
Mathematical Methods in the Applied Sciences, Vol. 20, 1617—1624 (1997)
MOS subject classification: 30C 35, 35 B30, 53 A 50
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We develop aspects of Clifford analysis over the sphere and hyperbolae. We focus primarily on the
hyperbola lying in the Minkowski type space Rn,1. We show that in order to give a proper extension of basic
results on Clifford analysis in Euclidean space to this context one needs to consider both hyperbolae lying
in Rn,1. We also introduce Bergman spaces of ¸p left monogenic sections in this context and consider the
decomposition of square integrable sections over suitable bundles constructed over subdomains of spheres
and hyperbolae. The results presented here cover the necessary background to enable one to set up and
solve boundary value problems for field-type equations over hyperbolae. In particular, one can study
analogues of the Dirichlet problem for analogues of the Laplacian over hyperbolae and spheres. ( 1997 by
B. G. Teubner Stuttgart—John Wiley & Sons Ltd.
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Introduction

In this paper we continue the investigation of function theoretic properties of Dirac
operators over spheres and hyperbolae. This builds on results developed in [10—12,
15]. The fact that one can treat function theory associated to Dirac type operators
over general manifolds in a similar fashion to the function theory for Dirac operators
over Euclidean space is pointed out in [4], see also [2]. However, in the cases of the
sphere and the hyperbola one can use Cayley transformations to explicitly carry over
results, structures and formulae directly from the Euclidean setting. In this paper we
continue to investigate this theme.

Here we primarily focus on the hyperbola. We show that in order to obtain as full
an extension of Clifford analysis as possible in this context we need to consider not
one hyperbola, but two separate hyperbolae lying in a Minkowski-type space. We set
up a Cauchy integral formula in this context and establish the completeness of the
Bergman spaces of sections satisfying a generalized Cauchy Riemann equation. These
sections are defined on bundles over domains of the hyperbolae, and each fibre of the
bundles are isomorphic as vector spaces to a Clifford algebra. This leads us to extend
other results from [7] and give a decomposition of the ¸2 spaces of sections on these
bundles. Parallel arguments over the sphere are indicated. We also indicate how to
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construct Dirac operators over spheres lying in a null space of a Minkowski-type
space.

Preliminaries

Here we shall introduce the background material that we shall need for the rest of
the paper.

We shall consider the real Clifford algebra, Cl
n
, generated from Rn endowed with

a negative definite inner product. So Cl
n

has as basis the elements 1,
e
1
,2, e

n2
, e

jÇ
2 e

j
r

,2 , e
12

e
n
, where e

1
,2 e

n
is an orthonormal basis for Rn,

and 1)r)n. So the basis vectors e
1
,2 , e

n
satisfy the anticommutation relationship

e
i
e
j
#e

j
e
i
"!2d

i,j
, where d

i,j
is the Kroneker delta function. It may be observed that

the algebra Cl
n
has dimension 2n. For each vector x3RnCM0N there is a multiplicative

inverse x~1"!x/ExE23RnCM0N. Up to the minus sign this transformation corres-
ponds to the usual Kelvin inversion of non-zero vectors in Rn. For a general element
a"a

0
#2#a

1,2,n
e
12

e
n
3Cl

n
the norm, EaE of a is defined to be

(a2
0
#2#a2

1,2,n
)1@2.

Kelvin inversion is a particular example of a Moebius transformation over
RnXMRN. The group of Moebius transformations over RnXMRN is generated by
translations, rotations, dilations and Kelvin inversion. In [1, 14] it is shown that each
Moebius transformation can be expressed as y"t (x)"(ax#b)(cx#d)~1, where
a, b, c and d belong to Cl

n
and satisfy

(i) a, b, c and d are all products of vectors in Rn.
(ii) acJ , cdI , db3 , baJ 3Rn, where & is the anti-automorphism

&: Cl
n
PCl

n
: e

jÇ
2 e

j
r

Pe
j
r

2 e
jÇ

.

(iii) adI !bcJ"$1.

