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Effect of assisted hopping on the formation of local moments in magnetic impurities
and quantum dots
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Assisted hopping effects in magnetic impurities and quantum dots are analyzed. The magnitude of the
assisted hopping term in a quantum dot in the limit of large level spacing is comparable to other corrections
induced by the electron-electron interactions. Assisted hopping leads to differences between conductance peaks
associated to the same level, and, when the effect is sufficiently strong, to local pairing correlations.
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I. INTRODUCTION

Electron-electron interactions lead to the formation of
cal moments and to the Kondo effect in magnetic impurit
in metals1,2 and in quantum dots attached to metal
leads.3–5 This effect is the direct consequence of the Co
lomb repulsion between electrons which occupy the sa
quantum level of the impurity or quantum dot.

If we assume that the main physical features of the im
rity ~or the dot! are governed by a single quantum level, t
leading correction to the intralevel Coulomb interaction is
assisted hopping term. This interaction induces a depend
of the coupling of the impurity~or the dot! and its environ-
ment on the occupancy of the level.6

In the following, we estimate the magnitude of such
term for models of large atoms and quantum dots, and a
lyze its effects on the formation of a local moment on t
impurity, or quantum dot. For bulk systems, the inclusion
an assisted hopping term in the electronic Hamiltonian
vors the existence of pairing correlations.7 In the case of an
impurity, this tendency towards local pairing quenches
local moment, and, for quantum dots, it can lead to asym
tries in the conductance of peaks associated to the s
level, and even to an enhancement of the conductance
low temperatures.

The model is described in the following Sec. II A. Simp
estimates of the magnitude of the assisted hopping term
quantum dots are discussed in Sec. II B. A mean field an
sis is given in Secs. III A and III B. Extensions of the me
field approach are presented in Sec. III C. Section IV c
tains the main conclusions.

II. THE MODEL

The Hamiltonian

We analyze a single quantum level, associated to the
ation operatords

† , wheres[↑,↓ is the spin. This level is
coupled to a continuum of non interacting electrons,
scribed by operators(kcks

† . For simplicity, we assume that
single channel in the environment interacts with t
impurity8. The Hamiltonian is
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H5(
k,s

ekck,s
† ck,s1ed

0nd1Und↑nd↓1~V2DVnd↑!
1

AV

3(
k

ck↓
† d↓1~V2DVnd↓!

1

AV (
k

ck↑
† d↑1H. c., ~1!

whereV is the volume of the system and

nd↑5d↑
†d↑ ,

nd↓5d↓
†d↓ ,

nd5nd↑1nd↓ . ~2!

The density of states of the conduction band at the Fe
level is N(eF). We assume thatVN(eF), DVN(eF)!1.
Without loss of generality, we will seteF50, and define
N05N(eF).

WhenDV50 we recover the standard model proposed
Anderson for the study of the formation of local moments
metals.2 This model is determined by three parameters,
Coulomb repulsionU, the position of the leveled

0 , and its
width G5V2N0. The model has electron-hole symmet
arounded5ed

02U/2.
We will consider that the interaction effects are mos

due to the existence of localized levels at the impurity site
quantum dot. We further truncate the number of intradot l
els to a single spin degenerate state. A simple way to e
mate the importance of a given interaction term in t
Hamiltonian is by counting the number of operators rela
to the localized level included in it. Using this criterion, th
onsite Coulomb repulsion is the leading term, as all fo
electronic operators involve the impurity level. The on
term with three operators related to the impurity is the
sisted hopping term in Eq.~1!, so that we expect it to give
the next leading correction arising from electron-electron
teractions. As discussed in model detail in Sec. III B, th
statement can be made more rigorous using perturba
theory in the electron-electron coupling. Note that, in ad
tion, an assisted hopping term requires the existence of
tradot interactions only.
©2003 The American Physical Society04-1
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The Hamiltonian~1! introduces an additional dimension
less parameterDV/V. For small atoms,DV/V is a number of
order unity.6 The inclusion of this term in the Hamiltonia
breaks the electron-hole symmetry of the initial Anders
Hamiltonian.

III. CALCULATION OF DV

A. Definition of DV

We assume that the assisted hopping term in Eq.~1! arises
from interactions which involve electronic levels within th
dot only. When the Hamiltonian is truncated to the Hilbe
space defined by a single state within the dot, and the le
the electron-electron interactions within the dot can indu
among others, a term of this type.

