
PHYSICAL REVIEW A MAY 1999VOLUME 59, NUMBER 5
Nonlinear operations in quantum-information theory
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Quantum-information theory is used to analyze various nonlinear operations on quantum states. The univer-
sal disentanglement machine is shown to be impossible, and partial~negative! results are obtained in the
state-dependent case. The efficiency of the transformation of nonorthogonal states into orthogonal ones is
discussed.@S1050-2947~99!08705-3#

PACS number~s!: 03.67.2a
ss
n
u
n

in

ra
th
le
o

th

ta
on
n
a
e
ni
s

o
e
e
u
e

es

ri-

re
e

w

ut it
ed

n in

mi-
n

a-
he
iza-

s-
at

sion
put

nd

e
h or
ent
ure
-

The rules of a quantum mechanics make certain proce
impossible. Nonorthogonal quantum states cannot be clo
@1#. This is one of the fundamental theorems of the quant
information theory. On other hand, there are explicit co
structions of quantum circuits that would perform many
teresting transformations of quantum states@2,3#, provided
that certain devices, like quantum XOR gates@4#, can be
actually built. Between these two extremes there is a g
area of operations that are not obviously forbidden by
elementary laws of quantum mechanics, but may be ru
out by more careful considerations. The most interesting
them are nonlinear operations, and their analysis from
point of view of quantum-information theory@5,6# is the sub-
ject of this paper.

The basic procedures of quantum mechanics — uni
transformations and projections — are linear. However, n
linear operations with quantum states are common, eve
they are not always regarded as such. Nonlinearity natur
enters via selective operations, namely those that involv
filtering at one of their steps. These operations have a fi
probability to fail and may look quite exotic, e.g., the tran
formation @2#

r in5S r11 r12

r21 r22
D→rout5S r11

2 r12
2

r21
2 r22

2 D . ~1!

Nevertheless, the possibility of failure is not a necessary c
dition of nonlinearity. An operation may be nonselectiv
i.e., it is always completed successfully, but there may b
demand for certain inputs to be transformed into certain o
puts. Here we are interested only in the processing of th
particular input states. For example, if we want to proc
the output of a two-state cloning machine@3#, the transfor-
mation of the two resulting pure entangled states~labeled 1
or 2! into the direct product of their reduced density mat
ces,

r1,2→TrA r1,2^ TrB r1,2 ~2!

would be useful. What happens to all other states is ir
evant and unspecified; everything that makes this proc
work will be accepted. If we are interested only in these t
states, the transformation looks nonlinear.
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The most general physical operation

r→r85
Tr

Tr Tr
~3!

is represented by a superoperatorT: B(H)1→B(H)1, which
is ~i! positive, ~ii ! satisfiesT†T<1, and ~iii ! is completely
positive @7,8#. The validity of the last condition@9# has re-
cently become a hot issue in numerous discussions, b
certainly holds for systems which are initially unentangl
with their environment.

According to the ‘‘first representation theorem’’@8#

Tr5(
k

AkrAk
† , ~4!

where the set ofAk’s satisfies

(
k

Ak
†Ak<1. ~5!

In the problem that is considered here, the transformatio
Eq. ~2! is nonselective, so that(kAk

†Ak51.
When a ‘‘quantum black box’’@10# is specified, the su-

peroperatorT and the corresponding matricesAk can be in-
ferred from the complete set of input and output data. Si
larly, if we extend Eq.~2! to a larger set of states and the
use the approach of Chuang and Nielsen@10#, we can con-
firm or refute different realizations of the desired transform
tion. If the answer is positive the problem is solved. On t
contrary, a negative answer tells us nothing. Another real
tion may still work.

Quantum-information theory can discern absolutly impo
sible processes from tentatively possible ones. We look
the desired operation as a part of some hypothetical deci
scheme, which aims at distinguishing between different in
states@6,11,12#, or as a communication channel@13# with
input and output alphabets given by the left- and right-ha
sides of an expression like Eq.~2!.

