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Nonlinear operations in quantum-information theory
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Quantum-information theory is used to analyze various nonlinear operations on quantum states. The univer-
sal disentanglement machine is shown to be impossible, and paréightive results are obtained in the
state-dependent case. The efficiency of the transformation of nonorthogonal states into orthogonal ones is
discussed[S1050-294@9)08705-3

PACS numbds): 03.67—a

The rules of a quantum mechanics make certain processes The most general physical operation
impossible. Nonorthogonal quantum states cannot be cloned
[1]. This is one of the fundamental theorems of the quantum Tp
information theory. On other hand, there are explicit con- p—p' = TTp )
structions of quantum circuits that would perform many in-
teresting transformations of quantum staf2s3], provided
that certain devices, like quantum XOR gafdd, can be
actually built. Between these two extremes there is a gray’ /. - .
area of operations that are not obviously forbidden by th ositive[7,8]. The val|(j|ty of_the last cond|t!orﬁ9] has re-
elementary laws of quantum mechanics, but may be ruIe&ently become a hot issue in nUMErous _dlSCUSSlons, but it
out by more careful considerations. The most interesting Oggrtamly hold_s for systems which are initially unentangled
them are nonlinear operations, and their analysis from the‘;"v'tg the|:jlenV|ronhme‘2_t. ion th s
point of view of quantum-information theof$,6] is the sub- ceording to the “first representation theorerfg]
ject of this paper.

The basic procedures of quantum mechanics — unitary _ +
transformations and projections — are linear. However, non- Tp Ek: Acp Ay “)
linear operations with quantum states are common, even if
they are not alwa}ys regardgd as such. Nonlinearity .naturallyvhere the set oA/s satisfies
enters via selective operations, namely those that involve a
filtering at one of their steps. These operations have a finite
probapility to fail and may look quite exotic, e.g., the trans- 2 AlAkg 1. (5)
formation[2] k

is represented by a superoperator3(H),— B(H), which
is (i) positive, (i) satisfiesT'T<1, and (iii) is completely

in_ ( P11 P12> out_ P P32 o In the problem that is considered here, the transformation in
oo poa P T\ p2 62 Eq. (2) is nonselective, so that, A/A=1.

When a “quantum black box'{10] is specified, the su-
Nevertheless, the possibility of failure is not a necessary corPeroperatoil and the corresponding matricég can be in-
dition of nonlinearity. An operation may be nonselective, ferred from the complete set of input and output data. Simi-
i.e., it is always completed successfully, but there may be &arly, if we extend Eq(2) to a larger set of states and then
demand for certain inputs to be transformed into certain outUse the approach of Chuang and Niel$2@], we can con-
puts. Here we are interested only in the processing of thesm or refute different realizations of the desired transforma-
particular input states. For example, if we want to procesdion. If the answer is positive the problem is solved. On the
the output of a two-state C|0ning machi[fé], the transfor- contrary, a negative answer tells us nothing. Another realiza-
mation of the two resulting pure entangled stailebeled 1  tion may still work.

or 2) into the direct product of their reduced density matri- Quantum-information theory can discern absolutly impos-
ces, sible processes from tentatively possible ones. We look at

