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Abstract

The problem of excitonic and biexcitonic binding is studied in the system of parabolic coordinates for a lens-shaped
box. The exciton wavefunction is expanded in terms of electron–hole configurations made from electron and hole single
states. Configuration interaction method and perturbative calculations are used to study the competition between co
and correlation effects. Biexcitonic binding energy is calculated in the strong confinement regime and a compariso
case of a spherical box is made. Absorption spectra with and without correlation effects are computed for InAs/InP
dots. Excitonic binding energy and enhancement factor are estimated to be equal to about 20 meV and 1.5, respec
excitonic absorption is finally studied in the presence of a uniform vertical electric field. A weak vertical Stark effect is pr
for lens-shaped quantum box described within this model.
 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Recent research developments were devoted
nano-structured semiconductor materials. Quan
dots (QDs) may improve properties as compared
semiconductor quantum wells (QWs) for high perf
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mance optoelectronic devices[1–4]. Most of the the-
oretically predicted properties of the QDs have be
experimentally demonstrated in the InAs/GaAs s
tem[5–7]. In order to reach 1.55 µm wavelength us
in optical telecommunications, growth of InAs QD
on InP substrate has been investigated in our la
ratory [8–10]. Using simple one-band effective ma
models, we have succeeded in obtaining a first des
tion of the electronic properties of these QDs[11].
More accurate theoretical study of the electronic pr
erties of QDs may be performed with various the
.
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retical schemes providing that precise description
the size, shape and composition are given as in
[12–14]. In the case of InAs/InP QDs however, da
from characterization experiments are scarce. In s
a case effective mass calculations for highly symm
ric shapes (two-dimensional boxes[15], spherical QDs
[2,16], ellipsoidal QDs[17]) may give indications
about the influence of quantum confinement and co
lation effects. These approaches are based on the
that analytical expressions are known for the sing
particle states wavefunctions. We recently propose
use parabolic coordinates to obtain analytical soluti
for the single-particle states in perfectly asymme
lens-shaped QDs[18]. This work was extended to de
scribe quantum wires and quantum rings within
same formalism[19]. In this work, we will focus on
the calculation of excitonic and biexcitonic binding
lens-shaped QDs. The single-particle analytical wa
functions will be used both for a perturbative approa
and the configuration interaction (CI) method. T
linear absorption spectra for InAs/InP QDs with a
without Coulomb interaction will be compared. F
nally, the excitonic absorption will be studied in th
presence of a uniform vertical electric field.

2. Single-particle states

In the presence of an infinite potential barrier, t
Schrödinger equation is equivalent to the Helmho
equation[18]. The parabolic set of coordinate se
may be used to reach separable solutions descr
in Helmholtz equations. The parabolic set of unitle
coordinates(u, v,ϑ) is defined by a transformatio
of Cartesian coordinates (0� u � ∞, 0 � v � ∞
and 0� θ � 2π ): x = auv cos(ϑ), y = auv sin(ϑ)

andz = a(u2 − v2)/2 (a is the parameter of the pa
abolic metric). Then, for an infinite potential barri
the Hamiltonian is

H = −h̄2

2
�∇ 1

m(�r) �∇

= − h̄2

2a2(u2 + v2)

×
[

1

u

∂

∂u

u

m(u,v)

∂

∂u
+ 1

v

∂

∂v

v

m(u,v)

∂

∂v

]

− h̄2 ∂2

.