Using Eqs.~3!, ~4! it is easy to show that any chain of th
measurements and/or transformations of the system, wit
without ancilla, can be described as a single measurem
@14# represented by a positive operator-valued meas
~POVM!. Thus if the proposed procedure allows us to im
3320 ©1999 The American Physical Society
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proveanyof the distinguishability criteria of the input state
beyond the optimal value, it contains some flaw and the
fore is not physical.

One of these distinguishability criteria is the probabil
of error (PE), defined as follows@6,11#: an observer is given
one of two statesr1 andr2. That state is secretly chosen, a
since we are interested in the intrinsic difference between
states, the probilities to pick up either of the states are eq
The task of the observer is to decide, after performing a
thing that is allowed by quantum mechanics, which state w
given to him. The probability that the observer makes
wrong guess with the best possible decision scheme giv
measure of the distinguishability. Two orthogonal states
be distinguished perfectly, thus givingPE50. When the
states are identicalPE5 1

2 . In general the optimal result is

PE~r1 ,r2!5
1

2
2

1

4
Trur12r2u. ~6!

Any transformation that would give a lower PE certain
violates the laws of quantum mechanics. Unfortunately,
usefulness of this criterion is limited to the case of tw
states, which is the only one for which a closed solution
known.

Another criterion is the accessible informationI (r1 ,r2),
which is defined as a maximal mutual information over
possible decision schemes. For a set of statesr i with fixed a
priori probabilitiesp i each possible measurement schemX
gives a probability distribution of the results. We calcula
the mutual information between the probability distributio
corresponding to different states. Finally the maximum
taken over all possible measurements. In the case of
inputs the accessible information is given by@5,6,12,13#

I ~r1 ,r2!ªmax
X

@ I „p~r1 ,X!,p~r2 ,X!…#. ~7!

This definition is naturally extended to more than two stat
Accessible information cannot increase, but there are on
handful of cases where it is explicitly known, in particul
two pure states and two spin-1

2 states@15#.
WhenI is unknown we can use different unequalities th

relate the accessible information to other distinguishabi
criteria @6,12#. The most useful of them involves a new n
tion, which is called entropy defect or relative entropy@5#
and is given by

DS~r1 , . . . ,rn!5S~ r̄ !2(
i

p iS~r i !, ~8!

where

S~r!52Tr r ln r, ~9!

is the von Neumann entropy,r̄5( ip ir i , and p i is the a
priori probability distribution. In order to measure the intri
sic difference between two of the states, we setp15p25 1

2 ,
as in the definition ofPE. The Levitin-Holevo inequality
states that the entropy defect is an upper bound of the ac
sible information@5#

I ~r1 ,r2!<DS~r1 ,r2!. ~10!
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Moreover, the entropy defect does not increase under t
preserving completely positive maps@13#,

DS~Tr1 ,Tr2!<DS~r1 ,r2!. ~11!

It is obvious that the compliance with known informatio
bounds is only a necessary condition that the proposed tr
formation must satisfy. However, it is a powerful tool, as t
following examples illustrate.

Since the exact cloning of quantum states,r→r ^ r is
impossible@1#, let us consider the best approximate clone
The optimal two-state cloning machine@3# is a device which
has one of the two possible pure spin-1

2 states as the inpu
and produces an entangled pair on the output. Two ident
reduced density matrices are close to the cloned state
exceptionally high fidelty, F5Tr@(TrAr i

out)uc i
in&^c i

inu#
.0.985. Although the fidelity of the reduced density mat
ces is very high, it will be shown that it is impossible
separate the output according to the prescription of Eq.~2!. If
the two input states are parametrized as

uu&5cosuu0&1sinuu1&,
~12!

uv&5sinuu0&1cosuu1&,

the output states are

uu8&5~a cosu1c sinu!u00&1b~cosu1sinu!~ u01&1u10&)

1~c cosu1a sinu!u11&,

uv8&5~c cosu1a sinu!u00&1b~cosu1sinu!~ u01&1u10&)

1~a cosu1c sinu!u11&, ~13!

wherea(u), b(u), andc(u) are given in the Appendix.
Before looking at the state-dependendent disentanglem

machine, it is easy to see why the universal device is imp
sible. A transformation

r→TrA r ^ TrB r, ~14!

for all input states is essentially nonlinear. Thus it cann
correspond to any physical process@16#. More explicitly, if
Eq. ~14! holds for two arbitrary statesr1 andr2, it also holds
for their convex combination@7#

rx5xr11~12x!r2 , 0<x<1. ~15!