Our initial Hamiltonian is

H5Hdot1Hlead1Htunn,

Hdot5(
i

e ici
†ci1(

i jkl
hi jkl ci

†cjck
†cl ,

Hlead5t (
n50

`

c̄n
†c̄n111H. c.,

Htunn5(
i

Vici
†c̄01H. c. ~3!

We have assumed that the lead contains a single channel
index i labels all quantum numbers of the states within
dot, including spin. We are interested in transitions where
charge state of the dot changes fromN to N11, and from
N11 to N12. In the absence of interactions, they cor
spond to the filling of a particular level, which we denotei.
When the charge state of the dot isN, all levels j such that
j , i are occuppied. We use as a basis for the electronic s
in the dot the Hartree-Fock wave functions defined when
charge stateN. Rearrangements of the electronic levels i
ply that the corresponding wave functions for charge sta
N11 andN12 are different.9 Typically, the tunneling be-
tween the dot and the lead takes place in a region of ato
size at some point of the surface of the dotr¢0. Then, Vi

}C i(r¢0), whereC i(r¢) is the wave function of statei.
We now assume that the broadening of the levels du

the coupling to the leadsG5^Vi
2N0& is smaller than the

mean level spacingD. Then, the effective tunneling can b
estimated from the ground state wavefunctions of the dot
different charge states

Veff
N→N115^N11u(

j
Vjcj

†uN& ~4!

and the difference between adding two electrons to stai,
and adding one is

DV5Veff
N11→N122Veff

N→N11. ~5!
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B. Perturbative analysis

For large dots, the interaction terms decrease with the
and conductance of the dot,10–12so that a perturbative calcu
lation of DV is possible. As mentioned above, we use t
electronic basis which diagonalize the Hartree-Fock appro
mation toHdot in charge stateN, which we denoteHHF

N . We
can defineHint5Hdot2HHF

N , and the wave functions

uN&05uN&HF,

uN11&05ci↑
† uN&HF,

uN12&05ci↑
† ci↓

† uN&HF, ~6!

where uN&HF is the ground state ofHHF
N ~note thatuN11&0

and uN12&0 are not the Hartree-Fock approximations to t
wave function of the dot with chargeN11 andN12).

The interaction HamiltonianHint when acting onuN&0 in-
duces two electron-hole pairs. The occupation of leveli in
wave functionsuN11&0 anduN12&0, and the induced inter-
action between this electron and the rest implies that
basis which diagonalizesHHF

N is no longer optimal. Then
Hint acting on these wave functions leads to excited sta
with one and two electron-hole pairs. A sketch of the corr
tions to the wave functions is shown in Fig. 1.

Matrix elements which involve one and two electron-ho
pairs have a different dependence on the size of the dot~see
below!. We will calculateDV to second order in the matrix
elements associated to one electron-hole pairHint,1 and to
first order in the matrix elements involving two pairsHint,2 .
We use Eqs.~4! and ~5!, and we need to calculate the wav
functions uN&,uN11&, and uN12&. Generically, we can
write

FIG. 1. Sketch of the zeroth order wave functions, and corr
tions with one and two electron-hole pairs for charge statesN and
N11. See text for details.
4-2
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EFFECT OF ASSISTED HOPPING ON THE FORMATION . . . PHYSICAL REVIEW B67, 195104 ~2003!
uC&5S 12
1

2 (
n1

u^n1uHint,1u0&u2

~E02En1
!2 D S u0&

1(
n1

un1&^n1uHint,1u0&
E02En1

1(
n2

un2&^n2uHint,2u0&
E02En2

1 (
n2 ,n1

un2&^n2uHint,1un1&^n1uHint,1u0&
~E02En2

!~E02En1
!

1(
n1

un1&^n1uHint,1u0&^0uHint,1u0&

~E02En1
!2 D , ~7!

whereu0&,un1&, andun2& describe states with zero, one, a
two electron-hole pairs.