2a2u2v2m(u,v) ∂θ2
t

In that case, the Hamiltonian is separable inu,
v and ϑ coordinates and the single-particle wav
function appears a product of functions of indep
dent variablesΞ(u,v, θ) = f (u)g(v)einθ . Thef and
g functions are solutions of two coupled different
equations with a separation constantC

u2d2f

du2
+ u

df

du
+ (

Eu4 − Cu2 − n2)f = 0

and

v2d2g

dv2
+ v

dg

dv
+ (

Ev4 + Cv2 − n2)g = 0,

whereE = Er/E∞P a dimensionless energy,Er the

actual energy andE∞P = h̄2

2ma2 a unit energy adapte
to the parabolic system of coordinates. Solutions
these equations[18], include confluent hypergeome
ric functions of first kindφ

f (u) = F(u,C,E,n)

= λf e−i
√

Eu2/2(i√E u2)n/2

× φ

( −iC

4
√

E
+ n + 1

2
, n + 1, i

√
Eu2

)

and

g(v) = F(v,−C,E,n) (λf is a constant).

A symmetric disk shape may be defined by the
tersections of the two parabolas (u = u0 = 1 and
v = v0 = 1) and rotated around thez axis (Fig. 1a).
The height to diameter ratio (HDR) and volumeV
are equal respectively to 0.5 andV = πa3/2. A re-
lation betweenE and C is defined by the boundar
conditions:F(1,C,E,n) = 0 [18]. If C = 0, the so-
lutions of the problem contain simpleJn/2(

√
E u2/2)

Bessel functions. This is in particular the case for
1S ground state withn = 0 andE = 23.1. The solu-
tions with C �= 0 are twice degenerated:χ(u, v) =
F(u,C,E,0)∗F(v,−C,E,0) and χ(u, v) = F(u,

−C,E,0)∗F(v,C,E,0) with E = 62.0 and C =
13.5 correspond to the 2S state. Single-particle elec
tronic states of a quantum box with flat bases (l
shape with HDR= 0.25 andV = πa3/4) are read-
ily obtained by keeping only odd solutions of th
symmetric disk case withC �= 0 [18]: χ(u, v) =
F(u,C,E,0)∗F(v,−C,E,0)−F(u,−C,E,0)∗F(v,

C,E,0). The 1S ground state of the lens-shaped Q
corresponds to the 2S state of the disk-shaped Q
u
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Fig. 1. (a) Projection of the parabolic coordinate surfaces in the(y, z) plane. A particular volume is obtained by the boundaries rotated ar
thez axis (0� θ � 2π ). If two orthogonal confocal parabolas are used (u0 = 1, v0 = 1) a symmetrical disk-shaped box is obtained. (b) Cr
section ((y, z) plane) of the parabolic mesh, the fundamental state 1S and first excited 1P wavefunctions for a lens-shaped quantum box w

flat bases.
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and the twice degenerated 1P excited states corre
sponds to the 1Pu states. The parabolic mesh and t
probability density function for the 1S and 1P states
are represented onFig. 1b.

We may perform a first comparison for singl
particle states energies between the spherical (sp
and hemisphere) and parabolic (disk and lens) sys
of coordinates. Using a common unit of energyE∞ =

h̄2

2mV 2/3 instead ofE∞P = h̄2

2ma2 andE∞S = h̄2

2mR2 , the
ground state energy is then equal to 25.6, 33.1, 3
and 52.8 for a sphere, an hemisphere, a disk an
lens, respectively. The energy differences between
first excited state and the ground state are, respecti
equal to 26.8, 21.3, 22.2 and 21.8. It shows that the
volume is the most important parameter but that sy
metry properties and shape must be taken into acco

3. Excitonic binding

In order to study the excitonic and biexcitonic bin
ing in lens-shaped QD, we follow the method us
for spherical QDs[2,16]. The metric parameter play
the role of the radiusR in spherical QDs. The di
mensionless parameterλ = a

aB
, whereaB is the Bohr

radius, is used for the calculations of the excito
and biexcitonic energies (λ = R

aB
in spherical QDs).

