
Optics Communications 281 (2008) 4219–4223
Contents lists available at ScienceDirect

Optics Communications

journal homepage: www.elsevier .com/locate /optcom
Numerical errors of diffraction computing using plane wave
spectrum decomposition

Tomasz Kozacki *

Institute of Micromechanics and Photonics, Warsaw University of Technology, Sw. A. Boboli 8, 02-525 Warsaw, Poland

a r t i c l e i n f o a b s t r a c t
Article history:
Received 4 January 2008
Received in revised form 3 April 2008
Accepted 19 May 2008
0030-4018/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.optcom.2008.05.023

* Tel.: +48 224328635.
E-mail address: t.kozacki@mchtr.pw.edu.pl
In the paper the numerical determination of diffraction patterns using plane wave spectrum decomposi-
tion (PWS) is investigated. The simple formula for sampling selection for error-free numerical computa-
tion is proposed and its applicability is discussed. The usage of this formula presents practical difficulty
for some diffraction problems due to required large memory load. A new multi-Fourier transform PWS
(MPWS) method is elaborated which overcomes memory requirement of the PWS method. The perfor-
mances of the PWS and MPWS methods are verified through extensive numerical simulations.
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1. Introduction

In the development of optical technologies the need for more
accurate optical models is constantly growing. To meet this de-
mand the methods for diffraction field determination and their
accuracy are extensively investigated. These methods are widely
applied to solve problems of relation of optical fields between
two separated planes. Digital holography [1], diffraction tomogra-
phy [2], design of diffractive optical elements [3], and numerical
refocusing [4,5] are the exemplary optical techniques utilizing such
methods.

A computer aided analysis of general diffraction between two
parallel planes based on the Rayleigh–Sommerfeld integral [6] in-
volves two main approaches. The first one is based on a direct inte-
gration of the Rayleigh–Sommerfeld integral through discrete
convolution of an optical field and the free space propagation im-
pulse response. In the second approach an optical field is decom-
posed into plane waves and the propagation is computed using
the angle dependent phase accommodation.

In this paper the plane wave spectrum decomposition (PWS)
method is investigated. Such a decomposition is additionally used
in the free-space beam propagation studies between arbitrarily ori-
ented planes [7] and in problems of diffraction by micro optical
elements [8–10]. We concentrate our study on the numerical er-
rors of diffraction field determination between two parallel planes
using plane wave spectrum. The errors of the PWS method were
discussed by Shen et al. [11]. It was stated that the diffraction com-
puting error depends on the size of a computation window and the
general guidelines for the window size selection were given. To
treat this issue in a more detailed way we utilized the spatial fre-
ll rights reserved.
quency localization approach [12] to derive formula for the win-
dow size selection. For many practical cases of diffraction field
determination the required window size grows and presents tech-
nical difficulty, necessary memory buffers for the algorithm are too
large. This was the motivation for investigating a new algorithm
without a need for such memory buffers. This algorithm is called
the multi-Fourier transform PWS method (MPWS) and it is intro-
duced in Section 4. Section 5 presents accuracy tests of the PWS
and MPWS methods. In Appendix A the MPWS algorithm is
derived.

2. Plane waves spectrum decomposition

Let us consider diffraction in a linear, homogenous and isotropic
medium, where an optical field distribution is given as u(x, y, 0), on
the plane z = 0. It is known [13] that in the half plane z > 0 the
propagation of an optical field using PWS at the output plane
(r = [x, y, z]) can be expressed by

uðrÞ ¼ 1
2p

� �2 Z 1

�1

Z
Uz¼0ðktÞexpfik � rg dkt ð1Þ

using plane wave spectrum decomposition at input plane (r = [x, y,
0])

Uz¼0ðktÞ ¼
Z 1

�1

Z
uðrt;0Þexpf�ikt � rtgdrt; ð2Þ

where corresponding vectors are given by

rt ¼ xêx þ yêy;

k ¼ kt þ kzêz;kt ¼ kxêx þ kyêy;

kz ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 � kt � kt

q
if kt � kt 6 k2

;

þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kt � kt � k2

q
if kt � kt > k2
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>: :
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Fig. 1. PWS algorithm configuration visualization; the visualization is presented in
both spatial (propagation field) and spatial frequency (phase of the kernel)
domains; X-object plane, X0-propagation plane.

