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Abstract

The phenomenon of stochastic resonance in a bistable system with time-delayed feedback driven by non-Gaussian noise is investigated. Com-
bining the small time delay approximation, the path-integral approach and the unified colored noise approximation, a general approximate
Fokker–Planck equation of a stochastic system is obtained. The effects of the parameter q indicating the departure from the Gaussian noise,
the delay time τ , and the correlation time τ0 of the non-Gaussian noise on the quasi-steady-state probability distribution function (SPD) and the
signal-to-noise ratio (SNR) are discussed. It is found that the number of peaks in SPD and the reentrant transition between one peak and two peaks
and then to one peak again in the curve of SNR depends on the parameter q, the delay time τ , and the noise correlation time τ0.
© 2006 Elsevier B.V. All rights reserved.

PACS: 05.60.Cd; 05.40.-a; 05.45.-a
1. Introduction

Recently, stochastic systems with time-delayed feedback
have attracted much attention in various fields, such as stochas-
tic resonance with delayed interactions [1–4], synchronized
and coordinated movements with time delay [5–7], laser sys-
tems with optical feedback [8–15], feedback-regulated voltage-
controlled oscillations [16–19], etc. In these systems, the time
delay arises mainly due to a finite transmission speed of matter,
energy, information and so on.

In last decades, stochastic resonance (SR) has been inves-
tigated extensively due to its potential applications [20–45].
Generally, SR is characterized by the optimization of the out-
put signal-to-noise ratio (SNR) in nonlinear dynamical systems
when a weak external signal is added. However, most studies
of stochastic resonance neglect possible effects caused by time
delays. This is mainly due to the difficulty in analytic methods
of treating the non-Markovian nature of the delayed stochastic
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systems [46–51]. Moreover, in most of the previous analyses
about stochastic resonance, the fluctuations are assumed to be
Gaussian noise sources. However, some recent experimental
and theoretical results for one kind of crayfish and for rat skin
offered strong indications, that there could be non-Gaussian
noise sources in these sensory systems [52–58]. Thus, stochas-
tic systems with the time-delayed feedback and non-Gaussian
noise need to be investigated.

In this Letter, the phenomenon of stochastic resonance in
a bistable system with time-delayed feedback driven by non-
Gaussian noise is investigated. The parameter q indicating the
departure from the Gaussian noise is employed to analyze the
non-Gaussian noise with q-dependent probability distribution.
In Section 2, methods of the small time delay approximation,
the path-integral approach and the unified colored noise ap-
proximation (UCNA) are applied to obtain the approximate
Fokker–Planck equation. In Sections 3 and 4, the analytic ex-
pressions of quasi-steady-state probability distribution function
(SPD) and the signal-to-noise ratio of a bistable system is de-
rived. The effects of the parameter q , the delay time τ , and the
correlation time τ0 of the non-Gaussian noise on the SPD and
SNR are discussed. In Section 5, the numerical simulation is
with time-delayed feedback and non-Gaussian noise, Physics Letters A
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employed to check the validity of the approximation methods.
In Section 6, the reentrant transition between one peak and two
peaks and then to one peak again in the curve of SNR is pre-
sented on the parameter planes of (τ–q), (τ0–q), and (τ–τ0).
A discussion concludes the Letter.

2. General form of Fokker–Planck equation

A nonlinear dynamical system that contains time delayed
feedback and non-Gaussian noise describes a non-Markov sto-
chastic process. It is necessary to develop some approximate
methods to reduce the non-Markov process to the Markov
process in order to obtain analytic results. The methods of the
small time delay approximation, the path-integral approach and
the unified colored noise approximation can be used in the
analysis [34,46–61].

A general delayed stochastic system can be described by the
following differential equation

(1)
dx(t)

dt
= h

(
x(t), x(t − τ)

) + g1
(
x(t)

)
η(t) + g2

(
x(t)

)
ξ(t),

where τ is the delay time of the system. The noise term η(t)

has a non-Gaussian distribution [52,53] with

(2)
dη(t)

dt
= − 1

τ0

d

dη
Vq(η) + 1

τ0
ε(t),

and

(3)Vq(η) = P

τ0(q − 1)
ln

[
1 + τ0

P
(q − 1)

η2

2

]
.

The variables ε(t) and ξ(t) are Gaussian white noise terms.
The statistical properties of the noise terms are characterized by
their first and second moments〈
ε(t)

〉 = 〈
ξ(t)

〉 = 0,〈
ε(t)ε(t ′)

〉 = 2Pδ(t − t ′),〈
ξ(t)ξ(t ′)

〉 = 2Qδ(t − t ′),
(4)

〈
ξ(t)ε(t ′)

〉 = 0.

Here, P and Q are the intensities of Gaussian noise terms of
ε(t) and ξ(t). The parameter q in Eq. (3) denotes the departure
from the Gaussian noise. In the limit of q → 1, the process η(t)

coincides with the Gaussian colored noise with noise correla-
tion time τ0. That is, it is an Ornstein–Uhlenbeck process with
correlation function given by 〈η(t)η(t ′)〉 = (P/τ0)e

−|t−t ′|/τ0 . If
q �= 1, η(t) is a non-Gaussian noise term.

