displaced by��������������������
EF=m!2

?

q
. (c) Geometrical representation of collisions in

momentum space. The two spin states have identical distribu-
tions. Three different types of collisions are shown for par-
ticles with initial momenta p1 and q1—none, one, or both of
the final states are occupied.
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the momentum distribution is isotropic at all points. The
anisotropy of the local Fermi surface during expansion
can be understood by simple classical kinematics. The
particles at position x�t� originated from x�0� � x�t� �
pt=m. For long times t, the local spread in momentum
pi�t� is proportional to the initial spread in position xi�0�.
For anisotropic traps this gives rise to a momentum dis-
tribution during ballistic expansion, which is locally
anisotropic. Of course, the position-integrated (i.e.,
global) momentum distribution remains isotropic at all
times. For a mixture of two-spin states, the deformation
of the local Fermi surface from a sphere into an aniso-
tropic ellipsoid during expansion removes Pauli blocking
of final states and allows collisions, as will be shown.

The momentum distribution at x given by Eq. (2) also
allows us to calculate the spatial density distribution as
the volume of the momentum-space ellipsoid,
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in agreement with other derivations [29]. For large t, the
spatial distribution becomes isotropic, mirroring the iso-
tropic momentum distribution in the trap.

Specializing to the experimentally relevant case of
a cylindrically symmetric trap, ballistic expansion
deforms the local Fermi surface into an
ellipsoid of cylindrical symmetry with aspect ratio������������������������������������������������
�1�!2

zt
2�=�1�!2

?t
2�

q
[Fig. 1]. Here !?�!z� is the

radial (axial) trapping frequency. For long times t, this
deformation reaches the asymptotic aspect ratio
!z=!? � �, the initial spatial aspect ratio in the trap.

Now consider an equal mixture of two-spin states
which interact via a finite s-wave scattering length. We
assume that the trapping frequencies are identical for the
two states (standard experimental conditions) and spe-
cialize to the usual case of two-body elastic collisions in
the local-density approximation. These collisions have an
appealing geometrical picture in the local phase-space
description [Fig. 1(c)]. Each elastic collision involves one
particle from each spin state. We label with p’s and q’s the
momenta of the two different spin states. Consider the
collision p1 � q1 ! p2 � q2. Conservation of momen-
tum and kinetic energy mandates p2 � q2 � p1 � q1

and jp2 � q2j � jp1 � q1j. These relations restrict p2

and q2 to lie on diametrically opposite ends of the sphere
with p1 � q1 as a diameter. The deformation of the local
Fermi surface during expansion opens up unoccupied
final states p2, q2 and therefore allows collisions to take
place even in a zero temperature Fermi gas [Fig. 1(c)].

The effect of collisions can be formally calculated
from the Boltzmann transport equation for the evolution
of the phase-space distribution f�x;p; t�. In the absence of
external potentials and neglecting mean field we have
[30]

@f
@t

� v �
@f
@x

� 	coll�f	; (4)

where v � p=m and 	coll�f	 describes the effect of colli-
sions. Collisions attempt to restore local equilibrium by
countering the deformation of the momentum-space
Fermi surface during free expansion [Eq. (2)].
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	coll�f	 can be written as the collision integral:
	�x;p1; t� � �
�

4�h3

Z
�x;t�

d3q1d
2

jp1 � q1j

m
�f�p1�f�q1��1� f�p2���1� f�q2��� f�p2�f�q2��1� f�p1���1� f�q1��	;

(5)
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FIG. 2. (a) Collision rate as a function of expansion time in
the perturbative approximation for the initial aspect ratio � �
0:03. Dashed line: total classical collision rate 	cl; thin line:
classical rate for momentum changing collisions 	cl;p; thick
line: collision rate for fermions 	. The displayed rates were
evaluated at x � 0 and p1 � 0 and give an effective upper
bound on the Fermi suppression. (b) Allowed fraction of
collisions F��� for a zero temperature two-spin Fermi gas.
For an initial aspect ratio � � 0:05, F is 0.5. For large anisot-
ropy (� ! 0), F approaches �0:55.
where � is the momentum-independent cross section,
f�pi� � f�x;pi; t�, f�qi� � f�x;qi; t�, and  points along
p2 � q2. The integral over q1 is over the momentum
ellipsoid at position x and time t for one of the spin states.
The first term in the integrand is the collision rate for the
process p1 � q1 ! p2 � q2. The second term corre-
sponds to the process p2 � q2 ! p1 � q1 and ensures
that only distribution changing collisions contribute.

Pauli blocking is expressed in the suppression factors
for the final states �1� f� in 	. The collision integral
neglecting Pauli blocking, 	Cl;p, is furnished by setting
these suppression factors all equal to 1 in Eq. (5). This is
the rate for classical collisions which change the momen-
tum distribution. The total classical collision rate 	Cl is
the first term on the right-hand side of Eq. (5) without any
suppression factors. In addition to 	Cl;p, this also contains
the rate for collisions which do not change the momentum
distribution and thus do not affect observables of the
system. Figure 1(c) shows examples of these different
types of collisions. p1 � q1 ! p2 � q2 contributes to
	Cl, 	Cl;p and 	. p1 � q1 ! p3 � q3 contributes to 	Cl

and 	Cl;p. p1 � q1 ! p4 � q4 contributes only to 	Cl. To
determine the effect of Pauli blocking, we compare 	 and
	Cl;p for a small �. These rates at time t can then be
calculated perturbatively, by propagating the system bal-
listically for time t and then evaluating Eq. (5) with and
without the suppression factors.

