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Stochastic resonance in the Heaviside nonlinearity with white noise and arbitrary periodic signal
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A Heaviside nonlinearity with adjustable threshold is fed by an arbitrarily distributed white noise plus a
periodic signal of arbitrary wave form. A general and exact treatment demonstrates that this system is capable
of stochastic resonance in a large variety of conditions and offers a complete characterization of this property.
In particular it gives the possibility of observing nonzero phase shifts with nondynamic stochastic resonance.
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PACS number~s!: 05.40.1j, 02.50.2r

Stochastic resonance is a property of noise-enhanced sig-
nal transmission that occurs in certain nonlinear systems
driven by a coherent periodic signal added to a noise. It was
introduced some 15 years ago in the context of climate dy-
namics@1# and has since been observed in a large variety of
both natural and model systems@2#.

At the origin stochastic resonance was essentially ob-
served in dynamic nonlinear systems of a bistable type. A
general theory has been proposed for this case@3#, which is
based on a rate equation that determines the probability of
occupation of the two stable states. In the limit of a small
modulation by the coherent input, this theory derives ap-
proximate expressions for the characteristics of the output
that stochastically resonates. Also, for complete applicability
this theory requires an explicit expression for the transition
rate between states, which is usually obtainable only within
the approximation of a slow modulation. The theory of@3#
received experimental groundings from experiments per-
formed on a ring laser with an acousto-optic modulator to
induce switching between two stable states@4#. Recently,
stochastic resonance has been extended to dynamic systems
of a monostable or excitable type@5# and here also the asso-
ciated theoretical treatments are derived in the limit of a
small or slow modulation.

A common character of the above-mentioned systems is
their dynamicnature, i.e., the nonlinear process that stochas-
tically resonates involves both the signals and their time de-
rivatives to determine the output. This situation complicates
the calculation of the output autocorrelation function, usually
the first step in the theoretical analysis, because the dynamic
system broadens the correlation of the input noise and mixes
it, in a complicated way in the output response, with corre-
lation originating from the coherent input.

Very recently, a simple example of a nondynamic~static!
system that stochastically resonates has been proposed@6#,
under the form of a unidirectional level crossing by a sine

wave plus a Gaussian noise that triggers output spikes. A
theoretical description of this system is given in the limit of
a slow and small modulation.

Additionally, in the above-mentioned theoretical treat-
ments, the hypothesis of a Gaussian noise is often crucial and
the periodic input is restricted to a sine wave.

In the following we consider an even simpler static non-
linear system, driven by a white but arbitrarily distributed
noise plus a periodic input of arbitrary wave form. To date,
this system appears to us as the conceptually simplest system
that brings together the ingredients for stochastic resonance.
We present an exact theory that provides a complete descrip-
tion of the ability of this system to stochastically resonate.

Let s(t) represent a periodic signal with periodTs and
h(t) a stationary white noise, with the complementary distri-
bution functionFc(u)5Prob$h(t).u%. We consider a static
nonlinear system with thresholdu, which receivess(t) and
h(t) as inputs and produces the outputy(t)5G[s(t)1h(t)
2u], with the Heaviside functionG(u)50 for u<0 and
G(u)51 otherwise.

We are first interested in computing a statistical autocor-
relation function for the output signaly(t). Sincey assumes
values 0 or 1 only, the expectationE[y(t)y(t2t)] for fixed
tÞ0 and fixedt can be expressed as the probability

E@y~ t !y~ t2t!#5Prob$y~ t !51, y~ t2t!51%, ~1!

which is also

E@y~ t !y~ t2t!#5Prob$s~ t !1h~ t !.u, s~ t2t!

1h~ t2t!.u%. ~2!

Sinces is a deterministic signal andh awhitenoise, one can
write

E@y~ t !y~ t2t!#5x~ t !x~ t2t!, ~3!

with

PHYSICAL REVIEW E MAY 1996VOLUME 53, NUMBER 5

531063-651X/96/53~5!/5469~4!/$10.00 5469 © 1996 The American Physical Society



x~ t !5E@y~ t !#5Prob$h~ t !.u2s~ t !%5Fc@u2s~ t !#.
~4!

For t50, one has

E@y~ t !y~ t2t!#5Prob$y~ t !51%5x~ t !. ~5!

Bothx(t) andx(t2t) are periodic int andt with periodTs .
Because of the periodic coherent modulation introduced by
s(t), the stochastic signaly(t) is nonstationary, yet it is cy-
clostationary with periodTs @7#. It is possible to construct a
‘‘stationary’’ autocorrelation functionRyy~t! for y(t)
through a proper time averaging ofE[y(t)y(t2t)] over an
intervalTs , whent or t modTs uniformly covers@0,Ts@.

To avoid difficulties due to the idealized notion of a white
noise and also to have the possibility of a direct numerical
evaluation of every relevant quantity of the model, especially
for the purpose of comparison with a simulation of the non-
linear system, we choose now to move to the context of
discrete-time signals. The time scale is thus discretized with
a stepDt!Ts such thatTs5NDt. Now, in practice, the
white noiseh(t) only need be a noise with a correlation
length shorter thanDt.