The stationary probability distribution of Eq. (2) can be
given by [52–58]

(5)P st
q (η) = 1

Zq

[
1 + τ0

P
(q − 1)

η2

2

]−1/(q−1)

,

where Zq is a normalization constant. This distribution can be
normalized only for q < 3 and the first and second moments
of η

〈η〉 = 0,

(6)
〈
η2〉 = 2P

,
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τ0(5 − 3q)
are finite only for q < 5/3.
Applying the path integral approach [56–58], one has

1

τ0

d

dη
Vq(η) = η

τ0

[
1 + τ0

P
(q − 1)

η2

2

]−1

≈ η

τ0

[
1 + τ0

P
(q − 1)

〈η2〉
2

]−1

(7)= η

τ1
,

with the effective noise correlation time

(8)τ1 = 2(2 − q)

5 − 3q
τ0.

In principle, the approximation applied in Eqs. (7) and (8) is
only valid for |q − 1| 	 1.

It is clear that Eq. (2) can be reduced to a re-normalized
Ornstein–Uhlenbeck process with the effective noise correla-
tion time τ1 and the associated effective noise intensity

(9)P1 = [
2(2 − q)/(5 − 3q)

]2
P.

From Eqs. (8) and (9), it is obvious that τ1 → τ0 and P1 → P

when q → 1.
So Eq. (2) of the non-Gaussian noise η can be written as

(10)
dη

dt
= − 1

τ1
η + 1

τ1
ε1(t)

and

(11)
〈
ε1(t)ε1(t

′)
〉 = 2P1δ(t − t ′).

In Eqs. (2) and (3), the expression of the non-Gaussian
noise [52,53] is based on the generalized thermostatistics [54,
55]. This kind of non-Gaussian noise has been successfully ap-
plied to a lot of physical systems [56–58]. There are also other
kinds of non-Gaussian noise [52,53] that are different from
Eqs. (2) and (3). However, the non-Gaussian natures of these
noise terms are similar. Therefore, Eqs. (2) and (3) are chosen
as a typical example of non-Gaussian noise in this Letter.

For convenience, Eq. (1) can be rewritten as

(12)
dx

dt
= h(x, xτ ) + g1(x)η(t) + g2(x)ξ(t),

where t is dropped since it is the same for all variables and xτ

denotes the time delayed state variable with xτ = x(t − τ).
Applying the method of UCNA [34,59–61], the non-Markov

process of Eq. (12) can be written as

(13)ẋ = 1

A(x, τ1)

(
h(x, xτ ) + g1(x)ε1(t) + g2(x)ξ(t)

)
with A(x, τ1) = 1 − τ1[h′(x, x) − g′

1(x)

g1(x)
h(x, x)]. Here h′(x, x)

and g′
1(x) are the derivatives of h(x, x) and g1(x). It should

be mentioned that the regime of the approximation method of
UCNA is A(x, τ1) > 0. The method of UCNA has been justi-
fied as an adiabatic-like elimination [59,60], or as an effective
Markovian Fokker–Planck approximation [61]. When applying
the UCNA method to treat the colored noise in Eq. (12), it is
assumed that the delay time τ = 0.
with time-delayed feedback and non-Gaussian noise, Physics Letters A
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Then Eq. (13) can be equivalently written as a stochastic
equation

(14)
d

dt
x = h̃(x, xτ ) + G̃(x)Γ (t),

with〈
Γ (t)Γ (t ′)

〉 = 2δ(t − t ′),

G
(
x(t)

) = [
P1

(
g1(x)

)2 + Q
(
g2(x)

)2]1/2
,

(15)h̃(x, xτ ) = h(x, xτ )

A(x, τ1)
, G̃(x) = G(x)

A(x, τ1)
.

Since the non-Gaussian colored noise term has been approx-
imated and simplified, the effect of the time delay τ in the
system can be considered to obtain approximate analytic result.
Using the small time delay approximation [46–49], the delayed
differential equation can be approximated as

(16)
dx

dt
= ha(x) + Ga(x)Γ (t)

with

ha(x) = h̃(x, x)C(x, τ ),

Ga(x) = G̃(x)C(x, τ ),

(17)C(x, τ) = 1 − τ
∂

∂xτ

h̃(x, xτ )

∣∣∣∣
xτ =x

.

Thus, the Fokker–Planck equation corresponding to Eq. (1)
can be approximately written as

(18)
∂P (x, t)

∂t
= − ∂

∂x

[
F(x)P (x, t)

] + ∂2

∂x2

[
D(x)P (x, t)

]
,

where the drift and diffusion coefficients are

F(x) = ha(x) + Ga(x)
dGa(x)

dx
,

(19)D(x) = G2
a(x).

So the steady-state probability distribution can be analyti-
cally expressed as

Pst(x) = N

D(x)
exp

{ x∫
dx′ F(x)

D(x)

}

(20)= N

Ga(x)
exp

{ x∫
dx′ ha(x

′)
G2

a(x
′)

}
.

3. Stationary probability distribution of a bistable system

When a weak periodic signal is added to a bistable system
with time delay τ , the stochastic delayed differential equation
follows

d

dt
x(t) = a0x(t) − b0x(t − τ)3 + x(t)η(t)

(21)+ ξ(t) + ε0 cosωt.