The matrix (a b
c d

) is called a Vahlen matrix. The set of all such matrices over Rn form
a group under matrix multiplication, [1], which is called the Vahlen group.

For each pair of positive integers m and n with n(m we have that Cl
n
LCl

m
, and

Cl
n
is a subalgebra of Cl

m
. Moreover, we may consider the complexification, Cl

n
(C ), of

Cl
n
. This is a complex algebra of complex dimension 2n, and Cl

n
is a real subalgebra of

Cl
n
(C ).

The Cayley transformation K
1
(x)"(x!e

n`1
) (!e

n`1
#1)~1 transforms Rn onto

SnCMe
n`1

N, where Sn is the unit sphere in Rn`1.
For each point x3Sn we denote the open ball B(x, r)WSn by B

Sn
(x, r) where

B(x, r)"My3Rn`1: Ex!yE(r3R`N. For x
1
, x

2
3Sn one can find an orthogonal

transformation O : Rn`1PRn`1 such that O(x
1
)"x

2
and O (B

Sn
(x

1
, r))"B

Sn
(x

2
, r).

Similarly, one can introduce the spherical shell A
Sn

(x, r
1
, r

2
)"A(x, r

1
, r

2
)WSn where

A(x, r
1
, r

2
)"My3Rn`1: r

1
(Ex!yE(r

2
, r

1
, r

2
3R`N and x3Sn. Again it may be

observed that O(A
Sn

(x
1
, r

1
, r

2
))"A

Sn
(x

2
, r

1
, r
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).

Besides the algebra Cl
n

we also need the algebra Cl
n,1

. This Clifford algebra is
generated from the Minkowski-type space Rn,1 which is spanned by e

1
,2 , e

n
, f

n`1
.

So Cl
n,1

"Cl
n
#Cl

n
f
n`1

where f
n`1

satisfies the relationship f 2
n`1

"1 and
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f
n`1

e
j
"!e

j
f
n`1

for 1)j)n. On placing f
n`1

"ie
n`1

it may be observed that Cl
n,1

is a real subalgebra of Cl
n`1

(C ). Following [16] it may be observed that the Cayley
transformation K

2
(x)"(!x# f

n`1
) ( f

n`1
x#1)~1 transforms the unit disc

D
n
"Mx3Rn: ExE2(1N onto the hyperbola H`

n
which is the component of

H
n
"Mx3Rn,1: x2"1N which contains f

n`1
. We denote the component of H

n
which

contains !f
n`1

by H~
n
. It may easily be noted that H

n
"H`

n
XH~

n
, and that the

Cayley transformation K
2

extends to a Cayley transformation

K
2
: RnCSn~1PH

n
CM!f

n`1
N: K

2
(x)"(!x# f

n`1
) ( f

n`1
x#1)~1.

It may also easily be noted that H`
n
"!H~

n
. Also, for each x3Sn~1LRn it may be

observed that (cosh h
2

f
n`1

#sinh h
2

x) f
n`1

(cosh h
2

f
n`1

#sinh h
2

x) describes the action
of a Lorentz boost over H`

n
on f

n`1
. By varying x and h one can linearly transform

f
n`1

to any point on H`
n
. We denote this Lorentz boost by O

x,h . For each x3H`
n

and
r3R` let BH`

n
(x, r) denote the ball My3H`

n
: D (x!y)2 D(r2N and let AH`

n
(x, r

1
, r

2
)

denote the spherical shell My3H`
n

: r2
1
(D (x!y)2 D(r2

2
N. It may be observed that

spherical shells are transformed to spherical shells with the same radii under the
Lorentz boosts described here. By multiplying such a spherical shell by !1 one
can also transform a spherical shell on H`

n
to a spherical shell on H~

n
with the

same radii.
For further properties of Clifford algebras see [8].
We now proceed to introduce the Dirac operator over Euclidean space. This is the

differential operator D"+n
j/1

e
j
(­/­x

j
). The properties and applications of this oper-

ator provide the basis of Clifford analysis, see for instance [3, 7], and elsewhere. One
simple and extremely important property is that D2"!*

n
, where *

n
is the Laplacian

in Rn. For º a domain in Rn a differentiable function f :ºPCl
n
(C ) is said to be left

monogenic if Df"0, while a differentiable function g :ºPCl
n
(C ) is said to be right

monogenic if gD"0, where gD"+n
j/1

(­g/­x
j
)e

j
. It may be observed that if f

is left monogenic then fI is right monogenic, and if g is right monogenic then gJ is left
monogenic.

