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INVITED PAPER 

The justification for applying the effective-mass 
approximation to microstructures 
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Received 9 March 1992 

Abstract. The assumptions of conventional effectivemass theory, especially the one of 
continuity of the envelope function a t  an abrupt interface, are reviewed aitically so lhat 
the need for a fresh approach bemmes apparenL A new envelope-function melhod, 
developed ty h e  author over the past few years, is reviewed. This new method is based 
on both a generalization and a novel application to microstructures of the htl inger- 
Kohn envelope-hnction expansion. The differences between lhis new method and h e  
conventional envelope-function method are emphasized. An altemative derivation of 
the new envelope-function equations, which are exact, to that already published is 
provided. A new and improved derivation of lhe author's effective-mass equation is 
given, in which the differences in lhe wnecenlre eigenstates of the constituent nyslals 
are laken into account. This derivation h valid for abrupt interfaces and relies only 
on the slow variation of lhe envelope fundion(s). Unambiguous bundary conditions 
lhat automatically " e w e  probabilily current are derived, The muse of the kinks in 
the conventional effective-mass envelope function, at abrupt effective-mass changes, is 
identified. The formal resuits are mtensively illustrated with a numerical example. A plot 
of lhe author's m e t  envelope funclion shows that i t  has a soft kink at an effective-mass 
discontinuity. This  soft kink is also seen in the aact wavefunction. I t  is this feature which 
is approximated in mnventional models by the effective-mass-related kink. The reasons 
why conventional effective-mass theory works so well tecome clear. The distinction 
between Luttinger-Kohn and WnnierSlaler envelope functions is highlighted. It is 
demonstrated that the author's generalization and new application of the Luttinger- 
Kohn envelope-function expansion can also be carried out tor the WnnierSlater case. 
However, i t  is found that the derivation of effective-mass equations for the generalized 
MnnierSlater envelope functions is not as straightfomard as for the Lutlinger-Kohn 
case. Some problems uncovered recently in y i n g  to extend effectivemass lheoly lo the 
non-parabolic regime are resolved. 

1. Introduction 

The use of the effective-mass approximation, in various guises, is almost as old 
as solid-state theory itself, and its formal justification for microstructures has long 
provided a challenge for the theorist. The approximation has been used extensively 
to describe electronic motion near band extrema in the presence of slowly varying 
weak perturbations, such as applied magnetic and electric fields, as well as for the 
shallow-impurity problem in semiconductors; see e.g. Luttinger and Kohn (1955) 
especially for earlier references, Kohn (1957) and Altarelli and Bassani (1982). With 
the advent of semiconductor quantum weIls (Dingle et al 1974), it was natural to 
try to apply an effective-mass approximation, the famous 'particle in a box' model, 
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to the calculation of the low-lying electronic states, because the calculation is simple 
and at least one expects the envelope of the wavefunction to be slowly varying on 
the atomic scale, one of the conditions needed to derive effectivemass equations for 
homogeneous crystals. However, the other condition for the validity of the effective- 
mass approximation, that the perturbing potential is weak, is clearly violated for 
quantum wells, because the difference between the potentials in the well and barrier 
layer is not small, neither is it slowly varying. Yet the ‘particle in a box’ model 
seemed to work (Dingle et af 1974) and has been in extensive use ever since. So the 
advent of quantum wells brought about a hiatus in the development of effective-mass 
theory from the well understood regime of weak perturbations in bulk crystals to the 
little-understood strong perturbation regime in microstructures. 

Why the effective-mass theory works so well for microstructures has been an 
enigma, and progress in resolving it has been mixed. Much of this work has been on 
the boundarycondition problem, ie. how to connect the solutions on either side of 
an atomically abrupt interface (see e.g. Altarelli 1983a,b,c, 1986, Smith and Mailhiot 
1986, Eppenga PI of 1987, Baraff and Gershoni 1991) or equivalently trying to de- 
termine the Hamiltonian phenomenologically (see e.g. Morrow and Brownstein 1984, 
Morrow 1987a, b, Einevoll and Hemmer 1988, Thomsen et a1 1989, Einevoll et af 
1990, Einevoll 1990). What has hampered progress has been the lack of a derivation 
of the effective-mass equations from first principles, without the use of heuristic argu- 
ments, Le. a derivation that starts from the microscopic Schrodinger equation and at 
each stage provides a means of estimating the error in any approximation made. The 
main problem has been the heuristic nature of the conventional envelope-function 
method (for a recent review of the applications of this method see Bastard et a1 
(1991)). A Cew years ago, the author managed to develop a new envelope-function 
method, derive the corresponding exact envelope-function equations and demonstrate 
how to arrive at an effective-mass equation (Burt 1987, 1988a, b, 1989). This paper 
is aimed at showing how this approach can resolve the above-mentioned problems. 

In the next section the problems associated with conventional approaches to the 
justification of the effective-mass approximation are reviewed. While the problem of 
finding thc correct boundary condition for the derivative of the envelope function has 
received extensive attention, continuity of the envelope function is widely assumed 
(see e.g. Bastard 1981, Bastard et a1 1991), though there are exceptions (e.g. Ando 
el a1 1989, Tikhodeev 1991, Cuypers and van Haeringen 1992). The potential errors 
in lhis assumption are highlighted and the need for a definition of envelope functions 
that builds in continuity from the start becomes clear. Such a definition has been the 
basis of the author’s approach, and this approach is reviewed along uith the deriva- 
tion of the exact equations for these new envelope functions (Burt 1987, 19&, 1989) 
in section 3. The differences bewcen the author’s new envelope-function method 
and the conventional method are emphasized. In section 4 an alternative and, as yet, 
unpublished derivation of these exact envelope-[unction equations is given, a deriva- 
tion that emphasizes that the new exact envelope-function equations are related to 
the original Schrodinger equation by unitary transformations; such a derivation may 
be more appealing to some readers. In particular, this derivation demonstrates the 
power of this new envelope-function method. It can handle non-local potentials, for 
instance, and can easily be adapted to include spin-orbit interaction (Burt 1989). 
And, indeed, on first applying a change in independent variable, it could be applied 
to strained structures, as has already been done in earlier work (Burt 1989). The 
next step on the road to the derivation of an effectivemass equation is to justify the 
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dropping of the non-local terms in the author‘s exact envelope-function equations. 
This is sketched in section 5 along with a review of the other simplifications and their 
justidcation to get approximate envelope-function equations with piecewise-constant 
coefficients for microstructures with atomically abrupt boundaries. In section 6 the 
author’s apprmimate envelope-function equations are used to derive effective-mass 
equations. In this derivation, the change in each and every zone-cenbe eigenfunction as 
one moves across an inreflace is taken into account as a matter of course, even though 
the basis functions remuin rhe same. Also, provided the right level of approximation 
is retained (Burt 1988b), the author’s envelope function and its derivative are con- 
tinuous everywhere, even at atomically abrupt interfaces. Retuning to the author‘s 
original envelope-function equations, the question of boundary conditions at abrupt 
interfaces under more severe approximations is dealt with in section 7. In the au- 
thor’s formalism, this question only arises when a piecewise-continuous approximation 
is made to the coefficients in the envelope-function equations. It is shown that all the 
solutions of these equations and their derivatives must be continuous. However, if, 
as a further approximation, some of the second-derivative terms are neglected, then 
kinks in the author’s envelope functions at effective-mass discontinuities may arise. 
In this Same section, the relation between the conservation of the probability current 
and the above-mentioned boundary conditions is discussed. As a separate issue, the 
problem of boundary conditions at an impenetrablc barrier is examined, pointing out 
that the apparently obvious answer, though approximately correct, is not quite so easy 
to justify as one might suppose. 

Section 8 gives numerical results for a model superlattice. The model, being 
one-dimensional, is not intended, of course, to represent a real physical system. Its 
primary purpose is to illustrate the new mathematical method and this it does very 
well with minimal complexity. On solving the Schrodinger equation for this model, 
the ground-state wavefunction is found to have a pronounced soft kink in its envelope 
at the interfaces. The author‘s new exact envelope-function equations are also solved 
exactly and a rapid variation in the derivative of the dominant envelope function 
corresponding to the effective-mass change is found as predicted earlier (Burt 1988b). 
This rapid variation in the author’s envelope function corresponds to the effective- 
mass-related kink generated by conventional treatments. A number of plots are given 
for the various functions that arise in the author’s formulation. 

So far, the paper is concerned with the author’s generalization and novel applica- 
tion of the envelope functions introduced by Luttinger and Kohn (1955). However, 
there is an alternative approach to envelope-function theory using the definition of 
Wannier (1937) and Slater (1949) based on Mnnier orbitals. In section 9, it is shown 
how the method used in secrion 4 to derive exact equations for the author’s genera- 
lization of Luttinger-Kohn envelope functions can be used to do the same for the 
Wannier-Slater case. In the same section we extend a derivation by Young (1989) of 
the effective-mass equation based on Wannier orbitals. It is pointed out that it is not 
necessary to restrict this derivation, as Young did, to structures with slowly varying 
and small overall composition changes. The derivation turns out to be considerably 
more complicated than the derivation presented in section 6, and still does not cover 
the possibility of substantial changes in composition dealt with there. 

The extension of effective-mass theory to the non-parabolic regime is a topic of 
considerable importance for cases of strong quantum confinement. In the author’s 
approach, and in the k . p method generally, the use of an energy-dependent effec- 
tive mass seems to emerge naturally. This approach has, nevertheless, come under 
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criticism recently. Section 10 is devoted, in part, to clarifying the situations in which 
the energy-dependent effective-mass approach is a useful one. It also gives an oppor- 
tunity to show the power of an ab initio method, such as the author has developed, 
to resolve the type of questions raised by the above-mentioned criticism; it makes a 
fitting p i n t  at which to finish by giving a summary and some perspective (section 11). 