Here η(t) and ξ(t) are the same as that in Eq. (1), h(x, xτ ) =
a0x −b0x

3
τ +ε0 cosωt , a0 and b0 are two constants of the linear

and cubic terms, ε0 is the amplitude of the signal.
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It is seen that the deterministic part of Eq. (21)

(22)
d

dt
x(t) = a0x(t) − b0x(t − τ)3

is a prototypical double well potential when τ = 0. When the
time delay τ > 0, Eq. (22) can be numerically calculated. The
deterministic bifurcation diagram and the trajectory of a parti-
cle moving in the potential well are plotted in Fig. 1 when τ

is varied. In Fig. 1(a), the deterministic bifurcation diagram of
the maximum value xmax and the minimum value xmin of the
system is plotted as a function of τ . It is seen that the particle
relaxes at two stable equilibrium positions of xm = ±1.0 when
τ < 0.785. For 0.785 < τ < 1.523, the particle begins to jump
between the two potential wells and to sit in one of the well fi-
nally. For 1.523 < τ < 1.725, the particle moves between the
two wells and finally sits on the wall of the potential well at
|x| > |xm| = 1.0. When τ > 1.725, the particle escapes from
the potential wells and the effect of bistable potential disap-
pears. The trajectory of a particle moving in the potential well
is plotted in Figs. 1(b) to (d) when τ is varied. When τ = 0
in Figs. 1(b), the particle can sit in the well of x = −1.0 (or
x = +1.0) if it is initially at x < 0 (or x > 0). When τ = 0.7
in Fig. 1(c), the particle can move along the curve of x < 0 (or
x > 0) and finally sit in the well of x = −1.0 (or x = +1.0) if
it is initially at x < 0 (or x > 0). When τ = 1.5 in Fig. 1(d), the
particle can move along the curves cross the barrier of x = 0
and finally sit in either of the well of x = −1.0 or x = +1.0 no
matter of its initial conditions. In the following discussions, the
time delay is assumed for τ < 1.523 to ensure that the system
is still bistable.

From Eqs. (15) and (17), one has

G(x) = (
P1x

2 + Q
)1/2

,

A(x, τ1) = 1 + 2b0τ1x
2 + τ1ε0 cosωt

x
,

C(x, τ ) = 1 + τ
3b0x

2

1 + 2b0τ1x2
,

Ga(x) = G(x)C(x, τ )

A(x, τ1)
,

(23)ha(x) = h(x, x)C(x, τ )

A(x, τ1)
.

Here, τ1 and P1 are the effective noise correlation time and the
effective noise intensity, and are given by Eqs. (8) and (9).

Since the frequency ω is very small, there is enough time for
the system to reach the local equilibrium positions during the
period of 1/ω. Then the quasi-steady-state distribution function
can be derived from Eq. (20) in the adiabatic limit

Pst(x, t) = N

Ga(x)
exp

[
h(x, x)A(x, τ1)

G(x)2C(x, τ)

]

(24)= N

Ga(x)
exp

[
−φ(x)

P1

]
.

Here, N is the normalization constant, φ(x) is the rectified po-
tential function and its form can be expressed as
with time-delayed feedback and non-Gaussian noise, Physics Letters A
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Fig. 1. The bifurcation diagram and the trajectory of a particle moving in the potential well are plotted when the time delay τ is varied. The parameters are a0 = 1.0,
b0 = 1.0. (a) The deterministic bifurcation diagram of xmax and xmin is plotted as a function of τ . (b)–(d) The trajectory of a particle moving in the potential well
when τ = 0,0.7,1.5.
φ(x) = b2
0τ

2
1 x4

2τ1 + 3τ
− α1x

2 − α2 ln
(
Q + P1x

2)
+ α3 ln

[
1 + b0(2τ1 + 3τ)x2]

+
{
− 2b0τ

2
1

2τ1 + 3τ
x − β1 arctan(

√
P1/Qx)

(25)+ β2 arctan
[√

b0(2τ1 + 3τ)x
]}

ε0 cosωt,

where

α1 = 2a0τ
2
1

2τ1 + 3τ
− 2(τ1 + 3τ)

(2τ1 + 3τ)2
+ b0Qτ1

P1(2τ1 + 3τ)
,

α2 = (b0Q + a0P1)(P1 − 2b0Qτ1)
2

2P 2
1 [P1 − b0Q(2τ1 + 3τ)] ,

α3 = 9P1τ
2[1 + a0(2τ1 + 3τ)]

2(2τ1 + 3τ)3[P1 − b0Q(2τ1 + 3τ)] ,

β1 = (P1 − 2b0Qτ1)(P1 − b0Qτ1 + a0P1τ1)√
QP1[P1 − b0Q(2τ1 + 3τ)] ,

(26)β2 = 3P1τ(τ1 + 2a0τ
2
1 + 3τ + 3a0τ1τ)√

(2τ1 + 3τ)3[P1 − b0Q(2τ1 + 3τ)] .