Fig. 2. Spatial error distribution of the phase computed for the point object and
parameters z = 100 mm, k = 0.5 lm, Dx = 5 lm.
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The êx;y;z are the unit vectors and the dot in Eqs (1) and (3) denotes
the vector scalar product.

Eq. (2) can be expressed in the form relating the Fourier spectra
of an optical field at the output [rt, z] and input [rt, 0] planes, i.e.,

~uðft; zÞ ¼ ~uðft;0ÞHðftÞ; ð3Þ

where

HðftÞ ¼
expfikz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2ft � ft

p
g if ft � ft 6 k�2

expf�kz
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2ft � ft � 1

p
g if ft � ft > k�2

(

is the kernel of the PWS method.
The tilde denotes Fourier Transform ~gðftÞ ¼

R1
�1 gðrtÞ

expf�2pirt � ftgdrt and the Fourier frequency vector obeys relation
ft = [cos(a)/k, cos(b)/k], where a, b are x, y directional cosines of the
wave vector k, respectively.

Eq. (3) is the essential part of the PWS algorithm where the
optical field at the output plane u(rt, z) is simply the Fourier trans-
form of ~uðft; zÞ.

3. Sampling error in PWS computation

The algorithm basing on Eq. (3) will produce precise discrete
optical fields u(rt,z) only if both ~uðft; zÞ and H(ft) are band limited
according to the Nyquist sampling theorem. In this Section the
sampling of the PWS kernel employing spatial frequency localiza-
tion is investigated. The evanescent fields are not considered. An
improper sampling of a phase part of the PWS kernel is a major
source of the PWS algorithm error. For simplicity of the presenta-
tion the analysis is performed in one dimension, the received result
is readily applicable to the two dimensional case.

The phase part of the PWS kernel is a phase function with a con-
stant amplitude containing high frequency information. To be
properly sampled the phase increase of the PWS kernel between
two consecutive samples can not exceed p.

In order to find necessary conditions of PWS kernel sampling
we utilize local spatial frequency in the Fourier domain and we de-
fine spatial frequency position

xlf ¼
1

2p
oðARG½Hðf Þ�Þ

df
¼ �kzfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2f 2
q : ð4Þ

The spatial frequency position associates particular frequency re-
gions with spatial position. For small frequencies the distribution
of spatial frequency localization grows linear, then diverges at fre-
quency k�1.

The PWS algorithm configuration using Eq. (4) is presented in
Fig. 1. It is required that, the spatial frequency position xlf can
not exceed dimensions of computational aperture NxDx/2 i.e.,

jxlf j ¼
�kzfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k2f 2

q
�������

������� 6
NxDx

2
: ð5Þ

For limiting case we introduce fviol, giving band limitation for com-
putational algorithm:

fviol� ¼ k�1 1þ 4z2

ðNxDxÞ2

 !�1=2

: ð6Þ

In the numerical example presented in Fig. 1 the angular spectrum
of the object wave is band limited to the Nyquist frequency, but the
PWS kernel sampling condition is violated. At the object plane wave
spectrum, the spatial frequencies higher then fviol (viol. waves) will
be multiplied by improperly sampled PWS kernel. At frequency fviol

the xlf equals to the inverse of two frequency samples
[Dfx = (NxDx)�1]. Therefore, higher frequencies then fviol cause
aliasing in the PWS kernel and PWS algorithm produces inaccurate
results.

Above derivation can be visualized with experimental example,
where the Nyquist frequency fNq corresponds to the limiting plane
wave of the object spectrum and the computational aperture to the
aperture at propagation plane. In this case the rays representing
the plane wave originating from object centre with angle larger
then

u ¼ tan�1 NxDx

2z

� �
¼ tan�1 kfviolffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2f 2
q

0
B@

1
CA ð7Þ

will hit rim of the aperture. Additionally with increasing distance z
the angular dimension of the aperture is smaller and the violating
waves region grows.

The condition (6) gives the means of the PWS algorithm config-
uration, i.e., the adjustment of sampling parameters in order to
avoid the PWS kernel aliasing. In practice, for analytically given
optical distribution at the input plane, the sampling is chosen
according to Eq. (6), whereas for an optical signal given by discrete
samples, the condition (6) can be fulfilled through the signal data
extension, e.g. signal zero padding.