the desired operation as a part of some hypothetical decision
P12 TraAp12®Trgp1 o (20 scheme, which aims at distinguishing between different input
states[6,11,14, or as a communication channel3] with
would be useful. What happens to all other states is irrelinput and output alphabets given by the left- and right-hand
evant and unspecified; everything that makes this processides of an expression like E(R).
work will be accepted. If we are interested only in these two  Using Egs(3), (4) it is easy to show that any chain of the
states, the transformation looks nonlinear. measurements and/or transformations of the system, with or
without ancilla, can be described as a single measurement
[14] represented by a positive operator-valued measure
*Electronic address: terno@physics.technion.ac.il (POVM). Thus if the proposed procedure allows us to im-
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proveany of the distinguishability criteria of the input states Moreover, the entropy defect does not increase under trace
beyond the optimal value, it contains some flaw and therepreserving completely positive mafk3],
fore is not physical.
One of these distinguishability criteria is the probability AS(Tp1,Tpa)<AS(p1,p2). (1)
of error (Pg), defined as follow$6,11]: an observer is given
one of two statep, andp,. That state is secretly chosen, and It is obvious that the compliance with known information
since we are interested in the intrinsic difference between theounds is only a necessary condition that the proposed trans-
states, the probilities to pick up either of the states are equaformation must satisfy. However, it is a powerful tool, as the
The task of the observer is to decide, after performing anyfollowing examples illustrate.
thing that is allowed by quantum mechanics, which state was Since the exact cloning of quantum statgs:p®p is
given to him. The probability that the observer makes ampossible[1], let us consider the best approximate cloners.
wrong guess with the best possible decision scheme gives Ehe optimal two-state cloning machif@] is a device which
measure of the distinguishability. Two orthogonal states cafias one of the two possible pure sgirstates as the input
be distinguished perfectly, thus givinBe=0. When the and produces an entangled pair on the output. Two identical
states are identicde= 3. In general the optimal result is  reduced density matrices are close to the cloned state with
exceptionally high fidelty, F=Tr[(Trap™)|™ ("]
1 >0.985. Although the fidelity of the reduced density matri-
PE(pl’pZ)zi_ZTrlpl_p2|' ©®  cesis very high, it will be shown that it is impossible to
separate the output according to the prescription of Bqlf
Any transformation that would give a lower PE certainly the two input states are parametrized as
violates the laws of quantum mechanics. Unfortunately, the

usefulness of this criterion is limited to the case of two |u)=cos#|0)+sing|1),
states, which is the only one for which a closed solution is (12
known. |v)=sin6|0)+ cosh|1),

Another criterion is the accessible informatibfp,p,),

which is defined as a maximal mutual information over allthe output states are

possible decision schemes. For a set of statagith fixed a _ _

priori probabilitiess; each possible measurement schetne |u’)=(acos#+ csin6)|00) +b(cosf+sin6)(|01) +|10))
gives a probability distribution of the results. We calculate .

the mutual information between the probability distributions +(ccosf+asing)|11),
corresponding to different states. Finally the maximum is, , . .
taken over all possible measurements. In the case of twdv )= (C €0s+asin6)[00)+b(cos6+sin6)(|01) +[10))

inputs the accessible information is given [56,12,13 +(acosf+csing)|11), (13)

I(pl,p2)=:m:v{l(p(pl,X),p(pz,X))]. @) wherea(#6), b(6), andc(6) are given in the Appendix.
Before looking at the state-dependendent disentanglement

This definition is naturally extended to more than two statesMachine, it is easy to see why the universal device is impos-

Accessible information cannot increase, but there are only &ible. A transformation

handful of cases where it is explicitly known, in particular

two pure states and two spinstateq15]. p—Trap®Trgp, (14
Whenl is unknown we can use different unequalities that ] ] ) ] )

relate the accessible information to other distinguishabilityfor ll input states is essentially nonlinear. Thus it cannot

criteria[6,12]. The most useful of them involves a new no- correspond to any physical procdd$]. More explicitly, if

tion, which is called entropy defect or relative entrajj ~ E9-(14) holds for two arbitrary states, andp,, it also holds
and is given by for their convex combinatioh7]

_ px=Xp1+(1—X)p,, O=x=<1. (15
AS(py, ... pp)=S(p)= 2 mS(p)), ®
' If Eq. (14) represents a linear transformation, then

where
Trapx®Trg px=XTrap1®@Trg p1+(1=X)Tra po®Trg p.