The approximate analytical result of the steady-state prob-
ability distribution Pst(x) (SPD) as a function of the variable
x is plotted in Fig. 2 when the parameter q , the delay time τ

and noise correlation time τ0 are varied. From Fig. 2, it is clear
that the curve of Pst(x) is symmetrically located at two sides of
Please cite this article as: D. Wu, S. Zhu, Stochastic resonance in a bistable system
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x = 0. Fig. 2(a) is a three-dimensional plot of Pst(x) as a func-
tion of x when the parameter q is varied. The curve of Pst(x)

is changed from one peak to three peaks when q is increased.
Fig. 2(d) is the contour plot of Pst(x) on (q–x) plane. There
is one peak in Pst(x) when q is in the range of 0 < q < 0.9.
When q is in the range of 0.9 < q < 1.5, there are three peaks
in Pst(x). Fig. 2(b) is the three dimensional plot of Pst(x) as a
function of x when τ is changed. It is seen that the Pst(x) is
changed from two peaks to three peaks, and then to one peak
when τ is increased. Fig. 2(e) is the contour plot of Pst(x) on
(τ–x) plane. It is seen that there are two peaks in Pst(x) when
τ is in the range of 0 < τ < 0.7. When τ is in the range of
0.7 < τ < 0.9, there are three peaks in Pst(x). When τ is in the
range of τ > 0.9, there is only single peak in Pst(x). Fig. 2(c)
is the three-dimensional plot of Pst(x) as a function of x when
τ0 is changed. It is seen that the Pst(x) is changed from one
peak to three peaks, and then to two peaks when τ0 is increased.
Fig. 2(f) is the contour plot of Pst(x) on (τ0–x) plane. It is seen
that there is a single peak in Pst(x) when τ is in the range of
0 < τ0 < 0.7. When τ0 is in the range of 0.7 < τ0 < 0.9, there
are three peaks in Pst(x). When τ0 is in the range of τ0 > 0.9,
there are two peaks in Pst(x).

It seems that the parameter q of the departure from the
Gaussian noise can induce the transition of three peaks to one
peak in Pst(x) if q is decreased from one. The time delay τ can
induce the transition of two peaks to three peaks, and then to
one peak in Pst(x) if τ is increased from zero. The noise cor-
relation time τ0 can induce the transition of one peak to three
with time-delayed feedback and non-Gaussian noise, Physics Letters A
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Fig. 2. The quasi-steady-state probability distribution function Pst(x) is plotted as a function of x, the parameter q , the delay time τ and the noise correlation time
τ0. The parameters are dimensionless and are chosen as a0 = 1.0, b0 = 1.0, Q = 0.5, P = 0.05, ε0 = 0. (a) and (d) The Pst(x) as a function of x when q is varied
with τ = τ0 = 0.8. (b) and (e) The Pst(x) as a function of x when τ is varied with τ0 = 0.8, q = 1.25. (c) and (f) The Pst(x) as a function of x when τ0 is varied
with τ = 0.8, q = 1.25.
peaks, and then to two peaks if τ0 is increased from zero. It
is clear that the departure from Gaussian noise, the time delay,
and the noise correlation time can modify the structure of the
steady state probability distribution Pst(x) of the system.

4. Signal-to-noise ratio

The expression of the signal-to-noise ratio (SNR) of the de-
layed bistable system in the adiabatic limit can be obtained from
the two-state approach and can be given by [22,34,35]

(27)R = πW 2
1 ε2

0

4W0

[
1 − W 2

1 ε2
0

2(W 2
1 + ω2)

]−1

,

where

W0 =
√

2

π
exp

[−1

P1

(
− a2

0τ 2
1

2τ1 + 3τ
+ α1a0

b0

+ α2 ln

[
1 + a0P1

b0Q

]
− α3 ln

[
a0(2τ1 + 3τ) + 1

])]
,

W1 = E2

P1
W0,

E2 = 2b0τ
2
1

2τ1 + 3τ
+ β1 arctan

[√
a0P1

b0Q

]

(28)− β2 arctan
[√

a0(2τ1 + 3τ)
]
,
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and α1, α2, α3, β1, β2 are given by Eq. (26). Then the SNR of
the bistable system can be calculated as a function of intensity
Q of noise ξ(t) and intensity P of noise ε(t).

From Eq. (22) and Fig. 1, it is seen that the potential of the
system is a typical example of a bistable system when the time
delay is τ < 1.523. Therefore, the expression for the SNR de-
rived from the two-state approach is still valid [22,34,35].

The three-dimensional plot of the SNR as a function of the
intensity Q of Gaussian noise ξ(t), non-Gaussian noise para-
meter q , delay time τ and noise correlation time τ0 is shown in
Fig. 3. Fig. 3(a) is a plot of SNR as a function of the noise inten-
sity Q and non-Gaussian noise parameter q . Fig. 3(b) is a plot
of SNR as a function of the noise intensity Q and delay time τ .
Fig. 3(c) is a plot of SNR as a function of the noise intensity Q

and noise correlation time τ0. From Figs. 3(a), (b), and (c), it
is seen that the curve of SNR is changed from one peak to two
peaks and then to one peak again as q , τ and τ0 is increased re-
spectively. The height of the major peak is increased slightly,
while the height of the minor peak is increased greatly as q , τ

and τ0 are increased. Finally, the minor peak located at small
value of Q becomes the major peak when the values of q , τ