We define the stationary autocorrelation function as

Ryy~kDt !5
1

N (
j50

N21

E@y~ jDt !y~ jDt2kDt !#, ~6!

which can also be written, according to Eqs.~3! and ~5!, as

Ryy~kDt !5~ x̄2x2!d̂~kDt !1
1

N (
j50

N21

x~ jDt !x@~ j2k!Dt#,

~7!

with d̂(kDt)51 for k50 andd̂(kDt)50 otherwise and with
the time average

x̄5
1

N (
j50

N21

x~ jDt ! ~8!

and a similar definition for the averagex2. We note that since
Fc varies between 1 and 0, for any nonidentically zero or one
x(t), one always hasx̄2x2.0.

In order to proceed into the frequency domain, the Fourier
coefficients of the deterministic periodic signalx( jDt) are
introduced as

Xn5
1

N (
j50

N21

x~ jDt !expS 2 i2p
jn

N D . ~9!

We define the discrete Fourier transformF of Ryy , over a
time interval of an integer number 2M of periodsTs , as

F @Ryy~kDt !#5 (
k52MN

MN21

Ryy~kDt !expS 2 i2p
kl

2MND ,
~10!

which affords a frequency resolutionDn51/(2MNDt).
The autocorrelation function of Eq.~7! is formed by a

pulse at the origin with magnitudex̄2x2, superposed to a
periodic component with periodTs @the second term on the

right-hand side of Eq.~7!#. The Fourier transform ofRyy
defines the output power spectral densityPyy , which will
then be formed by a constant background with magnitudex̄
2x2, superposed to a series of spectral lines at integer mul-
tiples of 1/Ts . Application of Eq.~10! leads to

PyyS nTsD5 x̄2x212MNXnXn* . ~11!

When the horizonM→1`, the magnitude of the coherent
spectral lines above the broadband noise background tends to
infinity. This type of form of the power spectral density is
typical for the output of a stochastically resonant system. We
choose to define the signal-to-noise ratio, at frequencyn/Ts
on the output, as the ratio of the power contained in the
spectral line alone to the power contained in the noise back-
ground in a frequency band of 1/Ts aroundn/Ts . The corre-
sponding expression of the~SNR! signal-to-noise ratio then
follows as

RS n
Ts

D 5
NuXnu2

x̄2x2
. ~12!

In addition to the SNR, another desirable characterization
consists in the possibility of evaluating the phase shift be-
tween the output and the coherent input. This can be
achieved through the computation of an input-output cross-
correlation function. For fixedt and t, we first consider the
expectation

E@s~ t !y~ t2t!#5s~ t !Prob$y~ t2t!51%5s~ t !x~ t2t!.
~13!

E[s(t)y(t2t)] is periodic in botht andt, with periodTs .
For the definition of a stationary cross-correlation function, a
time average is taken whent or t modTs uniformly covers
@0,Ts@. This yields the cross-correlation function

Rsy~kDt !5
1

N (
j50

N21

s~ jDt !x@~ j2k!Dt#, ~14!

which is interpretable as the cross-correlation function of
s(t) with the nonstationary mean outputx(t)5E[y(t)]. Rsy
of Eq. ~14! is periodic with periodTs . Its frequency contents
has only components at integer multiples of 1/Ts . Through a
Fourier transform ofRsy according to Eq.~10!, one obtains a
cross-power spectral density

PsyS nTsD52MNSnXn* , ~15!

whereSn , defined according to Eq.~9!, is the ordern Fourier
coefficient ofs(t).

The phase shiftf between the mean outputE[y(t)] and
the coherent inputs(t), as it is also considered in@8#, can
here be evaluated, for a component with frequencyn/Ts ,
from the argument of the complex numberPsy(n/Ts) as

fS nTsD5arg~SnXn* !. ~16!
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With the present general and exact treatment, it is now easy
to verify that the nonlinear system exhibits stochastic reso-
nance for a large variety of conditions. For illustration we
choseh(t) a Gaussian white noise with zero mean and vari-
ance sh

2 and s(t)5cos(2pt/Ts). The threshold isu51.2
since for standard stochastic resonance the coherent input
alone is unable to induce a transition of the output. We show
in Fig. 1 the output autocorrelation function theoretically
predicted by Eq.~7!, whensh50.5 andDt5Ts/100. Our first
concern is to compare this theoretical autocorrelation func-
tion against a direct estimation of it, resulting from a numeri-
cal simulation of the nonlinear system. In the simulation,
sample averages of terms of the formy(t)y(t2t) were ac-
cumulated to provide an experimental estimation of the au-
tocorrelation function, which is also presented in Fig. 1. As
expected, because the model is exact, the theoretical and ex-
perimental autocorrelation functions are quite consistent and
they would tend to perfectly superpose if the sample aver-
ages experimentally performed were estimated with a num-
ber of trials tending to infinity. From here, the rest of the
comparison involves only ‘‘mechanical’’ Fourier transforms
and thus cannot introduce discrepancies between theory and
experiment that would be inherent to the system considered,
since the autocorrelation functions agree.