S(p)=—Trplnp, 9 (16)
is the von Neumann entropy_zziiwipi, and m; is thea On the other hand,
priori probability distribution. In order to measure the intrin-

—y2 _v\2
sic difference between two of the states, weset mp=3,  APx® e px=XTrap1@Trg py +(1=X)"Tra p2& Trg p2

as in the definition ofPg. The Levitin-Holevo inequality +X(1=X)(Tra p1®Trg po
states that the entropy defect is an upper bound of the acces-
sible information[5] +Trap2®Trg p1), 17)

[(p1,p2)<AS(p1,p5). (100  which is clearly a contradiction.
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FIG. 1. Probabilities of error: thin line is in the optimal mea-

surement, thick line is in the optimal measurement after disen- [, 2. Domains of the parameters for the disentanglement
tanglement. transformation according to the: criterion. The states lying on the
) ] border are not forbidden.
Now let us suppose that there is a disentanglement proce- ) ) )
dure which is described by E(). We apply the Helstrom’s ~€Xactly as in the previous case, we look for the regions where
decision scheme to the output of the state-dependent clon&S<AS;, i.e., where the disentangleme(® is impossib-
and to the direct product of the disentangled copies!® These domains are presented in Fig. 3. It is instructive to

Tra ps Trg p®t. In both cases the analytical expressionsCOmPare it with Fig. 2. The boundary of the regions forbid-

i i FA A ;
for PE can be found explicitly. They are given in the Appen-den byPe coincides with some parts of the boundary ob-

dix and their graphs are plotted in Fig. 1. We see that théained byAS. However, the differences are clear. This partial

. . reement requires further investigation and may give some
d|_sentanglemept of th? CopIes decrease_s PE and, as a fesﬁgw insights on the relationship between different distin-
this process is impossible. A closer look into the constructio

f th imal Is that th q uishability criteria.
of the optimal measurement reveals that the proposed trans- |, e examples that we considered above, these criteria

formation is realized by an operator which is rmisitive  give identical predictions for the states with an equal degree

and, consequently, can represent no physical process.  of entanglement. For pure states the degree of entanglement
Now, let us again consider the states

¢
|u)=a|00)+ b(|01) +|10)) +¢|11), 3
(18)
|v)y=c|00)+b(|01)+|10)) +a|11), 2.8
where the coefficients, b, andc are arbitrary real numbers
subject only to the normalizatiorg®+ 2b%+c?=1. They 5
can be parametrized by spherical coordinates as
a=sinyY cosep, b=sinﬁsin<p/\/§, c=co0sd. 1.5

(19

It is possible to derive analytical expressions ¢ and
Peg,» which are given in the AppendiRg(9,¢) is the actual
optimal result, while the decision process which leads to
Pe4(9,9) includes the hypothetical disentanglement proce- 0.5
dure. Obviously, the regions of the(¢) plane whereP¢
< Pgq are forbidden, i.e., the disentanglement procedure can-
not be realized. Figure 2 shows these areas together with the
line that corresponds to the disentanglement of the output of 0 0.3 ! 1.5 2 2.3 3
the optimal cloner, which lies in one of the forbidden do- 6
mains. FIG. 3. Domains of the parameters for the disentanglement
Another bound can be obtained by using the entropy detransformation according to th&S criterion. The states lying on
fect. The explicit expressions fakS and ASy will not be  the border are not forbidden. The forbidden domain is drawn in
given here, because they are too cumbersome. Proceedipgack.

-

o




PRA 59 NONLINEAR OPERATIONS IN QUANTUM-INFORMATICN . . . 3323

i[slg?easured by a von Neumann entropy of either subsystem P(succesp<1—|( | oM. (24)
Moreover, there should be a transformation that achieves this
E(p)=S(Trap)=S(Trgp). (200 upper bound: if the state is known, any number of its copies
can be produced. As a result, a transformation which consists
of the unambiguous state identification and the correspond-
1 ing preparation achieves the bound of E2f}). However, the
A.==(1*(a+c)y1+2b%Z—2ac), (21)  more reasonabléand physically fruitfu] transformation of
2 [2] has this maximal efficiency too. The importance of Eq.
(24) is that generalizations of this res{i#2,23 are valid for
an arbitrary number of linearly independent states. For ex-
ample, if m copies of three pure nonorthogonal states are
used to produce the orthogonal ones, the efficiency of the
operation is bounded by22]

The eigenvalues of either of Aju){u| or Tra|v){(v| are

These eigenvaluegand, as a result, the degrees of the en
tanglement of the corresponding statase unchanged under
the transformationy— 7w— 39, ¢—7— . It is also a sym-
metry of Egs.(A6)—(A9) and the expressions fdS.