and τ0 are increased further.
The three-dimensional plot of the SNR as a function of the

intensity P of non-Gaussian noise ε(t), non-Gaussian noise pa-
rameter q , delay time τ and noise correlation time τ0 is shown
with time-delayed feedback and non-Gaussian noise, Physics Letters A
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Fig. 3. Three-dimensional plot of the signal-to-noise ratio (SNR) of the delayed bistable system as a function of the intensity Q of Gaussian white noise ξ(t), the
parameter q , the delay time τ and the noise correlation time τ0. The parameters are dimensionless and are chosen as a0 = 1.0, b0 = 1.0, P = 0.05, ω = 0.001,
ε0 = 0.05. (a) The SNR as a function of Q and q when τ0 = 0.1, τ = 1.0. (b) The SNR as a function of Q and τ when τ0 = 0.1, q = 1.25. (c) The SNR as a function
of Q and τ0 when τ = 0.1, q = 1.25.

Fig. 4. The three-dimensional plot of the signal-to-noise ratio (SNR) of the delayed bistable system as a function of the intensity P of non-Gaussian noise η(t), the
parameter q , the delay time τ and the noise correlation time τ0. The parameters are dimensionless and are chosen as a0 = 1.0, b0 = 1.0, Q = 0.05, ω = 0.0023,
ε0 = 0.05. (a) The SNR as a function of P and q when τ0 = 0.8, τ = 0.1. (b) The SNR as a function of P and τ when τ0 = 0.8, q = 0.65. (c) The SNR as a function
of P and τ when τ = 0.1, q = 0.65.
0
in Fig. 4. Fig. 4(a) is a plot of SNR as a function of the noise
intensity P and non-Gaussian noise parameter q . Fig. 4(b) is
a plot of SNR as a function of the noise intensity P and delay
time τ . Fig. 4(c) is a plot of SNR as a function of the noise in-
tensity P and noise correlation time τ0. From Figs. 4(a), (b),
and (c), it is seen that the curve of SNR is changed from one
peak to two peaks and then to one peak again as q, τ0 is in-
creased respectively. The curve of SNR is changed from one
peak to two peaks as τ is increased. However, the curve of SNR
is never changed to one peak again when τ is increased further.
The height of the peak in SNR is increased and sharpened as q ,
τ , τ0 is increased.

Compared Fig. 4 with Fig. 3, it is found that the position of
the peak in SNR is located at larger value of noise intensity P .

5. Numerical simulations

In order to check the validity of the approximate methods
used to obtain the analytic results, it is necessary to perform
numerical simulations. The numerical simulation is performed
by directly integrating the Langevin equation of Eq. (21). The
numerical data of time series are obtained using the second or-
der Runge–Kutta procedure with a time step of δt = 10−2 [62,
63]. The data for each run are saved at 500 different times and
106 independent realizations are obtained. A histogram of 106
Please cite this article as: D. Wu, S. Zhu, Stochastic resonance in a bistable system
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runs is constructed at 500 different times to obtain the station-
ary probability distribution (SPD) of Pst(x).

The results of numerical calculations of Pst(x) are plotted in
Fig. 5 when the parameter q , the delay time τ , and the noise
correlation time τ0 are varied. Figs. 5(a), (b), and (c) are the
plots of the SPD while Figs. 5(d), (e), and (f) are the plots of the
parameter planes indicating the regions of one peak, two peaks,
and three peaks in SPD. In Fig. 5(a), the SPD is plotted as a
function of x when the parameter q is varied. From Fig. 5(a),
it is seen that SPD is changed from one peak to three peaks
when q is increased. Detailed comparison of Figs. 5(a) and 2(a)
shows that the central peak at x = 0 in the numerical simulation
of SPD is sharper and higher when values of q are well outside
the range of |q − 1| 	 1 (such as q = 0.5 or 1.5). In Fig. 5(b),
the SPD is plotted as a function of x when the delay time τ is
varied. From Fig. 5(b), it is seen that the SPD is shifted from
two peaks to three peaks and then to single peak when τ is
increased. Carefully comparing Figs. 5(b) with Fig. 2(b) reveals
that the central peak of SPD at x = 0 in numerical result is
sharper. In Fig. 5(c), the SPD is plotted as a function of x when
the noise correlation time τ0 is varied. From Fig. 5(c) it is seen
that the SPD is shifted from single peak to three peaks and then
to two peaks when τ0 is increased. Comparison of Figs. 5(c) to
Fig. 2(c) shows that the numerical results are in good agreement
with the approximate solutions. From Figs. 5(b) and (c), it is
with time-delayed feedback and non-Gaussian noise, Physics Letters A
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Fig. 5. The numerical simulations of Pst(x) are plotted as a function of x when the parameter q , the delay time τ , and the noise correlation time τ0 are varied. The
parameters are dimensionless and are chosen as a0 = 1.0, b0 = 1.0, Q = 0.5, P = 0.05, ε0 = 0. Region I means that there is a single peak in Pst(x). Region II
means that there are two peaks in Pst(x). Region III means that there are three peaks in Pst(x). (a) The curve of Pst(x) as a function of x when q is changed with
τ = τ0 = 0.8 and q = 0.5 (∗), q = 1.0 (◦), q = 1.5 (•). (b) The curve of Pst(x) as a function of x when τ is varied with τ0 = 0.8, q = 1.25 and τ = 0.4 (∗),
τ = 0.8 (◦), τ = 1.5 (•). (c) The curve of Pst(x) as a function of x when τ0 is varied with τ = 0.8, q = 1.25 and τ0 = 0.4 (∗), τ0 = 0.8 (◦), τ0 = 1.5 (•). (d) The
parameter plane of (τ–q). (e) The parameter plane of (τ0–q). (f) The parameter plane of (τ–τ0).
found that the process of the transition of the number of peaks
induced by increasing τ0 in SPD is just opposite to that induced
by increasing τ . It is clear that the curves in Figs. 5(a) to (c) are
in good agreement with theoretical results shown in Fig. 2.