Theorem 1. Suppose that f is a left-monogenic function defined on a domain º and
g is a right-monogenic function on º. Suppose also that » is a bounded subdomain
of º with a ¸ipschitz continuous boundary, SLº. ¹hen :

S
g (x)n (x) f (x) dp(x)"0,

where n (x) is the outward pointing vector normal to S at x, and p is the Hausdorff
measure on S.

The function G(x)"x/ExEn is an example of a function which is both left and right
monogenic.

Theorem 2. Suppose that f is left monogenic on the domain º, and that » is a bounded
subdomain of º with ¸ipschitz continuous boundary SLº. ¹hen for each y3»

f (y)"
1

u
n
P
S

G (x!y)n(x) f (x) dp(x),

where u
n
is the surface area of the unit sphere Sn~1.
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Theorems 1 and 2 seem to have been first established in the case n"3, and for
smooth S, by Dixon, [6].

From [9] and elsewhere we have:

Theorem 3. Suppose that y"t(x)"(ax#b)(cx#d )~1 is a Moebius transformation
and f (y) is a left-monogenic function. ¹hen J(t, x) f (t(x)) is left monogenic with respect
to the variable x, where J(t, x)"(cx#d'C )/Ecx#dEn.

From [9] we have:

Definition 1. Suppose that S
1

and S
2

are orientable, locally ¸ipschitz surfaces locally
embedded in RnXMRN and of co-dimension 1. Suppose also that there is a Moebius
transformation y"t(x)"(ax#b)(cx#d )~1 such that t (S

1
)"S

2
. ¹hen these surfa-

ces are said to be conformally equivalent.

Surfaces of co-dimension 1 locally embedded in RnXMRN will be refered to as
hypersurfaces.

If the hypersurfaces S
1

and S
2

are conformally equivalent then the ¸2

spaces ¸2(S
1
, Cl

n
) and ¸2(S

2
, Cl

n
(C)) of square integrable, Cl

n
valued func-

tions over S
1

and S
2
, respectively, are isometric. In fact if l (y)3¸2(S

2
, Cl

n
),

then J (t, x)l(t (x)) 3¸2(S
1
, Cl

n
), and this correspondence gives the isometry,

see [5, 9].
It follows from the previous arguments that the Hardy 2-spaces of left, or right,

monogenic functions associated to Lipschitz surfaces are transformed isometrically
under Moebius transformations.

In [11] it is observed that the Cayley transformation K
1

can be used to re-establish
most results from Clifford analysis over Rn to Sn. This includes analogues of
Theorems 1 and 2. An analogue, D

Sn
, of the Euclidean Dirac operator is set up over

Sn, see also [15]. In particular, in [11] it is shown that if f (y) is left monogenic on
a domain in Rn, then D

Sn
J (K~1

1
, x) f (K~1

1
(x))"0. The function J (K~1

1
, x) f (K~1

1
(x))

can be seen as a section on the bundle (SnCMe
n`1

N)(Cl
n
(C ))"M(x, J (K~1

1
, x)y):

x3Sn~1CMe
n`1

N, y3Cl
n
(C)N. This is an example of one of the bundles set up in [10],

see also [12]. Strictly speaking this bundle is not a Clifford bundle as each fibre is
a multiplication on the left of Cl

n
by J (K~1

1
, x). By using the other Cayley transforma-

tion K @
1
(x), "(x#e

n`1
) (e

n`1
!1)~1, from Rn onto SnCM!e

n`1
N one can extend

this bundle to a bundle Sn(Cl
n
) over Sn. Again this bundle is an example of the