Finally, a note on nomenclature. It is important to keep in mind the distinction 
between conventional envelope functions and those introduced by the author. It 
would, however, be clumsy to make this distinction fully and explicitly at absolutely 
every relevant point in the text So, as a shorthand, the envelope functions introduced 
by the author will often be referred to simply as the ‘new’ envelope functions, even 
though it k some five years since they were first introduced (Burt 1987). And in the 
absence of any qualification it is to be assumed that the envelope functions concerned 
are ‘new‘. The exception is in the next section, dealing with conventional effective 
mass theory, where the envelope function referred to is the conventional one and 
denoted by f. The ‘new’ envelope functions introduced and used in subsequent 
sections will be denoted by F,. 

2. The problems with conventional effectivemass theory 

The problems with mnventional effective-mass theory can be highlighted by consid- 
ering electronic motion in a quantum well in a one-dimensional crystal system. For 
both the well and the barrier layers, one can write the wavefunction approximately 
as 

where U ( r )  is the wavefunction for the bandedge eigenstate and f ( r )  is a slowly 
varying envelope function. ?b find the eigenstates of the structure one has to match 
the wavefunction in the well and barrier crystals at the interfaces. Fbr an interface at 
z = 0 we have 

W q o )  = * y o )  (2.2) 

p ( o ) U ‘ - ) ( o )  = f‘b’(O)U(b)(O). (2.3) 

so 

It is almost universally assumed that the well and barrier crystals are so similar in 
their chemical nature that the U’s are approximately equal (see e.g. Bastard ef ul 
1991) and one obtains the approximate continuity of the envelope function 

f‘”’(0) = f‘b’(0) 

provided the U’s are not zero at I = 0. Let us take a look at this assumption that 
the U’s are equal. Suppose the error in this assumption is 5%, a typical figure for 
semiconductor quantum wells. The error in the energy is of the order of the square 
of the error in q, Le. 0.25%. This would appear to be a highly satisfactory state of 
affairs if this error referred to the size quantization energy. However, it does not. 
Rather, it refers to the total energy, and this is more realistically measured from the 
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kinetic energy zero of the ‘empty’ lattice. This total energy is typically about 10 eV 
in semiconductors and hence the error in the energy is of the order of 25 meV! So 
the similarities in the U’s does not explain why the effectivemass method works so 
well. There must be a more subtle reason, to which we will return. 

One could object to the above reasoning concerning the errors inherent in the 
approximation (24) by saying that the effectivemass equation incorporating (2.4) is 
of the Sturm-Liouville type and so errors in the eigenvalue (the size quantization 
energy) are of the order of the square of the errors in f .  However, for this argument 
to be acceptable, one has to show that an effective-mass-type equation of the Sturm- 
Liowille form exists which incorporates the true boundary condition (2.3). 

Another way of viewing the problem of assuming that the U’s are equal is to 
focus on the size of the terms one is throwing out of the Hamiltonian when this 
approximation is made. An idea of the size can be obtained from the work of Pollak 
and Cardona (1966) and Pollak et a1 (1966). who produced k . p band structures for 
111-V compounds using zonecentre wavefunctions of elemental semiconductors as a 
basis. The matrix elements that arise because the zone-centre eigenfunctions for, say, 
Ge do not diagonalize the GaAs Hamiltonian are in excess of 1.5 eV! This example, 
of course, Overstates the case for systems of common interest such as GaAIAs/GaAs 
and GaInhflnP, but even here the terms one throws away are of the order of several 
hundred meV (Burt 1988c), which is about the size of the ‘k . p’ type terms that are 
conventionally retained. 

Now consider the boundary condition on the derivative. The usual way of justify- 
ing the continuity of ( l /m*)d f /dz  at an interface is to appeal to conservation of 
the current, Re[(l/m’)f”(-ihdf/dz)]. If continuity of f is assumed, then conti- 
nuity of ( l /m’)df /dz  will ensure current conservation, though this is not the only 
choice. The puzzling aspect of this conclusion is that it puts a kink in the approximate 
wavefunction, a kink that cannot literally be present in the m e  wavefunction if its 
second derivative is to be bi te .  On the other hand, if one omits the effective mass in 
the derivative boundary condition, then one has problems with current conservation. 
This is not a problem with the bound states, which do not carry current, but it is for 
the extended states, and if a boundary condition is to be universal, then it must apply 
to both types of states. 

It is sometimes said that this boundary-condition problem is not an important 
one because the eigenvalues are insensitive to whether or not the effective mass is 
included. This is indeed the case when the confining potential is weak and the states 
are extended, so that the derivative of the envelope function is small and plays little 
role in determining the energy. For cases in which the confinement is not weak, the 
inclusion or otherwise of the effective mass in the derivative boundary condition can 
lead to large differences, as will be demonstrated later in section 8. 

Another approach for justifying the application of the effective-mass method to 
microstructures (see e.g. Potz el ul (1985). for the equivalent arguments for the k p 
case) is to start with the effectivemass equation for a bulk crystal, 

(2.5) 

where Eo is the band-edge energy, and generalize it to the case of slowly vary- 
ing composition changes by allowing m* and E,, to depend on z. The kinetic 
energy operator, - ( h 2 / 2 m * )  d2/dz2, becomes non-Hermitian because m’ now de- 
pends on z. lb overcome this objection the operator is replaced by a Hermitian 
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one. There are an infinite number of choices at this point, but the usual one k 
-(fiZ/2)(d/dz)(l/m”)(d/dr). So one ends up with the equation 

which one then assumes, without further justification, will also be valid for the case of 
rapidly varying compositions, including atomically abrupt interfaces. Integrating this 
equation across an interface gives the boundary condition ( l / m * ) d f / d z  continuous, 
which is consistent with current conservation. 

There have been a number of attempts to determine which symmetrization pro- 
cedure is the correct one, including an elegant method to lix it using exactly solvable 
models, which support the symmetrization given above (Einevoll and Hemmer 1988, 
Thomsen a ul 1989, Emevoll et ul 1990). The limitations of such approaches are that 
they assume that there exists a unique symmetrization procedure, that the effective 
potential energy can be represented by the band edge, Eo, and that they leave open 
the problem of the relation of the envelope function to the wavefunction. 

Both the approaches described here, the matching of bulk solutions across an 
interface, and the generalization of the bulk equation m the case of spatially varying 
composition, have a common weakness: they provide no way of estimating the errors 
used in their use except against microscopic calculations, which can only be ad hoc. 
The only way to get around this problem is to provide a derivation of the effective- 
mass equation starting from the Schrodinger equation so that the effect of discarded 
terms can be estimated and any symmetrization of the kinetic energy operator emerges 
naturally from the derivation. The next section outlines how the first step of such a 
derivation has been achieved. 

3. The new envelope-function method: a review 

A prerequisite for a satisfactory effective-mass theory is a well formulated envelope- 
function method, and that in turn relies on suitably defined envelope functions, Fn. 
The author (Burt 1987, 19%, b, c, 1989) has provided such an envelope-function 
method using the following definition: Consider a complete set of functions U,(R) 
that are periodic in the position variable R, with respect to a Bravais lattice. The 
new envelope functions, F,,(R), for an arbitrary wavefunction Q(R) ,  are defined as 
the coefficients in the expansion 

with the proviso that the plane-wave expansion of the Fn(R) is restricted to the first 
Brillouin zone (for a discussion on the choice of Brillouin zones, see appendix 1) 
corresponding to the Bravais lattice used to define the U , ( R ) .  This definition of the 
envelope functions is, in essence, the one given by Luttinger and Kohn (1955). In 
that paper, it was applied to bulk semiconductors with shallow acceptor levels or ap- 
plied magnetic fields. The envelope-function expansion was defined, from the outset, 
with the U,(R) as the zone-centre eigenfunctions of the semiconductor, though the 
extension to arbitraiy periodic functions is implicit in their work In subsequent appli- 
cations to microstructures by almost all other authors, the Luttinger and Kohn choice 
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(which will be referred to as the conventional choice) of the zone-centre eigenfuno 
tions has been made in each layer, Le. a different expansion is made in each layer. 
In contrast, the author (Burt 1988a, 1989) has elected to apply one such expansion 
to an entire microstructure; the same U , ( R )  are used throughout even though there 
are regions where they are not eigenstates of the local Hamiltonian. There are two 
advantages. Fust, the F,(R) are unique: once @ ( E )  is given, then the F,(R) are 
given by an inversion formula without further constraints such as obeying the k . p 
band structure equations, though they do in fact obey related equations (see (3.12)) 
that also provide the band-structure, far from interfaces when a ( R )  is an energy 
eigenstate. Secondly, the boundary-condition problem is completely circumvented: 
the F,(n) and all their derivatives are smooth and continuous everywhere for well 
behaved V, even at abrupt interfaces, because of the limited range of wavevectors 
used in their plane expansion. 