The operator( iVici
† in Eq. ~4! can, at most, change b

one the number of electron-hole pairs in the wave functi
Hence, there are no contributions to Eq.~4! which are of first
order in Hint,2 . In addition, the terms in the second line
Eq. ~7! are of second order inHint,1 and lead to wave func
tions with, at least, one electron-hole pair. Their contrib
tions are of third order inHint,1 , and need not be considere
As the basis set used gives the Hartree-Fock solution
charge stateN, we have that

Hint,1uN&HF50 ~8!

which implies that the corrections toVeff
N→N11 are of second

order inHint,1 . Finally, adding all contributions, we find

DV'(
j , i

Vjhi j

e j2e i
1(

k. i

Vkhik

e i2ek
22Vi(

j < i

k. i hjk
2

~e j2ek!
2

1(
j , i

k. i
Vjhjkhik

~e i2ek!~e j2ek!
1(

j , i

k. i
Vkhjkhik

~e j2e i !~e j2ek!
,

~9!

where

hjk5^ j uHint,1uk& ~10!

and we assume that all levels are doubly degenerate.
Equation ~9! implies that electron-electron interaction

within the dot give rise to a first order correction to th
hopping, whose sign depends on the nature of the interac
and a second order correction which tends to suppress
hopping. It is instructive to consider the problem in the o
posite limit, where the level spacing within the dot is neg
gible with respect to the temperature and charging ene
Then, the leading effects of the intredot interaction lead t
Hamiltonian with three simple universal interactions13 ~see
also Sec. III D!. In that limit, the terms equivalent to assiste
hopping give rise to nonequilibrium corrections to the effe
tive tunneling density of states, analyzed in Refs. 14,15.

Note, finally, that in in addition to the correction to th
hopping given in Eq.~9!, the polarization of the occuppie
levels, j , i , gives a correction toV which does not depend
19510
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on the number of electrons in statei. We assume that this
correction can be treated as a redefinition of the bare hop
term in Eq.~1!.

C. Spherical dot

We now apply the previous analysis to the case o
spherical dot of radiusR andN@1 electrons. For simplicity,
we assume that the positive charge needed to stabilize
system is uniformly distributed within the radiusR. The level
spacing is

D;
\2kF

mR
, ~11!

wherekF5(9p/4)1/3R21 is the Fermi wave vector, andm is
the mass of the electrons. For sufficently large electro
densitieskF@(me2)/\2, the Coulomb repulsion betwee
electrons can be treated using the Fermi-Thomas approx
tion. Within this approximation,Hint,1 is given by the Fermi-
Thomas potential induced by the addition of a unit of
charge to the dot. For a three dimensional spherical dot,
potential is10

VFT~r !52
e2e2kFT(R2r )

kFT~R2r !2
, ~12!

where r is the radial coordinate and kFT

5A(4e2mkF)/(p\2) is the Fermi-Thomas wavelength. I
addition to this term, we have to include a short range in
action which leads to the excitation of two electron-ho
pairs when expanding around the Hertree-Fock solut
Hint,2 in Eq. ~9!. The matrix elements ofHint,1 decay asR22

for kFTR@1, while those ofHint,2 decay asR23, justifying
the separation of scales used in obtaining Eq.~9!.

The potentialVFT is localized within a shell of sizekFT
21

around the edges of the dot. We assume that the matrix
ments^kuVFTu j & are roughly constant ifDk!kFT wheree j
2ek'\vFDk, and zero otherwise. As the level spacing
given in Eq.~11!, the number of levels for which the matri
elements ofVFT are not negligible iskFTR. Within this en-
ergy window, we can also assume thatuCk(r¢0)u'uC i(r¢0)u,
so that the the correction toDV, using Eq.~9!, is the sum of
kFTR terms of the same sign. Finally,VFT conserves angula
momentum. The maximum angular momentum in a sph
of radiusR is approximatelykFR.

Defining

V̄FT5^ i uVFTu i &'
e2

kFT
2 R3

;
\2

mkFR3
~13!

we find that the first~linear! and second~quadratic! contri-
butions toDV are
4-3
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DV1}V
V̄FT

D
ln~kFTR!

DV2}V~kFR!2
V̄FT

2

D2
ln~kFTR!, ~14!

where the (kFR)2 factor to DV2 arises from the number o
angular momentum channels. We have obtained that the
corrections are of similar magnitude, and decay as (kFR)22.

D. Diffusive dot

The low energy levels and wave functions of quantu
dots in the diffusive regime are well described using rand
matrix theory. We consider a dot of average radiusR, mean
free pathl, and mean level separationD. In addition, we
assume that the electron density is larger s!1, wherer s

21

5(4/9p)1/3(\2kF)/(me2). The electron-electron interactio
can be expanded in powers of the inverse conductancg
5ET /D, whereET5(\2kFl )/(mR2).10–12

As in the case considered in the previous subsection,
leading term in an expansion ing21 arise from the Fermi-
Thomas potential~12!, upon the addition of electrons. Th
potential is determined solely by the geometry of the dot a
electrostatic constraints, and is independent of the detail
the dynamics of the electrons.