If Eq. ~14! represents a linear transformation, then

TrA rx^ TrB rx5xTrA r1^ TrB r11~12x!TrA r2^ TrB r2 .
~16!

On the other hand,

TrA rx^ TrB rx5x2TrA r1^ TrB r11~12x!2 TrA r2^ TrB r2

1x~12x!~TrA r1^ TrB r2

1TrAr2^ TrB r1!, ~17!

which is clearly a contradiction.
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3322 PRA 59DANIEL R. TERNO
Now let us suppose that there is a disentanglement pr
dure which is described by Eq.~2!. We apply the Helstrom’s
decision scheme to the output of the state-dependent cl
and to the direct product of the disentangled copi
TrA r i

out
^ TrB r i

out. In both cases the analytical expressio
for PE can be found explicitly. They are given in the Appe
dix and their graphs are plotted in Fig. 1. We see that
disentanglement of the copies decreases PE and, as a r
this process is impossible. A closer look into the construct
of the optimal measurement reveals that the proposed tr
formation is realized by an operator which is notpositive
and, consequently, can represent no physical process.

Now, let us again consider the states

uu&5au00&1b~ u01&1u10&)1cu11&,
~18!

uv&5cu00&1b~ u01&1u10&)1au11&,

where the coefficientsa, b, andc are arbitrary real number
subject only to the normalization,a212b21c251. They
can be parametrized by spherical coordinates as

a5sinq cosw, b5sinq sinw/A2, c5cosq.
~19!

It is possible to derive analytical expressions forPE and
PEd, which are given in the Appendix.PE~q,w! is the actual
optimal result, while the decision process which leads
PEd(q,w) includes the hypothetical disentanglement pro
dure. Obviously, the regions of the (q,w) plane wherePE
,PEd are forbidden, i.e., the disentanglement procedure c
not be realized. Figure 2 shows these areas together with
line that corresponds to the disentanglement of the outpu
the optimal cloner, which lies in one of the forbidden d
mains.

Another bound can be obtained by using the entropy
fect. The explicit expressions forDS and DSd will not be
given here, because they are too cumbersome. Procee

FIG. 1. Probabilities of error: thin line is in the optimal me
surement, thick line is in the optimal measurement after dis
tanglement.
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exactly as in the previous case, we look for the regions wh
DS<DSd , i.e., where the disentanglement~2! is impossib-
le.These domains are presented in Fig. 3. It is instructive
compare it with Fig. 2. The boundary of the regions forb
den by PE coincides with some parts of the boundary o
tained byDS. However, the differences are clear. This part
agreement requires further investigation and may give so
new insights on the relationship between different dist
guishability criteria.

In the examples that we considered above, these crit
give identical predictions for the states with an equal deg
of entanglement. For pure states the degree of entanglem

- FIG. 2. Domains of the parameters for the disentanglem
transformation according to thePE criterion. The states lying on the
border are not forbidden.

FIG. 3. Domains of the parameters for the disentanglem
transformation according to theDS criterion. The states lying on
the border are not forbidden. The forbidden domain is drawn
black.
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PRA 59 3323NONLINEAR OPERATIONS IN QUANTUM-INFORMATION . . .
is measured by a von Neumann entropy of either subsys
@17#,

E~r!5S~TrAr!5S~TrBr!. ~20!

The eigenvalues of either of TrAuu&^uu or TrAuv&^vu are

l65
1

2
~16~a1c!A112b222ac!, ~21!

These eigenvalues~and, as a result, the degrees of the e
tanglement of the corresponding states! are unchanged unde
the transformationq→p2q, w→p2w. It is also a sym-
metry of Eqs.~A6!–~A9! and the expressions forDS.