type of bundles set up in [10], see also [12]. Following arguments presented in
[10—12] one can now talk of left-monogenic sections in Sn(Cl

n
). One can also

similarly set up right-monogenic sections, but these sections take their values in the
bundle obtained by multiplying Cl

n
on the right by JI (K~1

1
), and proceeding as has just

been outlined for the left-monogenic sections case. As described in [12] one can set up
a similar bundle, H`

n
(Cl

n
), with left-monogenic sections over H`

n
. By noting

that H`
n
"!H~

n
one can set up a similar bundle, H~

n
(Cl

n
), over H~

n
. By using

the Cayley transformation K
2
:RnCSn~1PH

n
, one also has a similar bundle over

H
n
CM!f

n`1
N. Identifying this bundle with the bundle H~

n
(Cl

n
) one now gets a bundle

H
n
(Cl

n
) over H

n
.

1620 J. Ryan

Math. Meth. Appl. Sci., Vol. 20, 1617—1624 (1997) ( 1997 by B. G. Teubner Stuttgart—John Wiley & Sons Ltd.



Clifford analysis on Hn

By noting that H`
n
"!H~

n
one can take the Dirac operator DH`

n
introduced in

[11] over H`
n

, and re-introduce it as a Dirac operator, DH~
n

over H~
n

. It may easily be
deduced that the function theory described for the operator DH`

n
in [11] can now be

set up over H~
n

for the operator DH~
n
. So we have a uniquely defined Dirac operator

D
H
n

defined over H
n
, such that D

H
n

restricted to act on smooth sections of H$

n
(Cl

n
) is

the operator DH$

n
acting on these respective sections. By using the Cayley transforma-

tion K
2
: RnCSn~1PH

n
one can mimick arguments given in [11] to set up the function

theory for D
H
n

analogous to the function theory set up in [11] for DH`
n

over H`
n

.
For each domain º lying in Rn the open set ºCSn~1 is conformally equivalent via

K
2

to an open set »"K
2
(ºCSn~1) lying in H

n
. It should be noted that » might have

one component lying on H`
n

and another component lying on H~
n

. Moreover, if f is
a left-monogenic function defined on º then J (K~1

2
, x) f (K~1

2
(x)) is a left monogenic

section on »(Cl
n
), where »(Cl

n
) is the restriction to » of H

n
(Cl

n
).

Using the Cayley transformation K
2

and arguments in [11] we have:

Theorem 4. Suppose that º is a domain in Rn and f is a left-monogenic function on º,
and that ¼ is a bounded subdomain of º with a ¸ipschitz continuous boundary ­¼ lying
in º. Furthermore, suppose that ­¼WSn~1 is a set of measure zero when seen as a subset
of Sn~1. ¹hen for each y3K

2
(¼ CSn~1) we have

g(y)"
1

u
n
P­KÈ(W)

G(x!y)n (x)g (x) dp(x),

where g (y)"J(K~1
n

, y) f (K~1
2

(y)), and G(x!y)"(x!y)/((x!y)2)n@2, with
­K

2
(¼ CSn~1) the boundary of K

2
(¼ CSn~1). Moreover, n (x) is the unit vector in

¹H
n
(x), the tangent space to H

n
at x, normal to ­K

2
(¼ ), and p is the Hausdorff measure

of ­K
2
(¼ ) seen as a submanifold of H

n
.

It should be noted that in the previous theorem we can regard both K
2
(¼ CSn~1)

and ­K
2
(¼ CSn~1) as having components in both H`

n
and H~

n
.

Using the Clifford analysis version of Morera’s theorem, see [3, 13], one can deduce
the following:

Theorem 5. Suppose that º is a domain in Rn and that f (x) is continuous on º. Moreover,
suppose that f D

UCSn~Ç
is left monogenic. ¹hen f is a left-monogenic function on º.