We use the matrix elements ofVFT calculated for a diffu-
sive dot in Ref. 10. As in Eq.~14!, we find two contributions
DV1 and DV2. The average over disorder ofDV1 is zero,
with mean fluctuations

^DV1
2&dis}V2

c1

g
ln~g!, ~15!

where c1 is a dimensionless constant of order unity. T
ln(g) correction is due to the summation over states such
D<e j2ek<ET .

To next order ing21, we find

DV2}V
c2

g
ln~g!. ~16!

For dots of similar radii,DV is larger in the diffusive regime
than in the regular case. For chaotic, ballistic dots, it see
reasonable to replaceg by kFR in Eqs.~15!,~16!.

IV. MEAN FIELD ANALYSIS

A. Magnetic solutions

We now consider the Hamiltonian in Eq.~1!. We first
analyze possible magnetic solutions. The mean field Ha
tonian is
19510
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HMF5(
k,s

ekck,s
† ck,s1ed

0nd1U~^nd↑&nd↓1^nd↓&nd↑!

1V(
s

c̄0,s
† ds1H. c.2DV~^nd↑& c̄0↓

† d↓1^nd↓& c̄0↑
† d↑

1^c̄0↓
† d↓1H. c.&nd↑1^c̄0↑

† d↑1H. c.&nd↓!, ~17!

wherec̄0 is defined in Eq.~3!. The sites defined byci ,iÞ0
can be integrated out. leading to a 232 matrix equation for
the components of the Green’s function for each spin ind
projected on thec0 andd sites

G ss
21~v!5S 2 iN0

21 2V1DVns̄

2V1DVns̄ v2ed
02Uns̄1DVgs̄

D , ~18!

wheres is the spin index and we have defined

ns5^nds&,

gs5^c̄0s
† ds1ds

†c0s&. ~19!

For the nonmagnetic solution, the different components
the density of states are~omitting spin indices!

Im Gdd~v!5
G

~v2ed!21G2
,

Im G00~v!5
N0~v2ed!2

~v2ed!21G2
,

Im G0d~v!52
N0~v2ed!~V2DVn0!

~v2ed!21G2
, ~20!

where

G5N0~V2DVn0!2,

ed5ed
01Un02DVg0 . ~21!

The self-consistent relations required in Eq.~17!, and the
Green’s functions in Eq.~20! imply that

n05
1

2
2

1

p
arctanS ed

G D ,

^c0s
† ds&5

N0~V2DVn0!

2p
ln@N0

2~ed
21G2!#. ~22!

For the symmetric Anderson model, we haveed50, and
n051/2. The equations for the magnetic solution, in the lim
of small magnetization, are analyzed in the Appendix. N
merical results of the occupancies of the different spin sta
as function ofU,V,DV ande0 are shown in Fig. 2.

B. Superconducting solutions

Alternatively, we can use the BCS decoupling and write
mean field Hamiltonian
4-4
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HBCS5(
n,s

tc̄n,s
† c̄n11,s1ednd1V(

s
~ c̄0,s

† ds1ds
†c0,s!

1U^d↑
†d↓

†&d↑d↓2DV@^d↑
†d↓

†&~d↓c̄0↑1d↑c0↓!

1^d↑
†c̄0↓

† 1d↓
†c̄0↑

† &d↑d↓#1H. c. ~23!

This Hamiltonian couples up spin electrons with down s
holes, and viceversa. The Green’s function projected on
electron and hole states at sitesc0 and d can be written in
terms of two 434 matrices

G~v!

5S 2 iN0
21 2V 0 DVn

2V v2ed DVn 2Un1DVg

0 DVn 2 iN0
21 V

DVn 2Un1DVg V v1ed

D ,

~24!

where the two upper~lower! rows correspond to electron
~holes!, and we have defined~see Fig. 3!

n5^d↑d↓&,

g5^d↑c↓1d↓c↑&. ~25!

The self-consistency condition implicit in Eq.~24! can be
linearized, as outlined in the Appendix.