It is well worth elaborating on the difference between the definition of the new 
envelope functions given above and the definition of the conventional envelope func- 
tions (see eg. Altarelli 1983a,b,c, 1986). There are two differences. The first lies 
in the choice of the periodic basis functions. The conventional envelope functions 
are defined with respect to zone-centre eigenfunctions, i.e. periodic functions that 
diagonalize the local Hamiltonian while the new expansion (3.1) employs no such 
restriction. This generalization is not new. It was used by Pollak et a1 (1966) and 
Pollak and Cardona (1966) to obtain the IS . p band-structure of 111-V compounds 
using group IV zone-centre eigenfunctions as a basis; in this case the envelope func- 
tions are propagating plane waves. Smith and Mailhiot (1986) also used the same 
periodic basis functions in each layer in their k . p theory for superlattices though 
here they use a combination of propagating and evanescent plane waves. The second 
and much more important difference lies in the scope of the expansion. The conven- 
tional envelope-function expansion in each homogeneous material region is limited 
to a solution of the time-independent Schrodinger equation for the local Hamiltonian 
and this also applies to the work of Smith and Mailhiot (1986). On the other hand, 
the new expansion introduced above can represent any well behaved wavefunction 
regardless of whether or not it is an eigenstate of a particular Hamiltonian. It is just 
this increased scope that makes this new expansion so powerful. 

Armed with this new exact and unique expansion we are in a position to derive 
exact equations for these envelope functions, F,(R), for the case in which Q(R)  
is an eigenstate of a microstructure; the existence of such equations is in no doubt, 
given the uniqueness of this envelope-function expansion. The basic idea is to insert 
the envelope-function expansion (3.1) for @(It) into both sides of the Schrodinger 
equation, rearrange the expressions into envelope expansion form and then equate 
coefficients of U , ( R )  on both sides. For the kinetic energy term we get 

Fortunately, this expression is already close to the envelope-function expansion form 
(3.1) because each term is a product of a periodic function and a function with a 
plane-wave expansion restricted to the lint Brillouin zone. All we have to do is 
express the periodic functions, VU,, and V2Un, in terms of the U,. This is easily 
done in terms of the matrix elements of T and p, the kinetic energy and momentum, 
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with respect to the U,. We obtain 

where 

T,,, = - 1 U;TU,, d3R v, 
and the normalization is 

(3.3) 

2 / U~CJ,,, d3R = 6,,, 0.6) 
v c  

with the integrals taken over a unit cell (volume \$) of the Bravais lattice used to 
define the U,(R). The U, have been chosen orthonormal for convenience. Expres- 
sions for pant and Tnn, for the general case in which the U, are not orthogonal, but 
still independent, are given in section 4. 

More manipulation is needed to bring the potential energy term, VW, into 
envelope-function expansion form (3.1), because V for a microstructure contains 
plane-wave components with wavevectors both inside and outside the Brillouin zone. 
The manipulation is achieved by expanding all the factors in plane waves, expressing 
each product of plane waves into a single plane wave of the form exp[i(k + G) . RI 
with G a reciprocal-lattice vector and k inside the Brillouin zone, and then expressing 
the periodic plane waves, exp(iG. R ) ,  in terms of the periodic functions U,. The 
end result is of the form 

(3.7) 

where the integral is over the large volume over which cyclic boundaly conditions 
have been applied and the dependence of V,,, on both R and E' can each be 
expressed as a plane-wave expansion restricted to the Brillouin zone. 

The RHS of the Schrodinger equation H W  = (T + V)lu = ECJ is already in 
envelope expansion form (3.1). Equating coefficients of U, on both sides gives the 
exact equations 

where 

H,,,(R,R') = T,,,,A(R- R') t V,,,(R,R') (3.9) 
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and 

A ( R - R ‘ ) =  - x e x p [ i h . ( R - R ’ ) ]  1 

f i k  

(3.10) 

is the plane-wave expansion of the delta function restricted to wavevectors in the fmt 
Brillouin zone (see e.g. Stoneham 1975). 

Away boom interfaces, H,,,(R,R‘) reduces to H,,,A(R- R’) where 

(3.11) 

(see appendix 3) provided the U, have been chosen to have the Same period as 
the crystal Hamiltonian at R H,,, depends only on the bulk material since H 
represents the bulk Hamiltonian at large distances from any interface. The equation 
(3.8) becomes 

These equations have constant coefficients and therefore have plane-wave solutions 
leading to an eigenvalue problem for the band structure of the generalized h -p  type 
introduced by Pollak et a1 (1966) and Pollak and Cardona (1966). When the micro- 
scopic potential changes abruptly at interfaces and there are no built-in or external 
fields, equation (3.12) can be used as the basis for a k . p theory of superlattices 
(Smith and Mailhiot 1986). In each layer, in the spirit of the conventional envelope- 
function method, one wites the wavefunction as E,, fnU,,  where the f, are a trial 
combination of solutions (both propagating and evanescent waves) of (3.12). These 
f, do not coincide with the F, near interfaces; they still obey (3.12) no1 the more 
general (3.8); they also do not have any restriction on the wavevectors of the plane 
waves included in their Fourier transform. The trial solutions E, f,, U, in adjoining 
layers then have to be matched across their common interface. The boundary condi- 
tions cannot be obtained simply by integrating (3.12) across the interface (Smith and 
Mailhiot (1986), quite rightly, eschew this approach) since it has not been established 
that (3.12) holds there; in general it does not (see, for instance, the interface terms 
discussed in section 5). On the other hand, the F, obey the more complicated equa- 
tion (3.8), which is wlid everywhere even at abrupt interfaces and their continuity is 
built in from the start. More discussion on this point is to be found in Burt (198Sa). 

Finally, it is worth emphasizing the general applicability of this transformation 
into the new envelope-function representation. It is not restricted to a particular type 
of Hamiltonian. It can treat spin-orbit interaction, non-local potentials such as one 
comes across in pseudopotential and many-electron theory, as well as non-lattice- 
matched structures (Burt 1989). Because the envelope-function expansion (3.1) does 
not rely on the wavefunction being an eigenstate, one can also treat time-dependent 
problems. The only changes one has to make to the above is to recognize that Q 
can be time-dependent if the F, are. The manipulation of the LHS is the same. The 
manipulation of the RHS is still trivial; i h a / a t  just replaces the energy, E. 



6660 M G &In 

4. An alternative derivation of the new envelope-function equations 

The approach used in this section emphasizes the fact that the exact envelope-function 
equations (3.8) are related to the original Schriidinger equation by a unitary trans- 
formation. It is also the approach needed in section 9 to derive the corresponding 
equations for the WannierSlater type envelope functions and clarify the distinction 
between those envelope functions and the Luttinger-Kohn type envelope functions 
introduced in the previous section. 

Our starting point is the Schrodinger equation in the plane-wave representation 

where the wavefunction Q(R) and its Fourier transform $ G ( k )  are related by 

@,(&)=A Q J Q ( ~ ) e x p [ - i ( k + ~ ) . ~ ]  d3R (4 .2)  

Q ( R )  = ~ $ , ( k ) e x p [ i ( k + G G ) . R ] .  
k . 0  

Here Q is the large volume completely enclosing the microstructure over which the 
usual cyclic boundary conditions are applied. Wdvevectors have been expressed in 
the form k + G where G is a reciprocal-lattice vector of a Bravais lattice and k lies 
within a suitably chosen Brillouin zone (see appendix 1). We now introduce a new 
complete set of periodic functions U,(R) with plane-wave expansion 

U , ( R )  = UnGexp(iG. R). (4.34 
G 

Because the U,(R) are complete we may expand the plane waves in tcrms of them 

exp( iG .R)  = X(U-'),,U,(R) 
n 

the completeness being expressed by 

Substitution for exp(iG.R) in (4.7.b) using (4.36) gir 
sion 

= X F n ( R ) U n ( R )  
n 

with 

F,(R) = Fn(k) exp(ik. R )  
k 

Fn(k)= F n ( R ) e x p ( - i k . R ) d 3 R  ' J  
Fn(k) = c \ t G ( k ) ( U - l ) G n .  

G 

tl nvelope-fu 

(4 .3)  

(4.k) 

:tion expan- 

(4.4) 

(4.54 

(4.5b) 
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summing Over G and using the inverse of (4.6), Le. Premultiplying (4.1) by ( 

(4.7) 

we get 

where 

(4.11) 

C , , , ( k , k ' )  = E ( U - ' ) , , ( k +  GIVlk'+G')U,,o,. (4.12) 
0.0' 

Pansforming into real space gives the exact envelope-function equations (3.8) with 

giving H,,,(R,R') in terms of the potential V ,  via (4.10), (4.11) and (4.12). The 
definitions of p,, , ,  and T,,, coincide with those of the previous section when the 
transformation U is unitary, i.e. ( 

This derivation of equation (3.8) is not restricted to local potentials, as no as- 
sumption has been made concerning the dependence of (k + GIVlk' + G') on the 
wavevectors. Indeed, one can apply the above derivation to a truncated plane-wave 
Hamiltonian (thereby creating an effective potential that is non-local even though the 
original potential was local), one in which the number of reciprocal-lattice vectors 
G is finite; the eigenvalues of the truncated plane-wave Hamiltonian and the exact 
envelope-function equations will be identical. The numerical example treated in sec- 
tion 8 is based on such a truncated plane-wave Hamiltonian. The derivation could 
also be generalized with little effort to include spin-orbit interaction. 

= U& 

5. Approximations to the new envelope-function equations 

The new envelope-function equations (3.8) can be solved exactly for systems with 
periodic boundary conditions using a plane-wave representation; this technique is 
used later in this paper in the numerical example (section 8). 7 X s  approach B 
unattractive, in general, because it involves diagonalizing large matrices. The attrac- 
tion of envelope-function and effective-mass methods has been their algebraic and 



6662 M G Burt 

computational simplicity. We now survey the approximations we must make to (3.8) 
to get more convenient equations in real space. 