The numerical results of the parameter planes (τ–q), (τ0–q),
and (τ–τ0) are plotted in Figs. 5(d) to (f). In Figs. 5(d) to (f),
it is seen that the number of peaks appeared in SPD depends
on different parameter regions. Region I means that there is a
single peak in Pst(x), region II means that there are two peaks
in Pst(x), while region III means that there are three peaks in
Pst(x). From Fig. 5(d), it is clear that the SPD is changed from
two peaks to three peaks and then to one peak when τ is in-
creased and q < 1.5. From Fig. 5(e), it is seen that the SPD is
changed from one peak to three peaks when τ0 is increased and
q < 1.0. When 1.0 < q < 1.5, the SPD is changed from one
peak to three peaks and then to two peaks when τ0 is increased.
From Fig. 5(f), it is seen that the SPD is changed from two
peaks to one peak as τ is increased when τ0 is in the range of
τ0 < 0.3. When τ0 is in the range of 0.3 < τ0 < 1.0, the SPD is
changed from two peaks to three peaks and then to single peak
as τ is increased. When τ0 is in the range of τ0 > 1.0, the SPD
is changed from two peaks to three peaks as τ is increased. On
the other hand, when τ satisfies τ < 0.185, there are two peaks
in the curve of SPD no matter how τ0 is increased. When τ is
in the range of 0.185 < τ < 0.34, the SPD is changed from one
peak to two peaks as τ0 is increased. When τ is in the range
of 0.34 < τ < 0.93, the SPD is changed from one peak to three
Please cite this article as: D. Wu, S. Zhu, Stochastic resonance in a bistable system
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peaks and then to two peaks as τ0 is increased. When τ > 0.93,
the SPD is changed from one peak to three peaks as τ0 is in-
creased.

Though the time delay τ and the noise correlation time τ0 are
different and independent of each other, they are related to each
other when they affect the steady state distribution Pst(x). Ex-
cept for τ < 0.185, there is one kind of transition of the number
of peaks in SPD when values of τ and τ0 are small. For moder-
ate values of τ and τ0, there are two kinds of transitions of the
number of peaks in SPD. For large values of τ and τ0, there is
again one kind of transition of the number of peaks in SPD.

Using the second order Runge–Kutta procedure, the numer-
ical data of time series are calculated using a fast Fourier trans-
form. To reduce the variance of the result, the 1024 ensembles
of power spectra are averaged. The output signal-to-noise ra-
tio is defined as R = 10 log10 Sp(ωs)/Sn(ωs), where Sp(ωs) is
the height of the peak in the power spectrum at the input fre-
quency ωs and Sn(ωs) is the height of the noisy background in
the power spectrum around ωs .

The results of numerical calculations of the SNR are plot-
ted in Fig. 6 when the parameter q , the delay time τ , and the
noise correlation time τ0 are varied. Figs. 6(a) to (c) are plots
of the SNR as a function of the Gaussian noise intensity Q

while Figs. 6(d) to (f) are plots of the SNR as a function of
the non-Gaussian noise intensity P . In Figs. 6(a) and (d), the
SNR is plotted when the parameter q is varied. In Figs. 6(b)
and (e), the SNR is plotted when the delay time τ is varied. In
with time-delayed feedback and non-Gaussian noise, Physics Letters A
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Fig. 6. Numerical simulations of the SNR are plotted as a function of the noise intensities Q and P respectively. The parameters are dimensionless and are chosen
as a0 = 1.0, b0 = 1.0, ε0 = 0.05 and ω = 0.001,P = 0.05 in (a), (b), (c), while ω = 0.0023,Q = 0.05 in (d), (e), (f). (a) The curve of SNR as a function of Q when
q is varied with τ0 = 0.1, τ = 0.8, and q = 0.7 (∗), q = 1.2 (◦), q = 1.5 (•). (b) The curve of SNR as a function of Q when τ is varied with τ0 = 0.1, q = 1.25,
and τ = 0.5 (∗), τ = 1.2 (◦), τ = 1.5 (•). (c) The curve of SNR as a function of Q when τ0 is varied with τ = 0.1, q = 1.25, and τ0 = 0.2 (∗), τ0 = 0.4 (◦),
τ0 = 0.6 (•). (d) The curve of SNR as a function of P when q is varied with τ = 0.1, τ0 = 0.8, and q = 0.7 (∗), q = 1.0 (◦), q = 1.25 (•). (e) The curve of SNR as
a function of P when τ is varied with τ0 = 0.8, q = 0.65, and τ = 0.1 (∗), τ = 1.5 (◦). (f) The curve of SNR as a function of P when τ0 is varied with τ = 0.1,
q = 0.65, and τ = 0.8 (∗), τ = 1.2 (◦), τ = 1.5 (•).
0 0 0
Figs. 6(c) and (f), the SNR is plotted when the noise correla-
tion time τ0 is varied. Compared Fig. 6 to Figs. 3 and 4, it is
seen that good agreement between the theoretical results and
the numerical computations is obtained.