The CI method and the perturbative approaches
clude the evaluation of the same interaction ma
elements:Uαβ = 〈0,0|U |α,β〉 where|0,0〉 is the un-
correlated electron–hole|1S,1S〉 ground state,|α,β〉
.

another pair state of the basis andU = λ
2V (�re, �rh)

a renormalized electrostatic potential[2,16]. Notice
that we neglect the dielectric mismatch between
QD and the barrier. We use also symmetry prop
ties of the lens-shaped QD to evaluate the inte
tion matrix elements. In our previous work[18] the
single-particle wavefunctions were classified acco
ing to the irreducible representation of theC∞v sym-
metry group, with the quantum numbern associated
to the labelsS(n = 0),P (n = 1),D(n = 2), . . . . The
Hamiltonian including the electron–hole interaction
invariant with respect to simultaneous rotation of
electron and hole around thez axis. Uαβ matrix el-
ements are then taken into account only for|α,β〉
electron–hole pair states withN = 0 (N = ne + nh is
the total orbital angular momentum quantum numb

In the strong confinement regime (λ 	 1), the
excitonic binding energy is calculated from a fi
order perturbation including only theU00 matrix el-
ement. The excitonic binding energy is then eq

to −3.25 e2

4πεV 1/3 within this approximation for a
lens-shaped quantum box. It can be compared

−2.99 e2

4πεV 1/3 for the disk and−2.89 e2

4πεV 1/3 for a
sphere[2]. These results show that the dominant
fect is associated to the volume. Shape plays the
of a secondary parameter if the anisotropy is not la
as shown in Ref.[17]. In order to study the compet
tion between confinement and correlation effects,
necessary to go beyond the first order approximat
We choose material parameters relevant for InAs/
QDs [11]. The relative dielectric constant is equal
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Fig. 2. Exciton binding energy (left vertical scale) calculated by fi
order perturbation (dotted line) and CI method as a function oλ.
The excitonic enhancement factor is also reported as a functionλ

(right scale).

15.15, the electronic gap to 536 meV and the elec
and hole effective masses to 0.05 and 0.2, respecti
The Bohr radiusaB is then equal to 20.0 nm and th
Rydberg energyERyd to 2.38 meV.Fig. 2is a represen
tation of the ground state exciton binding energy a
function ofλ. The results of the first order perturbatio
and CI method are compared. The dotted line rep
sents the results of the first order perturbation met

with −3.25 e2

4πεV 1/3 = −7.04
ERyd

λ
. It has been demon

strated in the litterature[20,21] that for small values
of λ the binding energy of the exciton should decre
whenλ decreases. This effect cannot be taken into
count in our study because it is associated to fi
potential barrier height and to the penetration of
wavefunction into the barrier. From our results, we
duce that for InAs/InP QDs witha = 17.5 nm [11],
the excitonic binding energy is equal to 20.3 me
For these QDs, the confinement regime is interme
ate (λ ∼ 0.875) and it is necessary to go a little b
beyond the first order approximation. We may not
that the excitonic binding energy is larger than the o
(4ERyd = 9.5 meV) of a QW with infinite potentia
barrier. OnFig. 2, the evolution of the excitonic en
hancement factor is reported as a function ofλ. This
factor is the ratio of the ground state optical abso
tions calculated with and without correlation effec
For InAs/InP QDs witha = 17.5 nm, this factor is
equal to 1.5.

Fig. 3is a comparison between the absorption sp
tra predicted for InAs/InP QDs (a = 17.5 nm) with
Fig. 3. Optical absorption calculated with (straight line) and with
(dashed line) Coulomb effect. The lens-shaped InAs/InP QD co
sponds to (λ ∼ 0.875).

and without correlation effects. The peaks have b
convoluted by Gaussian functions in order to take i
account the experimental broadening effect. The
width at half maximum of these functions is equal
5 meV. The Coulomb interaction leads to a red-ene
shift of the whole absorption spectrum by about o
exciton binding energy. The effect of the excitonic e
hancement factor is clearly visible when compar
both absorption spectra. We may also add that s
metry forbidden single-particle optical transitions b
come weakly allowed when the Coulomb interact
is taken into account.