Using this result and the Cayley transformation K
2

one may obtain:

Theorem 6. Suppose that »"K
2
(ºCSn~1) for some domain º in Rn, and that g is

a left-monogenic section on »(Cl
n
). Suppose also that the left-monogenic function

f (u)"J (K
2
, u)g(K

2
(u)) has a continuous extension to º. ¹hen for each bounded

subdomain ¼ of º with ¸ipschitz boundary ­¼Lº and each y3K
2
(¼CSn~1) we have

g(y)"
1

u
n
P­KÈ(W)

G(x!y)n (x)g (x) dp(x),

provided that ­¼WSn is a set of measure zero when seen as a subset of Sn~1.
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Following from arguments outlined in the previous section on the conformal
covariance of the ¸2 spaces of hypersurfaces in RnXMRN and their associated H2

spaces of left-monogenic functions we may easily obtain the following.

Theorem 7. ¸et ¼ be a bounded domain in Rn whose boundary is a ¸iapunov hypersur-
face. Moreover, suppose that when considered as a subset of Sn~1 the set ­¼WSn~1 has
measure zero. ¸et ­K

2
(¼ ) (Cl

n
) be the restriction to K

2
(­¼ ) of the bundle H

n
(Cl

n
). If

¸2(­K
2
(¼ )(Cl

n
)) is the space of all square integrable sections on ­K

2
(¼ ) (Cl

n
), then

¸(­K
2
(¼ )(Cl

n
))"H2(K

2
(­¼`))= H2 (K

2
(­¼~1)),

where ¼
$ are the domains in RnXMRN which complement ­¼, and H2 (K

2
(­¼$)) is

the space of left-monogenic sections on K
2
(­ (¼$))(Cl

n
) which continuously extend in

the ¸2 sense to ­K
2
(¼ ).

It should be noted that in the previous theorem that either ¼`"¼ or ¼~"¼.
The previous theorem is also true if we assume that ­¼ is a Lipschitz graph whose
intersection with Sn~1 is a set of measure zero when seen as a subset of Sn~1. This fact
follows from arguments given in [9].

Definition 2. Suppose that K is a compact subset of H
n
and that h is a continuous section

on the bundle K(Cl
n
) obtained by restricting the bundle H

n
(Cl

n
) to K. ¹hen we define the

supremum norm of h to be

sup
y3K~1

2
(K)

( DJ(K
2
, y)JI (K

2
, y) D )1@2Ek (y)E,

where k (K~1
2

(x))"J (K~1
2

, x)h(x).

Suppose now that » is a domain in H
n

then let us denote the space of left-
monogenic sections on »(Cl

n
) by M

l
(» (Cl

n
)). Using the supremum norm given in the

previous definition we may endow the space M
l
(» (Cl

n
)) with a Frechet topology. It is

now straightforward to adapt arguments given in [3, 7] to establish an analogue of
the Weierstrass convergence theorem, and so deduce that under this topology the
space M

l
(»(Cl

n
)) is complete.

We now proceed to describe a mean value-type inequality for left-monogenic
sections.

Theorem 8. Suppose that » is a domain on H`
n

and that f is a left-monogenic section
over ». ¹hen for each x3»

E f (x)E)C(n)(r
2
!r

1
)~1 PA

H`
n
(x, r

1
, r

2
)
EG (x!y)n(y) f (y) dk(y)E,

where C(n)3R` is a dimensional constant, AH`
n
(x, r

1
, r

2
)L», and k is the Hausdorff

measure on H`
n
. Moreover, n (y) is the unit vector in ¹H

n
(y), normal to the ‘‘sphere’’

Mw3H`
n
: (w!x)2"(y!x)2N at y.

Using the Lorentz boosts described in the previous section it can be seen that for
1)p)R the ¸p norm of G(x!y)n (y) over AH`

n
(x, r

1
, r

2
) is independent of the
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choice of y3H`
n
. Here the vector n (y) is as described in Theorem 8. One can construct

an analogue of Theorem 8 over the hyperbola H~
n

, and make the same observation on
the ¸p norm of G(x!y)n (y).

Definition 3. An open subset » of H
n
is called a domain if there is a domain º lying in Rn

and K
2
(ºCSn~1)"».