A more intricate questiofl8] is whether there is a trans-

formation that takes an entangled state into a separable one 3 o
[19] and preserves the reduced density operators, P(succes};sl—;1 ki|[ 1Py P31 ™3, (25
p—p=2, Wipl'®pl , Trap=Trap, Trg p=Trg p. where coefficient&, depend on the relative orientation of the
22 state vectors anfluvw] stands for the triple product of the
' tate vect Buvw] stands for the triple product of th

vectors, i.e., the determinant of their components, in any ba-

Some time after this paper was submitted for publication, iSis.

was shown by Mor[20] that a universal disentanglement  part of this work was performed during the Elsag-Bailey-
machine into separable states is impossible. ISI research meeting on quantum computation, Turin. It is a
As another example, we analyze the information approacjeasure to thank Dagmar Bruss, Isaac Chuang, and Lev
to the transformation of pure nonorthogonal states into ory eyitin for useful discussions. The help of Chris Fuchs and
thogonal ones. Recent[2] a quantum circuit that does this asher Peres is gratefully acknowledged. This work was sup-

operation for spir; states was proposed. Since nonorthogoported by a grant from the Technion Graduate School.
nal quantum states cannot be distinguished with certainty,

such a transformation has only a limited probability of suc- APPENDIX
cess. It consists of applying a XOR gd# to the pair of

identically prepared particles in either of the states and mea- Parameters of the cloning machine:
suring the spin of the second particle ardirection. If the

spin is *“down” the transformation succeeds. In this case the g

[cosA(P+Q cos 20) —sinfd(P—Q cos 20)],

outputs are [¢°);®||) or |#3")®||); and we have cos 29
(3" 3" =0 even if initially there was an overlap between (AL)
the states.

Leaving the explicit calculations aside, let us look at the b= cos 20 P sin 26(cosf—sinf), (A2)

bounds on this operation. Orthogonal states can be, in prin-
ciple, distinguished unambiguously. Thus it is possible to use
this procedure as part of an error-free scheme of discrimina- ¢
tion between two nonorthogonal stafed. The exact solu-

tion of this problem[21] is given by a POVM with two
outputs which correspond to the unambiguous reséitsind ey

A,, and an output which is a failure of the measurement, P:;Lmze (A4)

[cosO(P—Q cos 20) —sin (P + Q cos 20) ],
(A3)

" cos29

A,=1—A,—A,. The optimal POVM is explicitly known and 1+sir? 20’
the probability of having a definite answer is
P vy 9 B 1+J1-sin26
P=1—[(¢1/ $2)]. 23 Q=3 cosz AS)

Since the direct products of two copies of the same stategrobabilities of error for the output of the cloning machine:
have an overlap equal {9¢4] ¢,)|?, the probability of suc- 11

cess of any transformation of two nonorthogonal states into _-_ = e

orthogonal ones is bounded by Pe(0) 2 2 |cos® 6—sirf ], (A6)

1 1 \cos26(13—10cosH+cos 89+ 6 sin 20— 2 sin 66)
Ped(0)=5——= : (A7)
2 2 (3—cos 49)°

Probabilities of error in a more general case:



3324 DANIEL R. TERNO PRA 59

1 1
Pe(d,0)=5 - §|COSZ 9 —cog ¢ sin? 9] X \Jcos I+ cos ¢ sint 9+ 2 sirt ¢ sir? &+ cose sin 21, (A8)
1 1 )
PEd(ﬂ,<p)=§—§|co§ 9—cog ¢ sir? 3| VF(,¢), (A9)
whereF is
F(9,¢)=cod 9+ cos 9 sir? 9(3—cos 2p) + 4 cose cosd sir? ¢ sin® &+ (5— cos 4p)sin’* 9/4.
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