FIG. 2. Number of electrons per spin, as a function ofU. Dotted
curves:DV50. Broken curves:DV50.15. In all cases,V50.2, in
units of NeF

21. Top: ed
01U/250. Center:ed

01U/2520.05. Bot-

tom: ed
01U/2510.05.
19510
e

C. Corrections beyond the mean field approximation

The impurity model studied here can be considered a
~011!-dimensional model, where fluctuations in time need
be considered~see Fig. 4!. In principle, we can integrate ou
the fermion in the leads, and obtain an effective four st
model. The four states correspond to the four occupancie

FIG. 3. BCS order parameters, Eq.~25!, for V50.2, DV
50.15, anded2U/250 in units of N(eF)21. The transition is
weakly first order. Broken line: occupancy of the localized lev
~right scale!.

FIG. 4. Mean field phase diagram of the Hamiltonian in Eq.~1!.
SC: superconducting solution. The thick line is a first order tran
tion ~see Fig. 3!. The jump innd is comparable to the thickness o
the line. LM: local moment. For comparison, the results forDV
50 are also plotted.
4-5
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F. GUINEA PHYSICAL REVIEW B 67, 195104 ~2003!
the single state at the impurity, as defined in Eq.~1!. These
states have long range interactions in time, as in related
mionic and bosonic problems.16,17 The fluctuations in time
will tend to restore the symmetries broken at the mean fi
level. We will use the mean field results as a guide to in
which type of universality class will determine the low tem
perature properties. The fact that the reduced Hilbert sp
associated to the impurity includes only four states gre
restricts the possible low energy fixed points.

The analysis in the two previous subsections suggests
there are two physical regimes:~i! Nearnd51 and for large
values ofU/G, a local magnetic moment is induced and~ii !
away fromnd51, and for moderate values ofU/G, pairing
correlations develop near the dot or impurity. We identify t
local moment regime studied earlier with the Kondo effe
Note, however, that the relation between the Kondo temp
ture and the parameters in the Hamiltonian will be chan
by the assisted hopping term.

Pairing fluctuations imply that charge states which dif
by two are strongly mixed in the ground state. This can
checked by the exact diagonalization of a block contain
the impurity and a few sites in the leads. The assisted h
ping term leads to an effective negativeUeff model, where
Ueff5EN1EN1222EN11, for certain values ofN. These
relatively small blocks, when attached to the rest of the le
will act as local defects with a tendency towards pairin
This analysis suggests that the BCS solution identified in
mean field approximation corresponds to a regime appr
mately described by the negativeU Anderson model. The
charge state of the impurity will tend to by mostly zero a
two, with fast fluctuations between them.

V. CONCLUSIONS

We have analyzed the influence of assisted hopping
correlated impurities embedded in a metal or quantum d
coupled to leads. This type of interaction is the simplest te
which can be defined in the restricted basis given by a sin
quantum level within the dot. Related effects, in the oppo
limit where the states within the dot can be treated a
continuum were studied in Refs. 14,15.

We have estimated, in Sec. III, the magnitude of this te
for simple models of regular and diffusive dots. In the lat
case, we find that the assisted hopping term has a sim
dependence on the conductance of the dot as the intera
corrections to the peak spacing.10,18–21We have not studied
in detail the intermediate case of chaotic dots where
mean free path is larger than the dimensions of the dot~see
Sec. III D!. The calculations for the cases studied here s
gests that assisted hopping terms will also arise as the
leading effects of the interaction term after the onsite C
lomb repulsion.

The assisted hopping term is directly related to
changes of the wave functions within the dot upon the ad
tion of a single electron. We have separated two effe
which contribute to this term:~i! The hybridization of the
orbital being considered with orbitals associated to exc
levels and~ii ! the relaxation of occuppied levels~‘‘orthogo-
nality catastrophe’’!. The second contribution always leads
19510
r-

ld
r

ce
ly

at

.
a-
d

r
e
g
p-

s
.
e
i-

in
ts

le
e
a

r
lar
ion

e

-
xt
-

e
i-
ts

d

the suppression of the hopping when the level is alre
occuppied by one electron. The first contribution, on t
other hand, can be of either sign. It can be wiewed as aris
from the interference between the direct hopping and h
ping through virtual states which becomes allowed when
impurity orbital is occuppied. If the hopping amplitude of a
levels being considered is of the same sign, and the hop
through higher energy levels is higher than that through
level at the Fermi energy, the interference is positive, and
hopping is enhanced when the impurity level has one e
tron. Intuitively, one can say that the orbital is expand
because of the electron repulsion, leading to an increas
the effective hopping. In other situations the sign of con
bution ~i! to the assisted hopping depends on the interp
between negative interference effects and/or very differ
hopping elements, and no simple analysis can be given.