It is clear that the approximate analytic results of the SPD
and SNR plotted in Figs. 2, 3 and 4 are consistent with the
computer simulations shown in Figs. 5 and 6. The agreement
between the theoretical calculations and the numerical results
shows that the approximation seems to work quite well for val-
ues like q = 0.0 and 1.5 in Figs. 2–4. That is, the approximation
is still valid for values of q well outside the range of |q−1| 	 1.
However, the approximation is only valid when the noise cor-
relation time τ0, the delay time τ of the system, and the noise
intensities P and Q are not very large. For the parameters used
in this Letter, the approximation is excellent when the values of
q , τ0, τ , P , and Q are 0.65 < q < 1.25, τ0 < 1.5, τ < 1.5,P <

0.1,Q < 1.0. When the value of q is in the range of either
0 < q < 0.65 or 1.25 < q < 1.66, the approximation is still
valid but noticeable deviations occur in the approximate ana-
lytical results and the numerical simulations.

6. Transition of peaks in stochastic resonance

The reentrant transition between one peak and two peaks and
then one peak again in stochastic resonance can be analyzed by
the number of maximum peaks in the SNR of Eq. (27).
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The number of the peaks in SNR as a function of the inten-
sity Q of Gaussian noise ξ(t) can be determined by the equation
dR
dQ

= 0 and d2R

d2Q
< 0.

The parameter planes of (τ–q), (τ0–q), and (τ–τ0) are plot-
ted in Fig. 7 when SNR is the maximum as a function of addi-
tive Gaussian white noise intensity Q. Areas labeled “S” mean
single peak in the SNR, areas labeled “T” mean two peaks in
the SNR. The areas labeled “N” mean that there is no physi-
cal meaning in theses parameter regimes since SNR is less than
zero in these areas. Transitions take place when non-Gaussian
noise parameter q , delay time τ and noise correlation time τ0
are varied across the boundaries of these areas.

The parameter plane of (τ–q) is plotted in Fig. 7(a) when
τ0 is fixed. From Fig. 7(a), it is seen that there is only a single
peak in the SNR as τ is increased when the non-Gaussian noise
parameter q is in the region of q < 0.525. When the parameter
q is in the region of 0.525 < q < 1.134, the SNR is changed
from single peak to two peaks when τ is increased. When q is
in the region of 1.134 < q < 1.5, the SNR is changed from
single peak to two peaks, and then to single peak again as τ is
increased.

The parameter plane of (τ0–q) is plotted in Fig. 7(b) when
τ is fixed. From Fig. 7(b), it is seen that the SNR is changed
from single peak to two peaks, and then to single peak again
as τ0 is increased when the parameter q is in the region of 0 <

q < 1.45. The area of no physical meaning is increased as the
with time-delayed feedback and non-Gaussian noise, Physics Letters A
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Fig. 7. The parameter planes are plotted when the curve of SNR is plotted as a function of the Gaussian white noise intensity Q. The area labeled “S” means that
there is a single peak in the SNR. The area labeled “T” means that there are two peaks in SNR. The area labeled “N” means that there is no physical meaning in
these parameter regimes. The parameters are dimensionless and are chosen as a0 = 1.0, b0 = 1.0, P = 0.05, ε0 = 0.05, ω = 0.001. (a) The parameter plane of
(τ–q) with τ0 = 0.1. (b) The parameter plane of (τ0–q) with τ = 0.1. (c) The parameter of (τ–τ0) with q = 1.25.

Fig. 8. The parameter planes are plotted when the curve of SNR is plotted as a function of the non-Gaussian noise intensity P . The area labeled “S” means that there
is a single peak in the SNR. The area labeled “T” means that there are two peaks in SNR. The area labeled “N” means that there is no physical meaning in these
parameter regimes. The parameters are dimensionless and are chosen as a0 = 1.0, b0 = 1.0, Q = 0.05, ε0 = 0.05, ω = 0.0023. (a) The parameter plane of (τ–q)
with τ0 = 0.8. (b) The parameter plane of (τ0–q) with τ = 0.1. (c) The parameter plane of (τ–τ0) with q = 0.65.
parameter q is increased. The area of no physical meaning in
Fig. 7(b) shows that the theory is only valid when the time delay
τ is less than 1.42 and q is less than 1.5.