We first need to justify the dropping of the non-local parts of V, , , (R ,  R'), for this 
will convert our integrodifferential equations into differential equations. Fortunately, 
this is not difficult to justify for local potentials and slowly valying envelope functions; 
the details are given in appendix 2 The main point is that V,,,,(R,R') can be 
replaced by V, , , (R)A(E-  R') where V,,,(R) is a new function distinguished 
notationally from V,,,(R,R') by the different number of arguments. The new 
envelope-function equations (3.8) become 

(5.1) 

where H , , , ( R )  = T,,, + Vnn,(E). In a region far from any interface, H,,,(R) 
becomes H,,, for the appropriate bulk crystal (see appendix 3)  and we see that if the 
U, are chosen to diagonalize H,,, for that bulk crystal, then the envelope-function 
equations (5.1) in that region become the real-space equivalent of the familiar k . p 
equations (see e.& Kane 1966). Note that far from any interface the non-local part 
of H,,,(E,R') vanishes without making any approximation (appendix 3). The non- 
local part of H,,,, (R, R') is only non-zero in the region of an interface. 

In going from one bulk region to another, H,, , (E)  changes from one bulk value 
of H,,, to another. It turns out that for an abrupt planar interface or superlattice 
Hnn.(R) can be resolved into WO functions (appendix 4 and also Burt (1988a)), 

N,,,(R) = Hfi , (R)  + H:h,(R) ( 5 4  

where H??,(R) depends only on the bulk values of H,,, and the position of the 
interfaces and H:i,(R) depends on the details of how the potential changes from 
one bulk value to the other. One can describe the dependence of Hri8 on R as 
an abrupt step from one value of H,,, to the next at the interface, but softened 
by Gibbs oscillations due to the restriction of the plane-wave expansion of N?i,(R) 
to the Brillouin zone. For the case in which the potential changes abruptly at the 
interface, each term in the Fourier transform, fiti,(k), of H i i , ( l Z )  has a large 
wavevector denominator while f i r i , ( k )  has a small wavevector denominator. This 
makes H i i , ( R )  small compared with Hri,(R). This fact combined with the fact that 
fIki,(R) is only non-zero in the neighbourhood of an interface means that H;h,(R) 
has little influence on the energy eigenvalues. 'lb a good approximation it can be 
neglected and we can replace H , , , ( R )  with Hk:,(R). One can go even further and 
drop the Gibbs oscillations, i.e. replace them with the abrupt step approximation on 
the grounds that this only alters the large wavevector components and the energy of 
states with slowly Mrying envelope functions will not be sensitive to such a change. 

Of course, the general form of the resolution (5.2) is not restricted just to the case 
of an abrupt change in potential. Any deviations from an abrupt change due to charge 
rearrangement at an interface would contribute to H:h,(E) and its contribution 
determined using (4.13). 
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6. Derivation of effectivemass equations 

"he derivation of effective-mass-type equations from envelope-function equations 
(conventional or othelwise) consists of eliminating small envelope functions in favour 
of the dominant ones. "he derivation given here, however, will take into a m u n t  the 
off-diagonal components of the zone-centre Hamiltonian H,,, and this will give it 
wider applicability than previous work; it will be able to handle the case of micro- 
structures in which the component crystals cannot be considered to have the same 
mne-centre eigenfunctions. It will give valuable insight into why the effectivemass 
equation works so well. 

One divides the slowly ,varying envelope functions into two groups S and R, 
those in the S group, denoted by F,, Fa,, etc., are dominant, while those in group 
R, denoted by F?, F?,, etc, are small and are eliminated approximately in favour of 
the members of group S. The envelope-function equations neglecting the non-local 
terms are 

For slowly varying envelope functions, using the equation for n = r, we have 
approximately 

If one substitutes for F, in equation (6.1) with n = s using equation (6.2), one 
obtains 

where the contribution 7::; from remote bands (i.e. group R) to the generalized 
effective-mass tensor is 

and 
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is the effective Hamiltonian folded down to second order onto the manifold s, s‘, s”, 
etc. 

?b proceed further we note that the fourth term on the RHS of (6.3) namely 

is zero in the bulk because X,, and H,,, are constant and the gradient of 
( E  - H v v ) - l H v s ,  vanishes. Since this fourth term is only non-zero near inter- 
faces and involves large energy denominators, it can usually be safely neglected. In a 
similar spirit we also neglect the interface contributions to the effective Hamiltonian 
X n n , ( R ) ,  though here it is the wavevector denominators that are large. 

Consider the simplest case of conduction band states in a type one zincblende 
microstructure. Here the energy is much closer to the conduction band edge than to 
any other band edge, so we expect F,(R) ,  the envelope function corresponding to the 
conduction band-like basis state U , ( R ) ,  to be dominant, all other envelope functions 
k i n g  small. For such an approximation to work, of course, one must choose (I, to be 
a reasonable approximation to the conduction band minimum wavefunction of each 
of the constituent materials. The momentum matrix p,, ,  has only one element p,, 
which is zero because U , ( R )  corresponds to a band extremum. The fifth term on 
the RHS of equation (6.3), Le. 

becomes 

and in the bulk will lead to a term in the band structure linear in wavevector. Ignoring 
such small effects, which are due to the bulk parts of 15, and H,,, we conclude that 
this term is dominated by the interface parts of H,, and Hc,,, and in keeping with 
our earlier approximations we neglect it. Hence we arrive at our version of the 
effective-mass equation 

where the isotropy of the effective-mass tensor, ^(o( E ,  R) ,  has been put in explicitly 
using the effective-mass function, m , ( E , R ) ,  defined by 

(6.10) 

with p standing for the component of the momentum along one of the cubic axes, 
The most important thing to note here is that Xi:) in the bulk represents the 

conduction band edge to second order, hence providing an accurate description of 
the change in conduction band edge as one moves from one material to another 
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without any need lo introduce U change in the bask function. The basis function 
U J R )  is the same everywhere and the change in Zone-centre eigenfunctions and the 
conduction band minimum comes about naturally because offdiagonal elements of 
the zone-centre Hamiltonian have been included. 

As another example consider the application of equation (6.3) to the case of 
valence band states for the same type one dncblende microstructures, in particular, 
cases in which only the envelope functions for the light- and heavy-hole basis functions 
are large. Again we neglect terms that are appreciable only near interfaces and those 
that lead to contributions to the bulk band structure linear in wavevector. Noting 
also that pss ,  is zero for these band-edge valence states, one obtains 

(6.11) 

where we have made use of the fact that H i t ! (  E, R) is diagonal from tetrahedral 
symmetry if interface terms are neglected. Again Hi:)( E, R) approximates the pro- 
IXe of the relevant band edge to second order without any need to resort to changes 
in the basis function on crossing an interface. One might object to the above deriva- 
tion on the grounds that it is unrealistic to assume that the envelope function for 
the spin split-off band is small because in many cases the spin split-off band is close 
in energy to the light- and heavy-hole bands. This is equivalent to saying that the 
contribution corresponding to T = spin split-off band in the term 

(6.12) 

is not negligible. However, p, ,  vanishes by symmetry when T corresponds to the spin 
split-off band, showing that it is symmetry and not energy separation that keeps the 
spin split-off band envelope function small and makes the approximation of consid- 
ering light- and heavy-hole bands alone a good one provided the spin split-off band 
is not so close as to make the light-hole band non-parabolic 

The procedure used in this section is equivalent to ‘folding down’ secular equations 
(see cg. Heine and a h e n  1970) working to second order in small quantities. One 
could proceed to derive more accurate equations, as is needed in some cases to 
treat non-parabolicity for example, if desired, being mindful of the possibility that the 
‘non-local’ terms one has jettisoned (section 5) may eventually become important. 

7. Boundary conditions 

%I. Normal interface 

The great strength of the author’s approach has been the circumvention of the 
boundary-condition problem; the new envelope functions and all their derivatives 
from their very definition (3.1) are continuous everywhere even at abrupt interfaces. 
However, when one makes approximations to the exact equations (3.8) for these en- 
velope functions and solves them in the coordinate representation, there is no longer 
any restriction on the range of wavevectors in the plane-wave expansion of the solu- 
tions. So the possibility of discontinuities in the approximate envelope functions and 
their derivatives arises. 
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Consider a planar abrupt interface and take this to occupy the plane z = 0. With 
translational symmetry in the (z,y) plane we can find a complete set of solutions in 
the form 

where r = (z, y) and cyclic boundary conditions are taken Over an area S, which in 
the abrupt step approximation obey the equation 

A2 d2F,(z) -ih 
2m d.9 

_ -  
m 2m 

n' 

If the envelope-function expansion (3.1) is truncated to a finite number of terms, 
as is necessarily the case in any numerical work, then one sees that the solutions F, 
of (7.1) must be continuous at the interface L = 0 (it is hoped that the reader will 
not be confused by the use of the same symbols for the exact envelope functions 
and the solutions to (7.1) that are approximations to them); if F, were to have a 
discontinuity there, then the term involving the second derivative would behave as the 
derimtive of a delta function with no other term to neutralize it. Integrating over an 
infinitesimal interval about L = 0 (this is a valid procedure because we have derived 
(7.1) for all z including interfaces) one finds that 

is continuous at z = 0. Noting that the continuity of the Fn, has already been 
established and that pkn, is a constant, one sees that the derivatives must also be 
continuous across the interface. Note that the presence of the second derivative is 
crucial; its omission can lead to entirely different boundary conditions, including the 
loss even of the continuity of some of the envelope functions mylor and Burt 1987). 