Next, we show in Fig. 2 the output SNR, at frequencies
1/Ts and 2/Ts , as a function of the input noise power density
sh
2 , as it results from Eq.~12!. The nonmonotonic variation

of the SNR that passes through a maximum for a specific
input noise level is a clear signature of stochastic resonance.
We observe, as visible with other stochastically resonant sys-
tems, that the resonance occurs at different noise levels for
the first and second harmonics.

In the present case, Eq.~16! gives a phase shift
f~1/Ts!50 between the components at frequency 1/Ts on the
output and on the coherent input, for any value ofsh

2 in the
resonance region spanned in Fig. 2. This absence of input-
output phase shift at the resonance is also observed in other
stochastically resonant systems, although not always@8#.
With the present model, we have the possibility to show that
the behavior of the phase shift can be altered simply by
changing some characteristics of the noise distribution or of
the coherent input.

For instance, we change the periodic input to
s(t)50.5@t (t/Ts)1cos(2pt/Ts)#, where t (t)5t mod1 is a
sawtooth signal of amplitude 1 and period 1. The 1/Ts and
2/Ts harmonics of the output still resonate, as demonstrated
by Fig. 2. The input-output phase shift given by Eq.~16!,

between the components at frequencies 1/Ts or 2/Ts , dis-
plays, respectively, a nonmonotonic variation@Fig. 3~a!# and
a monotonic decay@Fig. 3~b!# with the input noise. The shift
in phase of an input component at frequencyn/Ts can thus
change with the overall frequency contents of the input, a
typical nonlinear effect.

The present model allowed us to verify that many other
conditions enable the system to resonate, for instance, uni-
formly or exponentially distributed noise. It also gives us the
possibility to theoretically investigate various other issues of
importance, for example, the issue of the optimal noise dis-
tribution to maximize resonance in the presence of a speci-
fied coherent signals(t) or conversely the optimal wave
form for s(t) in the presence of a specified noise distribution.

FIG. 1. Output autocorrelation function versus the time lagt in
unitsTs : the smooth line is the theoretical expression of Eq.~7! and
the noisy line~almost indistinguishable! is the experimental estima-
tion, with Dt5Ts/100 atsh50.5.

FIG. 2. Output SNR of Eq.~12! as a function of the input noise
power density sh

2 : the pair of dotted curves is with
s(t)5cos(2pt/Ts) and the pair of solid curves with
s(t)50.5@t (t/Ts)1cos(2pt/Ts)#. In each pair, the upper curve is
for the first harmonic at 1/Ts and the lower curve for the second at
2/Ts .

FIG. 3. Input-output phase shift~in degrees! of Eq. ~16!, as a
function of the input noise power densitysh

2 , with
s(t)50.5@t (t/Ts)1cos(2pt/Ts)#, at frequency~a! 1/Ts and ~b!
2/Ts .
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As we mentioned, within the hypothesis of a white noise
h(t), the present theoretical treatment is exact. In practice,
an actual physical noise will have a small, but not strictly
zero, correlation lengthtc . Whentc,Dt, the physical out-
put autocorrelation function will have a peak of width;tc
around the origin, whose magnitude int50 is correctly rep-
resented by Eq.~7! but whose exact shape will not be de-
scribed by Eq.~7!. The discrete-time treatment allows us to
dispense with explicit assumptions concerning the exact
shape of this narrow peak. The exact shape of this peak of
duration;tc will start to manifest its influence on the output
power spectral density in the frequency range of order 1/tc .
Such high-frequency perturbations will generally leave unaf-
fected the stochastic resonance effect that takes place in the
much lower frequency range 1/Ts and will consequently be
accurately described by the present theoretical treatment.

The study in@9# also considers a Heaviside nonlinearity,
but preceded by a first- or second-order low-pass linear filter
fed by a Gaussian white noise. In the presence of a sinusoidal
coherent input, an exact analytical expression is derived for

the cross-correlation coefficient~zero lag! of the output with
the coherent input, from which a ratio is deduced that ap-
proaches the usual SNR for small coherent signals.

Our treatment deals with arbitrarily distributed white
noise and arbitrary periodic input and provides exact expres-
sions for the correlation functions, the power spectral densi-
ties, the input-output phase shift, and the output SNR. This
represents an example of a stochastically resonant system
that lends itself to an exact and general treatment. The suc-
cess of such a complete theoretical analysis certainly relates
to the static nature of the nonlinearity, which does not spread
the correlation of the input noise. The correlation present in
the random signal on the output essentially comes from the
coherent input. These conditions greatly facilitate the calcu-
lation of the output autocorrelation function and as demon-
strated here, they turn out to be sufficient to induce stochastic
resonance. The present general and exact treatment of a con-
ceptually very simple nonlinear system offers a unique theo-
retical framework to further investigate various aspects of
stochastic resonance.
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