The parameter plane of (τ–τ0) is plotted in Fig. 7(c) when q

is fixed. From Fig. 7(c), it is seen that the SNR is changed from
single peak to two peaks, and then to single peak again as τ is
increased when τ0 is in the range of 0 < τ0 < 0.3. When τ0 is
in the range of 0.3 < τ0 < 0.5, the SNR is changed from two
peaks to one peak as τ is increased. When τ0 is in the range
of 0.5 < τ0 < 0.75, there is only single peak in the SNR as τ

is increased. The area of no physical meaning is increased as
τ0 is increased. Meanwhile, when τ < 0.7, the SNR is changed
from one peak to two peaks, and then to one peak again as τ0 is
increased. When τ is in the range of 0.7 < τ < 1.25, the SNR is
changed from two peaks to one peak as τ0 is increased. When
τ > 1.25, there is only one peak in SNR as τ0 is increased. The
transition of the number of peaks in SNR may occur in the left
part of the area roughly divided by the line connected τ = 1.5
and τ0 = 0.75. The area of no physical meaning in Fig. 7(c)
shows that the theory is only valid when the noise correlation
time τ0 is less than 0.75.

The number of peaks in SNR as a function of intensity P of
the non-Gaussian noise ε(t) can be determined by the equation
dR
dP

= 0 and d2R
2 < 0.
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The parameter planes of (τ–q), (τ0–q), and (τ–τ0) are plot-
ted in Fig. 8 when SNR is the maximum as a function of the
non-Gaussian noise intensity P . Areas labeled “S” mean single
peak in the SNR, areas labeled “T” mean two peaks in the SNR.
The areas labeled “N” mean that there is no physical meaning
in theses parameter regimes. Transitions take place when the
non-Gaussian noise parameter q , the delay time τ and the noise
correlation time τ0 are varied across the boundaries of these ar-
eas.

The parameter plane of (τ–q) is plotted in Fig. 8(a) when τ0
is fixed. From Fig. 8(a), it is seen that there is only a single peak
in SNR no matter τ is increased or not when the parameter q is
in the range of 0 < q < 0.54. When q is in the range of 0.54 <

q < 0.72, the SNR is changed from single peak to two peaks
when τ is increased. When q is in the range of 0.72 < q < 1.2,
there are two peaks in the SNR and no transition takes place in
SNR as τ is changed. When q is in the range of 1.2 < q < 1.32,
there is only a single peak in SNR. When q is in the range of
q > 1.32, it is the area of no physical meaning. That is, the
theory is only valid for q < 1.32.

The parameter plane of (τ0–q) is plotted in Fig. 8(b) when
τ is fixed. From Fig. 8(b), it is seen that the SNR is changed
from single peak to two peaks, and then to a single peak again
when τ0 is increased when the parameter q is in the range of
with time-delayed feedback and non-Gaussian noise, Physics Letters A
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0 < q < 1.5. When q is in the range of q > 0.86 with τ0 > 0.75,
there exists an area of no physical meaning in SNR.

The parameter plane of (τ–τ0) is plotted in Fig. 8(c) when q

is fixed. From Fig. 8(c), it is seen that there is only single peak
in SNR as τ is increased when τ0 is in the range of 0 < τ0 < 0.7.
When τ0 is in the region of 0.7 < τ0 < 1.05, the SNR is changed
from single peak to two peaks as τ is increased. When τ0 is in
the range of 1.05 < τ0 < 1.3, there are tow peaks in SNR as τ is
increased. When τ0 is in the range of 1.3 < τ0 < 1.4, the SNR
is changed from one peak to two peaks as τ is increased. When
τ0 is in the range of τ > 1.4, there is only single peak in the
SNR as τ is increased. However, no matter how the delay time
τ is varied, the SNR can always be changed form single peak
to two peaks and then to single peak again as τ0 is increased.

From Figs. 7 and 8, it can be found that there always exists
some areas of reentrance-like transition between one peak and
two peaks in the curve of SNR when the parameter q , the delay
time τ , and the noise correlation time τ0 are varied.

7. Discussion

The phenomenon of stochastic resonance in a bistable sys-
tem with time-delayed feedback driven by non-Gaussian noise
is investigated. Combining the methods of the small time de-
lay approximation, the path-integral approach and the unified
colored noise approximation, a general approximate Fokker–
Planck equation of the system is obtained. The quasi-steady-
state probability distribution function of the system is derived.
The signal-to-noise ratio is calculated in the adiabatic limit. The
effects of delay time τ , correlation time τ0 of the non-Gaussian
noise, and the parameter q indicating the departure from the
Gaussian noise are discussed. The critical lines are plotted on
the parameter planes of (τ–q), (τ0–q), and (τ–τ0). These crit-
ical lines separate single peak, two peaks, three peaks, and
nonphysical meaning areas in the curves of SPD and SNR. It
is found that the reentrant transition between one peak and two
peaks in the curve of SNR appears when the parameter q , the
delay time τ , and the correlation time τ0 of the non-Gaussian
noise are varied. The areas of no physical meaning also provide
the limitations of the parameters used in the theory.

The phenomenon of multiple peaks in the SNR has also been
found for different models [22,31,43,44]. It seems that the mul-
tiple peaks in SNR can be induced by either periodic or multiple
maxima and minima in the potential [31]. In this Letter, the
two-peak structure appeared in SNR is mainly induced by the
parameter q , the delay time τ , and the non-Gaussian noise cor-
relation time τ0.
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