So we have seen that the abrupt step approximation does not alter the continuity 
of the new envelope functions and their derivatives at an abrupt planar interface 
(provided, of course, all the solutions including out-of-zone solutions are included). 
However, if we use the effective-mass approximation as well as the abrupt step ap- 
proximation, then an effective-mass-related discontinuity in the derivative arises. For 
example, take the effective-mass equation (6.9) for the conduction band quantum 
well. Carrying out the same integration used to derive (7.2) gives (l/m,)dF,/dz 
continuous. Because m, is discontinuous in the abrupt step approximation, then 
dF,/dz is necessarily so as well. The author has already explained how this kink 
approximates a rapid change in the derivative in the region of the interface in the 
true envelope function by considering the effective-mass equation derived with the 
Gibbs oscillations retained (Burt 1988b); the reader will appreciate that the omission 
of the off-diagonal elements of the Hamiltonian in this reference does not alter the 
conclusions. An example of the rapid change in the derivative of the envelope fun& 
tion due to a change in effective mass is given in the section on numerical results 
(next section). 
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The existence of a kink in the effective-mass envelope function in the abrupt step 
approximation comes about because the approximation used for the small envelope 
functions neglects their second derivatives (one also lases the out-of-zone solutions) 
and hence the proof of their continuity and that of the derivative of the dominant 
envelope function given above fails; the lack of continuity in the small envelope 
functions Fn, means that the continuity of 

d Fc - ih- + 2 
dz p&, Fn, 

R' 

(7.3) 

requires a discontinuity in dF,/dz. 

7.2 Current conservalion 

It is appropriate to demonstrate that these boundary conditions are consistent with 
conservation of probability current. Using the standard textbook technique on equa- 
tion (7.1) (Le. multiplying by F;, taking the imaginary part and rearranging) one 
finds that 

is independent of z. Using the technique described by the author (Burt 1987) one 
can show, with an appropriate choice of the three-dimensional Brillouin zone (see 
appendix I), that (7.4) is the z component of the probability current crossing the 
(z, y) plane, provided that ihe envelope functions are sufficiently slowly varying for 
one to be able to restrict the plane-wave expansion to the inner half of the Brillouin 
zone, i.e. bilinear products such as FiF,, have a plane-wave expansion restricted to 
the Brillouin zone. This is a mild restriction. One finds that the conservation of (7.4) 
is entirely in keeping with the boundary condition, Le. continuity of (7.2) derived 
fiom (7.1) as one would expect because they are based on the same approximations. 
Because both the solutions of (7.1) and their derivatives are continuous across the 
interface, the current (7.4) is automatically conserved. One can readily confirm, 
following Burt (1988b), that, to first order in small quantities, the effective-mass 
approximation for the current (7.4) is consistent with the boundary condition (7.3). 
This result even extends to the non-parabolic case, in which the non-parabolicity can 
be described by an energydependent effective mass (section IO). 

Z3. Interface m'th an impenetrable barrier 

It is often assumed that the correct boundary condition at an interface with an 
impenetrable barrier is that the envelope function should be zero there. (It is assumed 
that the wavefunction is being approximated by just one term of the envelope-function 
expansion, i.e. g ( z )  = F( z ) U ( z ) . )  However, this is not necessarily so if the periodic 
function U ( z )  has a node at the interface. (I was fortunate to become aware of this 
point some years ago when Professor Heine raised it with a seminar speaker at the 
Cavendish.) The problem of justifying this boundary condition can be solved by 
inverting the envelope-function expansion to give the envelope function in terms of 
the wavefunction. This can be done using elementary manipulations: start with (4.6) 
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with unitary U, substitute for @ G ( k )  using (4.2a), then use ( 4 . h )  to eliminate the 
sum over G, and finally take the Fourier transform with respect to k. One obtains 

F,(R) = A(IZ-R’)U:(IZ’)’X’(Z2’)d3R’ (7.5) I 
where A(R-R’ )  is defined by (3.10). A(R-R’ )  is only appreciably different from 
zero near R = R‘. It follows that F,(R) will fall rapidly to zero as one moves 
into any region in which k zero, regardless of the detailed properties of the U - .  
Putting the F,(R) to zero at the interface is a good approximation if they are slowly 
varying. 

8. Numerical results: the new envelope-function method 

The model microstructure used here, to illustrate the algebraic results derived in ear- 
lier sections, is a superlattice constructed from one-dimensional ‘Mathieu’ crystals, so 
called because with their sinusoidal potential the corresponding Schrodinger equation 
becomes the Mathieu equation. The band structure of the crystal forming the well is 
shown in figure 1 and the potential for the superlattice in figure 2. The wavefunction 
for one of the zero-wavevector eigenstates of the superlattice, computed by diagonali- 
zing the plane-wave Hamiltonian, is given in figure 3. One can see the pronounced 
and rapid change in the derivative of the envelope at the interfaces related to the 
effective-mass change. 

lb apply the author’s envelope-function method to the computation of this eigen- 
state, the wavefunction @ ( z )  is expanded as 

n 

where the U,(Z) have been chosen as the zero-wavevector eigenstates of the virtual 
crystal. The envelope functions F,,(x) have plane-wave expansions limited to the 
range - s / a  < k < x / a .  The periodicity of the superlattice restricts the number of 
terms in the plane-wave expansion to the number of unit cells in the superlattice, so 
that the exact envelope functions 

can be solved to machine accuracy in Ic-space as a matrix eigenvalue problem. The 
two dominant envelope functions are given in figure 4. There is a smoothed-out 
kink in the dominant envelope function at the interfaces. The derivative changes by 
a factor of about 2.5 within a distance of a lattice spacing or so compared with an 
effective-mass ratio of 225 at that energy. 

To derive the corresponding effective-mass equation, as illustrated in a previous 
section, one must start from the local approximation to the exact envelope-function 
equations, namely from 
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-0.1 - 0 1  0.0 0.2 0 4  
WOVBVeCtol  

Fkum L ?he band slructure of the one- 
dimensional aystal that mnstitutes the well in the 
superlattice results presented in this paper. The po- 
tential is V.cos(2nz/a) with V. = 2.7512 eV 
and the lattice period D = 5.86 A. The wavevec- 
tor is given in units of 2 s  fa. In a crude way the 
band suuclure mimics, in pan, that of a direct-gap 
111-V semiconductor and it will be mnvenient to 
use this analogy tunher for ease of notation and 
refer to the lower two bands as valence bands and 
the Wid band (the highest shown) as the mn- 
duction band. I h e  hllice conslant and band gap 
(0,750 ev) at zero wavevector have teen chosen 
to mrrespond to the Iernary semiconductor alloy 
Gal& latticematched to InP. Even though the 
band gap (0.750 ev) is relatively small compared 
to the mid-gap energy (4.612 ev), h i s  is not a two- 
band model q I a I  ai can be s e n  from the large 
zoneedge gap between the valence bands ?he re- 
sults (figure 3 onwards) of the superlattice calcula- 
tions are for the lowest mnduction band eigenstate. 

-U I O  20 

2 / 0  

Figure 2. One pen’od of the superlattice poten- 
tial from the middle of*one barrier layer 10 the 
middle of the nexL The WfAI aystal that occupies 
the 10 lattice periods 50 < I < 15a has poten- 
tial VO + V 8 c o s ( 2 s z / a )  with Vo = 0.7460 eV 
and V. = 2.7512 e!? The barrier aystal, which 
occupies the 10 lattice periods 0 < z < 50 and 
150 < I < 20n. has a potential of the Same form 
with VO = 0.0 eV and V. = 5.0596 eV. The band 
gap of the barrier aystal is 2060 eV and the mn- 
duction band-edge discontinuity, ie. the well depth, 
is O.UO1 e!? The transition [mm bamer potential 
to well potential is ~1 abrupt because the super- 
lattice potential is represented here ly i l l  plane- 
wave expansion as used in the calculations. The 
plane-wave expansion is restn’cted to plane waves 
with wavevectors (in units of 2 ~ 1 . )  k + G. with 
/GI < 5 and with - f  ,< k < +$, i.e. k is inside 
the Brillouin zone of the underlying Bravais lattice. 

The accuracy of this approximation has been tested for the case depicted in figure 4 
and found to produce errors in the eigenvalue of less than 0.1 meV and plots of the 
envelope functions indistinguishable from those shown. The reasons for this small 
error are (i) that the plane-wave components ph are small for Ikl > a / ( 2 a ) ,  where 
a is the lattice period, i.e. for wavevectors in the ‘outer’ half of the Brillouin zone 
and (ii) the expectation wlue of the non-local parts of the Hamjltonian (Burt ISSSa) 
evaluated in k-space involves terms containing the product Fk, with a wvevector 
denominator that is large except when k and k‘ are near opposite edges of the 
Brillouin zone, in which case the product 

In figures 4 to 8 various aspects of the effective Hamiltonian function H,,,(z) 
are illustrated. In general, the H, , , (a )  can be decomposed into both ’bulk’ and 
‘interface’ terms, 

Fh, is extremely small. 

Hnn, ( z )  = H?d,(Z)  t H$L,(z) .  (8-4) 
For this Mathieu superlattice, with barrier and well widths L, and L ,  respectively, 
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Flgure I m e  wavefunction for the lowal-lying 
mnduction band slate of the superlallice de- 
&bed in figure 2 The energy of lhis state i s  
5.1961 eV ?he mnduction band edge for the well 
is a1 5.1333 eV so the size quanlization energy is 
628 meV Note how the rale of change of the pcak 
heights in going from peak IO peak (the slope of 
the envelope) changes rapidly in the region of the 
inletfaces (at I = 50 and i = 1 . h ) .  