To visualize numerical errors we chose discrete representation
of the point source as an object and we test its propagation. Such
an artificial exemplary object distribution has constant Fourier
spectrum, so only propagation errors related to PWS kernel will
be visualized. In Fig. 2 the difference between theoretical and



Fig. 3. The signal dimension Nx as a function of sample size Dx for z = 100 mm,
k = 0.5 lm.
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computed phase distributions for a point source is presented. The
longitudinal distance between the source and diffraction plane is
z = 100 mm. There are two distributions. One of the distributions
was received by the propagation algorithm with the sampling con-
dition fxviol. = fNqx. The second distribution is obtained with viola-
tion of the sampling condition fxviol. = 0.51 fNqx.

Condition (6) can be cast to the form

Nx P
2kz

Dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4D2

x � k2
q ð8Þ

showing the necessary signal dimensions for the PWS computa-
tional algorithm. In Fig. 3 the signal dimension is plotted as a func-
tion of sample size for an exemplary propagation distance. The PWS
algorithm will produce correct results for the signal dimensions
above the line only. For example at Dx = 2.24 lm the signal dimen-
sion grows rapidly (Nx > 10000) giving practical difficulty for the
PWS algorithm configuration. For Nx = 10000 the algorithm uses
3.2 GB memory buffers.

4. Multi-Fourier transforms PWS method

In the preceding Section the necessity of the signal data exten-
sion was presented. It was shown that for some practical simula-
tion cases such an extension can present practical difficulty due
to large memory requirements. This was the motivation of the
implementation of the zero padding algorithm where the use of
such large memory buffers is not necessary. This algorithm we will
call as the multi-Fourier transform PWS method (MPWS). The basic
idea of the algorithm is the application of signal zero padding
through multiple computation of modified PWS algorithms with-
out enlarging of memory buffers. Detailed algorithm derivation is
presented in Appendix A.

Consider input signal ui of size N � N. Let extend such a signal
through zero padding by integer multiple A:

uie½nx;ny� ¼
ui½nx;ny� if 0 6 nx < N; 0 6 ny < N

0 otherwise

�
; ð9Þ

where nx 2 h0 : Ne � 1i, ny 2 h0 : Ne � 1i and Ne = AN is the dimen-
sion of the extended array and A is the integer number.

Discrete Fourier spectrum of such a data array (size AN � AN)
can be represented by A2 data arrays of size N � N:

~uða;bÞie ½p; q� ¼
XN�1

m¼0

XN�1

n¼0

ui½n;m�exp �2pi
naþmb

Ne

� �

� exp �2pi
npþmq

N

n o
; ð10Þ
where a, b are integers in the range: 0 6 a < A and 0 6 b < A.
Therefore the DFT of the extended input array can be split into

A2 submatrixes marked by a and b. Each submatrix can be com-
puted from DFT of input array ui modified by the phase function
of a and b. The submatrixes are shifted in frequency space by a/
ANDx and b/ANDx, respectively.

Substituting Eq. (10) into Eq. (3) gives final formula for the opti-
cal field uo at the output plane z:

uo½n;m� ¼ N�2
e

XA�1

b¼0

XA�1

a¼0

PN�1

q¼0

PN�1

p¼0

~uða;bÞie ½p; q�H½pþ aA�1
; qþ bA�1�

� exp 2pi npþmq
N

� 	
exp 2pi naþmb

Ne

n o
0
BB@

1
CCA;
ð11Þ

where array H stores coefficients of the PWS kernel swapped in the
DFT specific manner:

H½u; v� ¼

expf2pizDf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�2

f k�2 � u2 � v2
q

g
for 0 6 u; v < N

2 � 1

expf2pizDf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k�2D�2

f � ðu� NÞ2 � v2
q

g
for N

2 6 u < N � 1; 0 6 v < N
2 � 1

expf2pizDf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�2

f k�2 � u2 � ðv� NÞ2
q

g

for 0 6 u < N
2 � 1; N

2 6 v < N � 1

expf2pizDf

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�2

f k�2 � ðu� NÞ2 � ðv� NÞ2
q

g

for N
2 6 u; v < N � 1

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

Df ¼ ðNDxÞ�1
:

The formula is the base equation of the MPWS algorithm and allows
to compute free space propagation of the input optical signal ui

through a distance z.
The MPWS algorithm can be reconfigured to padding with arbi-

trary complex constant A0. Such a reconfiguration is accomplished
with simple arithmetic operations:

– step 1: subtraction of constant A0 from input optical field,
– step 2: propagation using MPWS algorithm with zero padding,
– step 3: addition of the constant A0exp{ikz}.