This interaction will be larger than estimated in Sec. III
one and two-dimensional geometries as the Fermi-Tho
potential is more extended, and for low electronic densi9

Note also that the orthogonality catastrophe is expected t
enhanced in disordered two-dimensional systems.22 We have
only taken into account the interactions within the dot.
devices with more than one dot, the interactions betw
electrons in different dots will also enhance the effects
ported here. Assisted hopping can contribute to change
peak height distribution with respect to that predicted
random matrix theory.23,24

Our results suggest that assisted hopping can lead to l
pairing correlations for reasonable values of the paramet
This implies enhanced conductivity through the dot or imp
rity, significant deviations from the electron-hole symme
implicit in the Kondo effect, and measurable differences
the conductance through the two peaks associated to
same quantum level. The existence of these effects does
seem incompatible with present experimental evidence.25 A
detailed analysis of assisted hopping effects quantum dot
the limit of large level spacing, deserves further investig
tion.
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APPENDIX

1. Linearization of the magnetic Hartree-Fock equations

We first analyze the magnetic solutions when the mag
tization is small. Then, we can write

nd↑↓'n06dn,

g↑↓'g06dg. ~A1!
4-6
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The Hartree Fock approximation introduces four variatio
parametersed↑ , ed↓ , G↑ , andG↓ . We also make the expan
sion

ed↑↓'e06de,

G↑↓'G06dG. ~A2!

The consistency between Eqs.~A1! and ~A2! leads to

dn'
G0de

p~G0
21e0

2!
2

e0dG

p~G0
21e0

2!
,

19510
l
dg'

N0DVdn

2p
lnS W2

G0
21e0

2D
1

N0~V2DVn0!~e0de1G0dG!

p~G0
21e0

2!
,

de'2Udn1DVdg,

dG'2N0VDVdn. ~A3!

Equations~A3! have a nontrivial solution if
BCS
DetU 1 U 0 2DV

2
G0

p~G0
21e0

2!
1

e0

p~G0
21e0

2!
0

0 22N0VDV 1 0

2
N0~V2n0DV!e0

p~G0
21e0

2!
2

N0DV

2p
lnS W2

G0
21e0

2D 2
N0~V2n0DV!G0

p~G0
21e0

2!
1

U50 ~A4!

For DV50, Eq. ~A4! reduces to

UG0

p~G0
21e0

2!
51. ~A5!

For e050 ~symmetric case!, andDVÞ0, we find:

U5pG02
N0DV2

p F 2V

V2n0DV
1 lnS W

G0
D G . ~A6!

This equation defines the critical value ofU at which a solution with a nonzero magnetization appears.

2. Linearization of the BCS equations

We defineG̃dd(v) and G̃dc0
(v) as the anomalous Green’s functions involving electrons and holes induced by the

coupling in Eq.~23!. They can be obtained from the implicit Eq.~24!. The self-consistency equations are

n5
1

pE2`

0

Im G̃dd~v!dv,

g5
1

pE2`

0

Im G̃dc0
~v!dv. ~A7!

We can invert Eq.~24! and linearize with respect ton andg, to obtain

Im G̃dd~v!5
2VDVN0~v22ed

22G2!n12Gv~Un2DVg!

@~v2ed!21G2#@~v1ed!21G2#
,

Im G̃dc0
~v!52

2G2DVN0vn1~v22ed
22G2!@N0DV~v2ed!n2N0V~Un2DVg!#

@~v2ed!21G2#@~v1ed!21G2#
. ~A8!

We can integrate these expressions, so that

n52
Un2DVg

ped
arctanS ed

G D ,
4-7



F. GUINEA PHYSICAL REVIEW B 67, 195104 ~2003!
g52
2N0DVn

p H ln@N0
2~ed

21G2!#1arctanS ed

G D J . ~A9!

Finally, we obtain

F11
U

ped
arctanS ed

G D G1
2N0DV2

p2ed

arctanS ed

G D ln@N0
2~ed

21G2!#<0, ~A10!

where we have dropped the arctan term in the second equation in Eq.~A9!.
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