It should be noted from this definition that a domain on H
n

does not have to be
connected. It could have one component on H`

n
and the other on H~

n
. However, if

a domain on H
n
has two components then it will be an unbounded set.

Suppose that » is a domain in H
n
then for 1)p)Rwe denote the Bergman space

of ¸p left-monogenic sections over »(Cl
n
) by Bp (» (Cl

n
)).

Using Hoelder’s inequality, Theorem 8 and the observations following Theorem 8
we may obtain:

Theorem 9. For each domain » lying in H
n

the space Bp (»(Cl
n
)) is complete for

1)p)R.

By adapting arguments given in [7] one can now readily deduce:

Theorem 10. Suppose that » is a bounded domain on H
n
with ¸iapunov boundary, then

¸2(»(Cl
n
))"B2 (»(Cl

n
))=D

H
n

(¼s 1
2
(» (Cl

n
)),

where ¸2 (»(Cl
n
)) is the space of square-integrable sections over » (Cl

n
), and ¼s 1

2
(» (Cl

n
))

is the ¸2 completion of smooth sections on »(Cl
n
) with compact support.

One may now readily adapt arguments given in [7] to consider boundary value
problems over bounded domains in H

n
with Liapunov boundaries for the operator D2

H
n

.
In [9] certain domains are constructed in Rn which may be regarded as

Lipshitz-type perturbations of the unit ball. We may consider their images in H`
n

under dilation and the Cayley transformation K
2
. One may readily adapt the

arguments given in [7] to see that Theorem 10 also holds if we consider ¸2 spaces over
the images of such domains in H`

n
.

Concluding remarks

We may similarly deduce analogues of the results described in the previous section
for the appropriate sections over domains in Sn. Here we would use the Cayley
transformation K

1
. One advantage of working over Sn is that all domains on Sn are

bounded.
In particular, we can use the spherical shells, A

Sn
(x, r

1
, r

2
), to establish a mean value

type inequality for left-monogenic sections over »(Cl
n
) for each domain » on Sn. It

follows that one can now deduce the completeness of the Bergman space Bp (»(Cl
n
)) of

¸p integrable left-monogenic sections on »(Cl
n
), where » is a domain on Sn and

1)p)R. Again one can adapt argument given in [7] to show that

¸2(»(Cl
n
))"B2(»(Cl

n
)) =D

Sn
(¼s 1

2
(» (Cl

n
)),
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where ¸2 (»(Cl
n
)) is the space of square integrable sections on » (Cl

n
) and ¼s 1

2
(» (Cl

n
))

is the ¸2 completion of the space of smooth sections on »(Cl
n
) with compact support.

It is reasonably well known that the ¸2 space of the unit sphere in Rn decomposes
into a direct sum of Hardy 2-spaces of left mongenic functions defined over the
domain interior to the sphere and the domain exterior to the sphere in Rn. Under the
Cayley transformation K

2
these domains are transformed to H`

n
and H~

n
CM!f

n`1
N,

respectively. Moreover, the image of a function belonging to the Hardy 2-space over
the domain exterior to the unit sphere extends continuously to all of H~

n
. To properly

introduce the analogue of the ¸2 space over the unit sphere in Rn in the context of H
n

one needs to attach an (n!1)-dimensional sphere at infinity to either H`
n

or H~
n
. As

H
n
is assymptotic to the null cone N"Mx3Rn,1: x2"0N one can percieve this sphere

as being an extension of N. By projecting H`
n

onto real projective space one can
percieve this as a subset of N. Another way to do this is to consider Rn as a subspace of
Rn,1 and so consider the open unit ball D

n
LRnLRn,1. We then consider the

translation D
n
#f

n`1
. The boundary, Sn~1, of this ball lies in N. This translation is

a conformal transformation so one can now easily set up a Dirac operator D
Sn~1 over

this sphere, and associated bundles and function theory.

Acknowledgement

The author is grateful to David Calderbank for helpful discussions while preparing this work.

References
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