The MPWS algorithm produces the same result as the PWS
method with zero padding data extension applied. Let us compare
computation load of the PWS and MPWS algorithms with data zero
padding. For the PWS method application of two DFT algorithms of
data arrays of size AN � AN is required while for the MPWS method
2A2 DFT of data arrays N � N are necessary.
5. Accuracy test

This Section presents numerical study of the precision of the
PWS and MPWS algorithms. First we assess the accuracy of algo-
rithms by comparison with known diffraction solution. Then
numerically obtained diffraction results with sampling according
to condition (6) are explored.

Consider the diffraction problem where a circular aperture is
illuminated by plane wave with wave vector normal to the aper-
ture plane. For such a geometry the optical field distribution at
the optical axis is known [14]. In Fig. 4 the amplitude of diffracted
optical field along the axis is presented. Theoretical results and
numerical values obtained with PWS (signal size 1024 � 1024)
and MPWS methods (N = 1024) are given. The discrepancy be-
tween numerically computed amplitude with the PWS method
and the theoretical solution appears for large propagation



Fig. 5. The integrated phase error obtained for point source as a function of propagation distance for the PWS and MPWS methods (Dx = 1 lm, wavelength 0.5 lm).

Fig. 6. The phase error obtained for diffraction by a circular aperture for the PWS and MPWS methods (Dx = 1 lm, wavelength 0.5 lm).

Fig. 4. On-axis amplitude variation received in the case of diffraction of a plane wave by circular aperture of radius 150 lm (Dx = 1 lm, wavelength 0.5 lm).

4222 T. Kozacki / Optics Communications 281 (2008) 4219–4223
distances. The MPWS algorithm gives results with a good agree-
ment with theoretical ones.

In the next numerical test a study of the impulse response is
considered. The phase distribution ARG[unum.] at various propaga-
tion distances is calculated numerically with the PWS and MPWS
methods for a point source. The integrated phase error resulting
from comparison of the numerical results with the theoretically
obtained phase ARG[uthoer.] was estimated via equation

ARG½unum:�err ¼
1
N

X
jrt j<r0

½ARG½utheor:ðz; rtÞ� � ARG½unum:ðz; rtÞ��2
" #1=2

;

ð12Þ

where r0 = 0.25 mm and N is a number of considered numerical val-
ues.The phase errors are presented in Fig. 5. The errors computed
for the PWS method for three array dimensions: 1024 � 1024,
3072 � 3072, and 9216 � 9216 are included. It is clear that the
PWS for the largest matrix and the MPWS (N = 1024) algorithms
give error-free phase distributions only at all considered propaga-
tion distances.The final test considers again the diffraction problem
with circular aperture illuminated by plane wave normal to the
aperture plane. For such a geometry the diffracted field was com-
puted using PWS (|uPWS(z, rt)|, array dimensions 1024 � 1024,
3072 � 3072, and 9216 � 9216) and MPWS (|uMPWS(z, rt)|,
N = 1024) methods. For various distances the integrated deviation
between amplitudes obtained with the PWS and MPWS methods
were computed via equation

juPWSjerr ¼
1
N

X
jrt j<r0

½juMPWSðz; rtÞj � juPWSðz; rtÞj�2
" #1=2

ð13Þ

with r0 = 0.25 mm. The results |u(z, rt)|err are plotted in Fig. 6 giving
equivalent conclusions to these discussed above. Namely the dif-
fracted field can be obtained precisely using the PWS method with
sampling according to Eq. (6) or the MPWS method.