-0.4 . . . . . . . . . . . . . . . . . . . .  
I O  1, $0 

d.3 

Figure 4 The new (as opposed lo the mnvenlional) 
envelope functions for the wavefunction shown in 
figure 3 defined with respect !n periodic functions 
that are Ihe zellFWaveveclor eigenslala of Ihcvir- 
lual crystal, i.e. the T l a l  with potential VO + 
lTcos(~7rrfo)where h = ( V ~ t l + V ~ ) / 2  
and V, = ( V Y "  + Vp""'".)/2. The n/mmelric 
posilive funclion is the envclope function (which 
h mal) Ior the mnduclion band. ?he antisymmet- 
ric function is lhe imaginary pan of Ihc envelope 
funclion (the real pan is zero) for the upper w- 
lence band. ?he other envelope functions are 100 
small U) show clearly on this wale. Although the 
mnstiluenl cryslals are not simple lwo-band model 
crystals. lheir potentials k i n g  LW strong for the 
band-edge wavefunctions lo be composed merev of 
WO plane waves, Ihe wavefunction in this case can 
be represenled quile well ty a lwo-band envelope- 
funclion expansion. The relatively rapid change 
in Ihe derivative of the mnduction band envelope 
function at the interfaces is relaled lo the change 
in mnduction band effeclive mass. 

where Xn,, is the molar average (LBHEn, + LWH:, , ) / (LB + Lw), H:,, and 
HE, arc the bulk values for N,,,, i.e. the zone-centre Hamiltonian in the barrier 
and well crystals, and 

ff!L,[z) = 2 sin(hLB/2)Apn,,,(k) exp(ikr) (s.6) 
k#O 

with 

The H,,(z) corresponding to the dominant envelope function of figure 4 is shown 
in figure 5 along with the abrupt step approximation to this function determined by 
the bulk values, ie. the piecewise-constant function equal to HE, for 0 < z < 5a 
and 15a < z < 20a and equal to H E  for 5a < z < loa.  The plots of H i ? ( t )  
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and H g h ( z )  are given in figures 6 and 7 for the dominant envelope function. In 
figure 6 the abrupt step approximation is also given as in figure 5, emphasizing that 
H : ~ ( Z )  differs from that piecewise-continuous function only by the softening effect 
of the Gibbs oscillations. The interface term H % ( r )  is plotted in figure 7 on a much 
magnified scale; it is small because the wavevector denominators in Aen.,,,(k) are 
all large, Le. greater than r / a .  Omission of these interface terms only leads one to 
overestimate the eigenvalue by 1.1 meV. 

I.. :::Lo ./a 10 

Figure S The function Hnn(z) for the case of 
n = mnduction band, defined wilh respect to the 
same virtualcrystal periodic basis functions as the 
envelope functions (see caption IO figure 4). When 
the interband coupling due to the superlatlice po- 
tenlial (i.e. the zonecentre Hamiltonian as dislinct 
f” lhe mnventional ‘k.p’ coupling) is sufficiently 
weak. then this function is the effective potential 
for mnduction band electrons. Tne 4 u a r e  well 
gives lhe profile d lhe bulk value. 

::~ , , , ,  y , , , , ,  

5.5 

5.4 
I O  1s 20 

=/a 

Figure h m e  ’bulk’ part of H c c ( z ) ,  i.e. lhat part 
that is independent of the m y  in which the su- 
perlattice potential changes over at lhe intetfaoes 
from one bulk aystal polenlial to the nexl. It 
depends only on Ihe bulk values of H,, and lhe 
structure factor lor the superlatlice. Ercepl for lhe 
softening of discontinuities due to Gibb  milla- 
tions. the funclion is jus1 the piecewisecontinuous 
function (also shown) that laker lhe corresponding 
bulk value lor H,, in well and barrier regions. 

In figure 8 the H,,,(z) coupling the two envelope functions shown in figure 4 
is plotted. Such offdiagonal terms are implicitly ignored in conventional envelope- 
function methods. This particular term would vanish in bulk crystals because the cor- 
responding periodic basis functions are of opposite symmetry and, indeed, H??,(z) 
defined above vanishes identically. Only the interface term H!i , (z)  remains and one 
sees this clearly in figure 8 with Hnn,(z) only being appreciable near the interfaces 
where the reflection symmetry about the centre of the unit cell in the bulk is broken. 

The differences in the functional form between the two ‘interface’ terms in fig- 
ures 7 and 8 can be explained using the symmetry properties of the basis func- 
tions ( = &UmG) and the Bylor expansion (using the binomial expansion of 
(kf G-G'-G")-') in k of the summand of A?,,,,,(k) in (8.7). Such an expansion 
is justified because k is always inside the first Brillouin zone while G - G‘ - G” is 
a non-zero reciprocal-lattice vector. The Erst term is just a constant and the co- 
efficients in the plane-wave expansion vary as sin(kLB/2), which corresponds to 
the differential of the band-edge profile. Since the latter in our case is a square 
wave, we expect to see delta functions, softened of course by Gibbs oscillations, of 
alternating sign at the successive interfaces. This is indeed a good description of 



::::I , , , V k , ,  , , , , , , , ;; , , , ~~ 

-0.20 
10 

z/n 

Figure 7. IIhe ‘interface‘ pan of H c c ( z ) ,  i.e. that 
pan lhat depends on lhc way, abmptly in the case 
-led in this paper, in which lhe superlattice p- 
lential changes over a t  lhe interfaces from one bulk 
crystal potential U) the next. It is the difference be- 
ween the full function &(=) shown in figure 5 
and he ‘bulk’ pan ob HcL(z)  shown in figure 6. 
This ‘intelfaae’ pl is implicitly ignored in the mn- 
wntional envelope-function method. 
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Figure S ?he imaginary part of the function 
Hn,,,(z) (the real pan is zero) for lhc case of 
TL = mnduction b n d ,  n’ = upper valence band 
representing the interband mupling due U) Ihe su- 
perlattiae potential. For bulk oyslalr this function 
would be zero bj symmetry and the function is only 
appreciable where lhe bulk symmelry (a reRenion 
ymmetry in lhis case) is koken. i.e. near an in. 
terfae.  This function is implicitly ignored in the 
conventional envelope-lunnion method. 

what one sees in figure 8. The reason why the first term in the binomial expansion 
of ( k  + G - G‘ - G”)-’ works reasonably well is that the term proportional m k 
vanishes because the periodic basis functions are of opposite symmetry and the next 
non-vanishing term varies as (.k/G)’. In figure 7 the indices n and n‘ are identical 
and the basis functions are necessarily of the Same symmetry. The binomial expansion 
leads to a Bylor series for AP,,,,(k) that only contains odd powers in k. Tiking 
just the first term, the plane-wave expansion coeficients vary as ksin(kLB/2), which 
explains why the z variation of figure 7 looks like the differential of that in figure 8 

Figures 9, 10 and 11 are concerned with the effective-mass approximation to 
the state depicted in figures 3 and 4. Neglecting interface terms the generalized 
effective-mass equation for the eigenstate in the region of the sth band edge is 

-(~2/2)(d/dz){[l/m,(z,E)]dF,/dz) + H!:)F,(z) = EF, (8.8) 

where 

is the effective band-edge profile and m/m,(z ,  E) is the dimensionless effective-mass 
function 

The effective-mass function is plotted in figure 9. The piecewisecontinuous profile 
of the bulk effective-mass values is also shown. 



Appiying effalive-mass approximalion IO micrm~cc~ures 6673 

In figure 10 the effective-mass approximation (8.8) to the dominant envelope 
function shown in figure 4 is plotted. The rapid change of the derivative at the 
interfaces caused by the effective-mass change is very marked and highlighted by 
plotting the derivative directly in figure 11. It should be emphasized that the change 
in derivative is not entirely dominated by the change in the bulk effective masses 
because the effective-mass function only takes on the bulk values asymptotically at 
large distances from the interfaces; the derivation of the connection rule is also only 
approximate. 

o.02Lo 0.w 30 1% 

z/a 

Flgun 9. The conduction band effectivemass func- 
tion calculated using the ‘bulk’ parts of the quanti- 
ties Hnn(z). This function is a smoothed-out ver- 
sion of the pi&se-mnslant varialions in effective 
m a s  through the superlattice (m./m is 0.05091 
in the well and 0.1132 in the bamer). It depends 
on the energy and b evaluated at the energy of lhe 
stale shown in figure 3, i.e. 5.7932 eV. 

4 . 4  *‘L I O  ,I 20 

Figure 10. n e  conduction band envelope function 
F computed using the new (as oppnsed lo the 
conventional) eI€eclive-ma~.s equation (8.8) with the 
‘interface’ terms in the Hnna(z) omitted, it is an 
approximation to the dominant envelope function 
in figure 4. The effectivemass function used is, 
therefore, that @en in figure 9. The rapid change 
in the derivative at the inledaces is approximated by 
a kink in mnventional formulations of the effective- 
mass method. 

0.02 

Figure 11. ?he derivative of the envelope function 
shown in figure 10 multiplied ty the lattice mnslant 
to give a dimensionless quantity. There is a rapid 
change in the derihlive at the interfaces due to 
the change in effective mass; the derivalive Ialk ty 
a Iactor of 2 5  ktween I = 4.50 and L = 5.50 

0 
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& mmpared mth the ratio of the bulk effeclive masses -*.w , , , . , , , I . , , , , , , , . . 
10 lb 

z/a of 225. 

The rapid change in derivative at the interface displayed in figures 10 and 11 
demonsnates that the kink introduced into the wavefunction envelope by including 
the effective mass in the conventional derivative boundary condition is not artificial, 
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but does approximate the actual behaviour of the envelope near  the interface. The 
kink is necessary to get the energy right. Using an energy-dependent effective mass 
in the standard ‘particle in a box‘ (Kronig-Penney) model, with the effective mass 
included in the derivative boundary condition, gives a size quantization energy of 
60.1 meV (using effective masses 0.05091 and 0.1132) compared to the exact value 
of 628 meV. If, however, the effective mass is omitted from the derivative boundary 
condition, and the kink thereby removed, then the size quantization energy rises to 
94.3 mev an overestimate of about 50%!! 