Figure 2(a) displays the numerically calculated colli-
sion rates 	, 	Cl;p, and 	Cl, evaluated at x � p1 � 0, as a
representative case, for � � 0:03. Both 	 and 	Cl;p in-
crease initially as the deformation of the Fermi surface
becomes more pronounced. For long times (!?t � 1),
they are both suppressed because both the density
(
R
d3q1) and the relative velocity (jp1 � q1j=m) drop.

The two curves approach each other with time since
Pauli blocking becomes less effective with stronger de-
formation. The fraction of momentum changing colli-
sions not affected by Pauli blocking, F��� �R
dt	�0; 0; t�=

R
dt	Cl;p�0; 0; t�, is shown in Fig. 2(b). Our

main result is the inefficiency of Pauli blocking during
expansion from anisotropic traps. For � < 0:05, F > 0:5,
and approaches �0:55 as � approaches 0. Most experi-
ments work in this regime of trap aspect ratio.

The above results form an upper bound on the Fermi
suppression even if we consider all possible collisions
occurring in the system, for arbitrary x and p1. First,
we observe that for all x, at any time t, the local Fermi
surface is identically deformed and different only in size
according to the local density [Eqs. (2) and (3), Fig. 1].We
have checked numerically that to within 5% , the central
100401-3
momentum provides a lower bound on 	 within a mo-
mentum ellipsoid, at all x and for all t. Next, we note that
for x � 0, the density n�x; t� puts more weight at longer
times than n�0; t� [Eq. (3)]. Since Fermi suppression be-
comes less effective with time, Pauli blocking is most
effective at x � 0. The calculation for x � p1 � 0 thus
provides an effective upper bound for the overall colli-
sional suppression in the system. We conclude that more
than half of all the possible collisions are not Pauli
blocked for typical experimental �.

So far, we have not considered the effect of the colli-
sions themselves. Collisions drive the system towards
equilibrium, which corresponds to an isotropic Fermi-
Dirac distribution. If this collisional relaxation [Eq. (5)]
is much faster than the nonequilibrium perturbation due
to ballistic expansion [Eq. (2)], the momentum distribu-
tion maintains local equilibrium at all times. The
Boltzmann equation then leads to the hydrodynamic
equations [30]. For free expansion from anisotropic traps,
these equations lead to reversal of anisotropy [16,17].
Even if equilibrium is not fully maintained, collisions
always have the effect of transferring momentum from
the weakly confining axis to the strongly confining axis,
resulting in an eventual spatial aspect ratio >1 [17].

We now want to reconcile our new result that Pauli
blocking is inefficient during free expansion, with pre-
vious results [26] which show that at low temperatures,
100401-3
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collisional damping of collective excitations is sup-
pressed. For this, we derive an equation of motion for
the momentum-space anisotropy � to leading order in �
and T=TF [31]:

_�� �
1

3
�@xvx � @yvy � 2@zvz� �

n�pF

m
C
�
�;

T
TF

�
; (6)

where C describes the collisional relaxation and has the
asymptotic forms:

C
�
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�
�
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�2�; � � � TTF

�;
96
49�

3; � � � TTF
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(7)

In terms of �, the aspect ratio of the momentum-space
ellipsoid is

�������������������������������������
�1� ��=�1� 2��

p
. pF, T, and TF are the

local Fermi momentum, temperature, and Fermi tem-
perature. Equation (7) was derived from the second mo-
mentum moment of the Boltzmann equation [Eqs. (4) and
(5)], using a Fermi-Dirac distribution with an anisotropic
Fermi surface as ansatz [32]. The numerical coefficients
were obtained by analytic integrations over momentum
space.

At zero temperature, there is no linear term in � in
Eq. (7). This shows that Pauli blocking is efficient for
small anisotropy. This is the case for small amplitude
excitations in a trapped degenerate gas [26]. However,
for the large anisotropies of ballistic expansion, the
temperature-independent �3 term which is not affected
by Pauli blocking, is responsible for collisional relaxation.

Equations (6) and (7) allow us to distinguish collision-
less from hydrodynamic behavior in different regimes.
The driving term involving v is on the order of the trap
frequency !? and the damping term has a prefactor
n�vF. Therefore, the dimensionless parameter character-
izing the attainment of the hydrodynamic limit is �0 �
n�vF=!?. If �0 � 1, one can neglect collisions entirely,
and the gas will expand ballistically. For small anisotro-
pies, hydrodynamic behavior requires �0�T=TF�

2 � 1.
For large anisotropies, hydrodynamic behavior requires
�1=3

0 � 1. At ultralow temperatures, the expansion after
release from a highly anisotropic trap may be collision-
less initially, but as � grows, the �3 term in Eq. (7) will
become important and induce hydrodynamic behavior.

Our calculations clearly predict that for parameters of
current experiments, �0 > 1, free expansion will not be
collisionless, but show behavior which is at least inter-
mediate between collisionless and hydrodynamic [17].
Full hydrodynamic behavior may not be achieved, since
for small �, Pauli suppression becomes effective again.
Further studies are necessary in order to assess how much
this behavior would differ from superfluid expansion.
This could be realized by extending analytical studies
[17] to high degeneracies or by Monte Carlo techniques
[33]. Our main conclusion is clear, however, that the
breakdown of Pauli blocking under free expansion means
100401-4
that hydrodynamic expansion will not be the dramatic,
qualitative signal for superfluidity in strongly interacting
fermions, the way it was for BEC.
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