6. Conclusions

In the paper we undertook the study of numerical errors of dif-
fraction computing between two parallel planes using the plane
wave spectrum decomposition (PWS). The error depends on the
selection of sampling parameters. Utilizing the spatial frequency
localization this feature was investigated and the simple formula
was given. It was shown that in order to produce accurate results
for some diffraction computation cases a significant data extension
is necessary. Such a data extension can present practical difficulty
due to the required memory load. Therefore a modified method
(MPWS) of computing the plane wave spectrum without necessity
of data extension was presented. Simulation results have shown
that both the PWS and MPWS methods provides accurate diffrac-
tion field when the correct sampling is applied.
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Appendix A. MPWS algorithm derivation

In Section 3 the necessity of signal extension for large propaga-
tion distances was presented. For numerically given signal the Fou-
rier spectrum sampling rate is determined by signal dimensions,
but for same propagation distances can be to coarse. Therefore
we apply signal data extension through zero padding. This tech-
nique is frequently used in signal processing to enhance signal res-
olution [15].

Consider 1D object data ui of length N sampled with interval D.
The plane wave spectrum uo at distance z is given by

uoðnDÞ ¼ N�1
XN�1

p¼0

~uiðpDf ÞHðpDfÞexpf2pinp=Ng; ðA1Þ

where Df = (ND)�1.
In order to decrease sampling rate of input signal in Fourier do-

main we apply 1D zero padding according to Eq. (6) giving ex-
tended input signal uie of size Ne = AN with plane wave spectrum

uoðnDÞ ¼ N�1
e

XA�1

a¼0

XN�1

p¼0

~uieðpDf þ aDfeÞH

� ðpDf þ aDfeÞexp
2pinp

N

� �
exp

2pina
Ne

� �
; ðA2Þ

where Dfe = (NeD)�1.
The algorithm based on above equation would be inefficient,

the extended input matrix is processed. For algorithm optimization
the spectrum of object extended signal have to be split into A fre-
quency subsignals shifted in frequency space:

~uieðpDf þ aDfeÞ ¼
XNe

ne¼1

uieðneDÞexp �2pineðApþ aÞ
Ne

� �

¼
XN

n¼1

uiðnDÞexp �2pinp
N

� �
exp �2pian

Ne

� �
: ðA3Þ

Application of Eq. (A3) in Eq. (A2) gives final formula for 1D MPWS
algorithm, where input signal without extension is processed:

uoðnDÞ ¼ N�1
e

XA�1

a¼0

XN�1

p¼0

~uieðpDf þ aDfeÞHðpDf

þ aDfeÞexp
2pinp

N

� �
exp

2pina
Ne

� �
: ðA4Þ
References

[1] L.P. Yaroslavskii, N.S. Merzlyakov, Methods of Digital Holography, Consultants
Bureau, 1980.

[2] A.J. Devaney, Ultrason. Imaging. 4 (1982) 336.
[3] J.R. Fienup, Appl. Opt. 21 (15) (1982) 2758.
[4] F. Dubois, L. Joannes, J.-C. Legros, App. Opt. 38 (1999) 7085.
[5] T. Kozacki, M. Kujawinska, P. Kniazewski, Optoelectronics Review 15 (2007)

102.
[6] M. Born, E. Wolf, Principles of Optics, seventh ed., Cambridge University Press,

Cambridge, 1999.
[7] N. Delen, B. Hooker, J. Opt. Soc. Am. A 15 (1998) 857.
[8] N. Lindlein, J. Opt. A: Pure Appl. Opt. 4 (2002) S1.
[9] A. Rohrbach, W. Singer, J. Opt. Soc. Am. A 15 (1998) 2651.

[10] K.H. Brenner, W. Singer, Appl. Opt. 32 (1993) 4984.
[11] F. Shen, A. Wang, Appl. Opt. 45 (2006) 1102.
[12] J.W. Goodman, Introduction to Fourier Optics, second ed., McGraw-Hill, 1996.
[13] J.J. Stamnes, Waves in Focal Regions, Hilger, Bristol, 1986.
[14] A. Dubra, J.A. Ferrari, Am. J. Phys. 67 (1999) 87.
[15] J.C. Santamarina, D. Fratta, Discrete Signals and Inverse Problems: An

Introduction for Engineers and Scientists, John Wiley & Sons, 2005.


	Numerical errors of diffraction computing using plane wave spectrum decomposition
	Introduction
	Plane waves spectrum decomposition
	Sampling error in PWS computation
	Multi-Fourier transforms PWS method
	Accuracy test
	Conclusions
	Acknowledgements
	MPWS algorithm derivation
	References