A more intricate question@18# is whether there is a trans
formation that takes an entangled state into a separable
@19# and preserves the reduced density operators,

r→ r̃5(
i

wir i
A

^ r i
B ,TrA r̃5TrA r,TrB r̃5TrB r.

~22!

Some time after this paper was submitted for publication
was shown by Mor@20# that a universal disentangleme
machine into separable states is impossible.

As another example, we analyze the information appro
to the transformation of pure nonorthogonal states into
thogonal ones. Recently@2# a quantum circuit that does thi
operation for spin-12 states was proposed. Since nonorthog
nal quantum states cannot be distinguished with certai
such a transformation has only a limited probability of su
cess. It consists of applying a XOR gate@4# to the pair of
identically prepared particles in either of the states and m
suring the spin of the second particle inz direction. If the
spin is ‘‘down’’ the transformation succeeds. In this case
outputs are ufout&1^ u↓& or uf2

out& ^ u↓&; and we have
^f2

outuf1
out&50 even if initially there was an overlap betwee

the states.
Leaving the explicit calculations aside, let us look at t

bounds on this operation. Orthogonal states can be, in p
ciple, distinguished unambiguously. Thus it is possible to
this procedure as part of an error-free scheme of discrim
tion between two nonorthogonal states@2#. The exact solu-
tion of this problem@21# is given by a POVM with two
outputs which correspond to the unambiguous results,A1 and
A2, and an output which is a failure of the measureme
A?512A22A1. The optimal POVM is explicitly known and
the probability of having a definite answer is

P512u^f1uf2&u. ~23!

Since the direct products of two copies of the same st
have an overlap equal tou^f1uf2&u2, the probability of suc-
cess of any transformation of two nonorthogonal states
orthogonal ones is bounded by
m
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P~success!<12u^f1
inuf2

in&u2. ~24!

Moreover, there should be a transformation that achieves
upper bound: if the state is known, any number of its cop
can be produced. As a result, a transformation which cons
of the unambiguous state identification and the correspo
ing preparation achieves the bound of Eq.~24!. However, the
more reasonable~and physically fruitful! transformation of
@2# has this maximal efficiency too. The importance of E
~24! is that generalizations of this result@22,23# are valid for
an arbitrary number of linearly independent states. For
ample, if m copies of three pure nonorthogonal states
used to produce the orthogonal ones, the efficiency of
operation is bounded by@22#

P~success!<12(
i 51

3

ki u@f1
inf2

inf3
in#u2m/3, ~25!

where coefficientski depend on the relative orientation of th
state vectors and@uvw# stands for the triple product of th
vectors, i.e., the determinant of their components, in any
sis.
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APPENDIX

Parameters of the cloning machine:

a5
1

cos 2u
@cosu~P1Q cos 2u!2sinu~P2Q cos 2u!#,

~A1!

b5
1

cos 2u
P sin 2u~cosu2sinu!, ~A2!

c5
1

cos 2u
@cosu~P2Q cos 2u!2sinu~P1Q cos 2u!#,

~A3!

P5
1

2

A11sin 2u

A11sin2 2u
, ~A4!

Q5
1

2

A12sin 2u

cos 2u
. ~A5!

Probabilities of error for the output of the cloning machin

PE~u!5
1

2
2

1

2
ucos2 u2sin2 uu, ~A6!
PEd~u!5
1

2
2

1

A2

Acos2 2u~13210 cos 4u1cos 8u16 sin 2u22 sin 6u!

A~32cos 4u!3
. ~A7!

Probabilities of error in a more general case:
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PE~q,w!5
1

2
2

1

2
ucos2 q2cos2 w sin2 qu3Acos2 q1cos2 w sin2 q12 sin2 w sin2 q1cosw sin 2q, ~A8!

PEd~q,w!5
1

2
2

1

2
ucos2 q2cos2 w sin2 quAF~q,w!, ~A9!

whereF is

F~q,w!5cos4 q1cos2 q sin2 q~32cos 2w!14 cosw cosq sin2 w sin3 q1~52cos 4w!sin4 q/4.
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