At one time p u r t  1989) the author had reservations concerning the inclusion of 
the effective mass in the derivative boundary condition, beyond those mentioned in 
section 2, because the ground-state energy had an unexpected behaviour: when the 
bamer effective mass decreases, all other parameters being held constant, the size 
quantization energy is predicted to increase. At first sight, one might expect the size 
quantization energy to fall because the localization has decreased and this decreases 
the kinetic energy, via the uncertainty principle, and indeed this iS the prediction of 
the ’particle in a box’ model when the effective mass is omitted from the derivative 
boundary condition. However, calculations on the Mathieu superlattice used here 
have supported the inclusion of the effective mass in the dcrivative boundary condi- 
tion. Far example, the barrier potential form factor, V,, was changed to 3.8801 eV to 
give a lower gap and lower effective-mass barrier crystal, and the constant potcntial, 
V,, in the well was decreased to 0.2299 eV to keep the band offset at 0.2301 eV So 
from the phenomenological point of view nothing had been changed save the barrier 
effective mass had been decreased. The size quantization energy turned out to be 
67.6 meV compared with the earlier value of 62.8 meV (see caption to figure 3). a 
rise of 4.8 meV The prediction of the ‘particle in a box’ (Kronig-Penney) model with 
the effective mass included in the derivative boundary condition is a size quantiza- 
tion energy of 67.2 mcV (using the appropriate energy-dependent effective masses 
of 0.051 08 and 0.07268) compared with the previous value (preceding paragraph) of 
60.1 meV. It approximates the exact results very well. It appears that the fall in en- 
ergy due to decreasing localization must be more than counteracted by the potential 
energy gained due to extra penetration of the barrier. 

Finally it should be. mentioned that the results presented here are not inconsistent 
with those of Cunningham el a1 (1988). These authors solved the Schrodinger equa- 
tion for a model onedimensional quantum-well system algebraically and compared 
the results with the ‘particle in a box’ model predictions. Taking the non-parabolicity 
into account, they found that the omission of the effective mass in the derivative 
boundary condition gave the most accurate result; inclusion of the band-edge effeo 
tive mass in the derivative boundary condition gave significant error; they did not 
consider the use of an energy-dependent effective mass in the derivative boundary 
condition. However, the energy-dependent effective mass in their model is almost 
the same in the well and barrier. (It is essentially a two-band model with no valence 
band offset so that, for the conduction band states that they treat, m, is proportional 
to E - E”, which is the same in both the well and the barrier.) Hence inclusion 
of the energydependent effective mass in the derivative boundary condition, the re- 
sult the author has derived, would produce almost the same result as continuity of 
the derivative of the envelope function in their special model and would be a good 
approximation to their exact results. 
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9. Wannieralater envelope functions 

9.1. Eract equations 
The difference between WannierSlater (ws) envelope functions and the Luttinger- 
Kohn (LK) envelope functions is most readily seen in their Fourier transforms. Tb 
construct the wavefunction from these Fourier transforms, one uses Bloch functions 
for zero wavevector in the Luttinger-Kohn case but wavevector-dependent Bloch 
functions in the WannierSlater case. So, while the wavefunction Q(R)  is related to 
the Fourier transform Fn(k) of the Luttinger-Kohn envelope functions by 

Q ( R )  = Fn (k) Un(R) exp (ik . R) 
k n  

Q4 

where the U,,(ZZ) are the zero-wavevector eigenstates of a periodic reference Hamil- 
tonian H,, the corresponding expression for the Wnnier-Slater envelope functions 
FTS(R) is 

Q(R) = @:s(k)Unk(R) exp(ik. R) ( 9 4  
k n  

where Unk(R) is the periodic Bloch function at wavevector k for H,. Since there 
is still a unique relation between the wavefunction and the envelope function in the 
WannierSlater case, it is still possible to derive exact envelope-function equations, 
as we will now show using a method analogous to that used in section 4. 

We start with the Schrodinger equation 

(Ho +AV)]'€') = ElQ) (9.3) 

where A V  is the difference between the potential experienced by the electron in the 
microstructure and the periodic reference potential in H,, and use the Bloch states 
Ink) defined by 

H0lnk)  = E p ( k ) l n k )  (9.4) 

as the basis for expanding the state vector. We obtain 

[ E k ' ) ( k ) ~ 5 ~ ~ , 6 ~ ~ ,  + (nk~AV~n'k' ) ] (n 'k '~Q)  = E(aklQ) .  (9.5) 
n',k' 

From the definition of p F 5 ( k )  we find that 

where R is the normalizing volume. "ansforming into real space and using the 
definition of FTs(R) one obtains the exact equations 
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where 

1 
AVnnt(R,R') = - x e x p ( i k  * R)(nklAVln'h') exp(-iR'. R'). 

k,k' 

The WannierSlater envelope functions F,WS(R) used here are closely related 
to the coefficients in the expansion of the wavefunction in terms of the Mnnier 
functions defined with respect to the reference crystal. The Mnnier basis vector 
InR,,,), for the hand n and the lattice site R,, is related to the Bloch vector In&) 
bY 

where N is the number of unit cells in the normalizing volume. Elementary manipu- 
lations give 

F , W ~ ( R )  = ( V , ) ~ / ~ ~ A ( R -  E J ~ ~ J Q )  (9.10) 

where V, is the volume of a unit cell in the reference crystal and A is the delta func- 
tion with limited plane-wave expansion introduced in section 3. In (9.10), (nR,,,I@) 
is the amplitude for finding the electron in the Wannier orbital (R(nE,) and is often 
referred to as the envelope function, the continuation of the function between sums-  
sive lattice points being given scant attention. The above relation between FFS(R) 
and (nR,(@) gives the continuation explicitly. 

9.2. Effecfive-mass equation 

Subsequent to the author's derivation of a new effective-mass equation including 
the order of the differential operators in the kinetic energy term based on the LK 
envelope-function expansion, a derivation has been given by Young (1989) based on 
the ws envelope-function expansion. Young's discussion is restricted to the case in 
which AV is of the form LO where U is a periodic potential and L is a small and 
slowly varying Iunction on the scale of the lattice constant, i.e. restricted to a system 
composed of alloys of two components. The discussion is also restricted to first order 
in L, i.e. to first order in A V .  The purpose here is to show that the approach can be 
modified to include abrupt changes in composition profile, but the inclusion of large 
changes in composition is much more difficult than in the LK approach. 

Because the derivation is complex, it will be presented here explicitly only for 
a two-band model of a one-dimensional microstructure. We start from the k-space 
version of (9.7) and for definiteness we consider conduction band states so that 
fiys(k), the conduction band envelope function in k-space, is dominant. 'lb first 
order in A V ,  the term involving the valence band envelope function in k-space, 
pws(k), in the exact equation for Fys(k) (i.e. the equation for n = c )  can be 
neglected, so that the equation for pys(k) is simply 

R, 

E p ( k ) p ( k )  + ~ ( c k l A V l c k ' ) f i y ( k ' )  = E p y k ) .  (9.11) 
k' 
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Now we are interested in slowly varying solutions in real space. These can be present 
even if the difference potential A V  is changing abruptly from one cell to the next, 
in which case, only the values of Eio'(k) and (cklAVlck') at small k and k' will 
substantially determine the eigenvalue. We can, on this understanding, still follow 
Young and expand (cklAVlck') to second order in the wavevectors, though we will 
take a less formal approach and use explicit expansions based on the two-band model. 
The Bloch basis states for the conduction band are expressed in terms of the k = 0 
eigenstates, Un(z), of the reference Hamiltonian 

&kr 
(zlck) = - E A n ( k ) U n ( z )  (9.12) 

n 
L'/2 

where the sum is over the conduction and valence bands and to second order in k 

A J k )  = 1 - ~ ( h l ~ , , l / m E ~ ) ~ k *  (9.13) 

A A k )  = ( f rpvc /mEg)k .  (9.14) 

'Ib evaluate (cklAVlck') we need the plane-wave expansion 

A V ( z )  = ~ A f ' G ( k ) e x p [ i ( k + G ) z ] .  
k,G 

For IC - k' inside the Brillouin zone 

(9.15) 

(9.16) 

There are four terms on the RHS. The easiest to deal with is the one corresponding 
to n = n' = v. This is 

( l i p , , / m E g ) ' ( h p " ~ / m E g ) k A ~ " ; , ( k  - k')k' (9.17) 

and, when equation (9.11) is transformed into real space, gives a term 

The n = n' = c term, which is more complicated, is 

[l - $(h lp , l /mEg)2(kZ  + k'*) ]Af '=(k-  k') 

which, on using kZ t kra = 2kk' + (k - k')*, leads to a contribution 

(9.18) 

(9.19) 

(9.20) 
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to the real-space equation. The last term, involving the second derivative of AV,,(z), 
corresponds to the term involving the second derivative of L ,  the composition profile 
in Young's equation (26). For abrupt interfaces it will only be appreciable near the 
interfaces and one would usually neglect it (but see comments in the next paragraph). 
The other two terms corresponding to n = c, n' = v and n = v, n' = c are best 
taken together and give 

( h / m E J A ~ , ( I C -  k')pvck' + k p , , A ~ v c ( k  - I C ' ) ]  (9.21) 