In the strong confinement regime (λ 	 1), the
molecular biexcitonic binding energyEmol is calcu-
lated from a summation of second order perturba
terms[2,15,16]. It is defined as the difference betwe
the energy of a biexciton and the energy of two in
pendent excitons. For InAs/InP QDs, the biexcito
binding energyEmol is equal to 3.6 meV. A gen
eral expression for a lower bound for this energy
been calculated for a spherical QD:Emol > C(2 +
me+mh

µ
)ERyd whereC is a constant equal to 0.052[2,

16]. We have obtained the same expression for a l
shaped quantum box withC = 0.186.

4. Stark effect

Electroabsorption effects near the band edge w
studied in QW for applications like electroabsorpti
modulators or self-electrooptic effect devices[22]. It
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may be interesting to evaluate how the stronger e
tronic confinement in QD when compared to QW m
enhance the performances of such devices. Firs
may notice that the vertical Stark effect does not br
the symmetry of the single-particle states contrary
the case of a model QW with an infinite potential b
rier [22]. Linear Stark energy shifts+0.228eFa and
+0.210eFa are calculated by first order perturbati
for the 1S electronic ground state and the first excit
1P electronic state (F is a positive electric field ori
ented along thez axis). A variation of the intraban
optical transition energy equal to 0.018eFa should
then be observed. For InAs/InP QDs (a = 17.5 nm),
it leads to a small variation of 3.2 meV for an ele
tric field equal to 100 kV/cm. A quadratic Stark shif
for the optical ground state transition is predicted
cause single-particle electron and hole wavefuncti
are equivalent. There is no permanent dipole in
quantum box within this model. Second order p
turbation term for the single-particle ground state

a QW is given by the expression∆E = C(me2F 2L4

h̄2 )

with C = −2.2× 10−3 (L is the thickness of the QW
andm is the effective mass of the electron or the ho
Using a similar expression for a lens-shaped quan
box whereL = a/2 is the height,C is found equal
to −1.8 × 10−3. The interplay of excitonic and vert
cal Stark effects may be estimated simply by add
new terms to the CI Hamiltonian. The diagonaliz
tion of the Hamiltonian is restricted to the subspace
electron–hole pair states withN = 0. Fig. 4 is a rep-
resentation of the absorption spectra of InAs/InP Q
(a = 17.5 nm) for various values of the electric fiel
A quadratic red-shift of the main ground state and
cited state optical transitions is observed together w
a decrease of the oscillator strengths. This effect
pears smaller than the one in quantum well in agr
ment with previous studies[23] because the height o
a QD is usually smaller than the thickness of a Q
In addition, a weak optical transition (indicated by
arrow) is enhanced by the vertical electric field.

5. Conclusion

The problems of exciton and biexciton bindin
and vertical Stark effect in a lens-shaped quan
box were studied either with the CI method or w
Fig. 4. Optical absorption calculated for various values of the ex
nal applied vertical electric field: (a)E = 0 kV/cm (straight line),
(b) E = 100 kV/cm (dashed line), (c)E = 200 kV/cm (dotted
line), (d)E = 300 kV/cm (dashed and dotted line). The lens-sha
InAs/InP QD corresponds to (λ ∼ 0.875). A quadratic red-shift o
the main optical ground state (left) and excited state (right) tra
tions is predicted. A weak optical transition (indicated by an arr
is enhanced by the vertical electric field.

perturbative calculations using the analytical expr
sions of the single-particle wavefunctions[18]. In the
strong confinement regime, the excitonic binding
ergy is given by an analytical expression with a v
ume dependence close to the one of a spherical q
tum box. Excitonic and biexcitonic binding energi
were estimated for InAs/InP QDs to be equal to 2
and 3.6 meV, respectively. The excitonic enhancem
factor is found equal to 1.5. A linear Stark ener
shift was calculated for the single-particle states
a quadratic effect is predicted for the optical grou
state transition with an analytical expression simila
the one in QWs. As a result a weak vertical Stark
fect is predicted for lens-shaped QDs described wi
this model.
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