(9.22) 

to the real-space equation. The term involving the derivative of the envelope function 
leads to a linear k term in the band structure in the bulk, so, at best, it is only non-zero 
near interfaces. In fact it vanishes identically: the U,( z )  are real within overall phase 
factors and elementary manipulations show that the expression within the square 
brackets vanishes. The other term, involving dAV,,(z)/dz, is only non-zero near 
interfaces and we neglect it (but, again, see comments in the next paragraph); it 
corresponds to the term involving the first derivative of L ,  the composition profile in 
Young's equation (26). Fmally, one is now in a position to write down the real-space 
version of (9.11) working to second order in the derivatives and first order in the 
AV. Ignoring the interface terms one gets 

- ( f r 2 / 2 m $ o ) ) d 2 F ~ S / d r 2  + (h~p,~/mEg)Z(d/dz)(AEg(t)dF~S/dr) 
+ Ec( z )  Fys = EFcws (9.23) 

where mio) is the conduction band mass of the reference crystal, AEJz)  = 
AV,,(z) - AV,,(z) is the first-order change in the band g p ,  and E,(z) = 
Ei''(0) t AV,(z) is the conduction band-edge energy to first ordcr. Both A E g ( r )  
and E,( z )  will display Gibbs oscillations in the region of abrupt interfaces. 'lb first 
order in AE, ( z ) /EP) ,  where E?) is the band gap of the reference crystal, the 
equation may be rewritten as an effective-mass equation, 

- (fr2/2)(d/dr){[l/m,(z)]d~wS/dz] + EC(z)FFs = EFTs 

where m,( z )  is the conduction band mass at z defined by 

(9.24) 

m/m,(z) = 1 + (~lP,,lZ/mEg(z)) (9.25) 

where E&) = E?)+ AEg(f) is the band gap at z. We could, using the arguments 
of section 5, replace the functions m,( z )  and E J z )  with their piecewise-continuous 
counterparts to arrive at the conventional equation. 

It should be noted that in the above derivation terms involving dAV,,,(z)/dz 
and d2AK,(z)/dz2 have been neglected. It is not obvious that this is justified. It is 
true that these terms only appear near interfaces; their influence on the eigenvalue is 
another matter. These terms are different in character to the interface terms rcferred 
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to in section 8 on numerical results. The terms referred to there had plane-wave 
expansion coefficients that had large wavevector denominators. The terms here do 
not have that property (except dAV,,,(r)/dz for the case in which V, ( z )  and V,(z) 
have opposite symmetry) and whether they can be discarded or not requires further 
investigation. 

One should not be surprised at the effective-mass equation for the W envelope 
functions differing from that for the LK envelope functions. 'la derive the equation 
for the ws case we have had to work to third order in small quantities (ka and 
AVlE?)). One should also be able to derive the ws equation by starting from the 
LK equation and transforming the basis functions, the transformation differing from 
the identity by quantities of first order. That one gets a different equation to third 
order is only to be expected. 

If, as in the derivation of the effective-mass equation for the LK case (section 6), 
one regards the It. p energy and the If*,,, as the same order of magnitude, then the 
derivation of the effective-mass equation is incomplete, for while we have gone to 
third order to get the position-dependent effective mass, we. have not considered the 
Ck,(cklAVlvk')FYs(k') term, which is non-negligible. From the exact envelope- 
function equation for n = v one has approximately 

Because E is close to the conduction band edge of the reference Hamiltonian and 
we need only small-k components, we can replace E - E,(k) by E?), the band gap 
of the reference Hamiltonian. So the term 

~ ( c k l A V l ~ l c ' ) ~ ~ " ~ ( k ' )  (9.27) 
k' 

in the equation for Fys(k') can be. approximated by 

We evaluate this term using the planewave expansion of AV(,), 
._ AV(z)  = x A % ( k ) e x p [ i ( k +  G ) z ]  

k,G 

and obtain 

(9.29) 

where the k dependence of the Bloch functions has been neglected. The AVnn,(k) 
are just the planewave expansion coefficients of AVnn,(z), the local part of 
AV=,,,(z,z'). Going into real space our term becomes 

(9.31) 
which acts like an effective band-edge term corresponding to a second-order oorrec- 
tion to the conduction band edge at z due to the potential AV. 

Complicated though these manipulations are, we have still not included the third- 
order terms needed for consistency! TI do so is laborious and will not be pursued 
further here. Suffice it to say that the Luttinger-Kohn type approach gives an easier 
mute for deriving an effective-mass equation for inhomogeneous material systems. 

( 1 / Er)) A K, ( r ) A  V"J z 1 F 3  2) 
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10. Non-pnrnbolicity 

A widespread application of effectivemass theory is to the morion of conduction 
band electrons in direct-gap semiconductors with the zincblende structure. In such 
crystals the conduction band can only be considered parabolic for energies small 
compared with the band gap. The question naturally arises as to how the effective- 
mass approximation is to be extended to the non-parabolic regime. There would 
appear at present broadly two ways of approaching this problem. If one starts with 
the WannierSlater approach, then expansion of the band structure ol the reference 
crystal to include wavevectors to the fourth p e r  immediately builds in some non- 
parabolicity effects, but to account for the different degrees in non-parabolicity for 
the constituent materials of a microstructure \rill involve even more algebra than was 
expended in deriving the ordinary effectivemass equation. Alternatively one can use 
the energy-dependent effective-mass approach that arises naturally in the derivation 
of the effective-mass equation using Luttinger-Kohn type envelope functions, an 
approach that will now be examined. 

The energydependent effective-mass approach has been criticized on the grounds 
that it must fail in principle (Person and Cohen 1988). These authors quote the 
argument given, for example, in the book by Schiff (1968) concerning the properties 
that any proposed time-dependent wave equation must have to allow a superposition 
principle involving states with different energies: the coefficients in the wave equation 
cannot depend on the energy. While this argument is valid for timedependent wave 
equations, it is not applicable to energy cigenvalue equations; all one requires in this 
case is a superposition principle for states of the same energy. Examples of equations 
for energy eigenvalues with energy-dependent parameters are not difficult to find in 
solid-state theory: the orthogonalized plane-wave (OPW) pseudopotential equation 
(see e.g. Heine 1970) and the equation for the single-particle Green function (sec 
e.g. Hedin and Lundqvist 1969. Stolz 1974) come readily to mind. Quite generally, 
an eigenvalue equation can be ‘folded down’ to produce an exact equation for a 
restricted set of the eigenvalues in which the coefficients depend on the eigenvalue 
(see e.g. Liiwdin 1952, Heine and &hen 1970), and the energy-dependent cffeaive- 
mass equation derived in Section 6 is just an example of this carried out approximately 
(for an early example see Shockley (1950)). 

Having satisfied oneself that there is nothing to stop one using an energy- 
dependent effective mass, at lcast in principle, it is appropriate to ask under what 
circumstances it is a useful approach. Consider first the question of the band struc- 
ture using the k .  p method. I€ one band is coupled by the k. p interaction to the 
other bands but these other bands have no such coupling between them, owing to 
symmetry, then the energy-dependent effectivemass approach will be accurate (to 
order IC‘) provided the free-electron kinetic energy terms can be neglected compared 
to the difference in the energy eigenvalue and the zone-centre energies of the other 
bands. This can be seen formally in the ‘folding down’ procedure mentioned above 
because in this case the matrix to be inverted in the ‘folding down’ procedure is 
diagonal. As an example, take the conduction band along the (001) direction of a 
direct-nsrrow-gap zincblende semiconductor. The k . p Hamiltonian matrix involving 
the conduction, light-hole and spin split-off bands has the above-mcntioned structure 
(see e.g. Tkylor and Burt 1987, equation (5)) and the energy-dependent mass follows 
naturally from the eigcnvalue equation for the conduction band envelope function 
(Taylor and Burt 1987, equation (9)); note that the free-electron kinetic energy term 
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associated with the conduction band has been omitted in the derivation but one can 
easily see that this omission is not necessary. One notes, of course, that this proce- 
dure will not work for the light-hole and spin split-off bands, and more sophisticated 
approximations involving only a selective application of perturbation theory, such as 
in equation (6.3), are required. Such a scheme has been carried out by Eppenga et a1 
(1987). This scheme has been tested (Burt and Titham 1990) for the light-hole band 
structure for InP in the (001) direction against a 15-band It. p calculation (Pollak er 
a1 1966, Pollak and Cardona 1%6), including spin-orbit interaction, and found to be 
very accurate. 

An apparent problem with the way that the energy-dependent effective-mass 
approximation meats non-parabolicity in heterostructures has been raised by Nag 
and Mukhopadhyay (1991). They point out that the effective mass needed to de- 
scribe the energy-wavevector relation in the non-parabolic region, the energy effec- 
tive mass, is different from that needed, the velocity effective mass, to describe the 
group-velocity-wavevector relation. Further, they note that the energy effective mass 
does not appear to conserve probability current at an interface when it is used in 
the derivative boundary condition. They claim that the velocity effective mass is the 
correct mass to include in the derivative boundary condition to ensure conselvation 
of probability current. (Essentially the same dilemma has been raised previously by 
Ekenberg (1989) but no firm recommendations were made there.) While this appears 
to be a reasonable proposal from a phenomenological p i n t  of view it appears less so 
from the author's fundamental approach for slowly varying envelope functions the 
correct description of the band structures of the constituent materials and the con- 
servation of the probability current are intimately connected via the matrix elemen@ 
of momentum, as was shown in the section on boundary conditions (section 7). It 
is difficult to see how one can have a set of envelope-function equations that give a 
good description of the band structure and yet give a poor account of the current 
conservation. Indeed, we will show explicitly for the two-band model used by Nag 
and Mukhopadhyay that the energy-dependent effective-mass apporoximation does 
conserve the probability current in the limit of small band gaps. 

The energy-wavevector relation quoted by Nag and Mukhopadhyay corresponds to 
a narrow-gap two-band model in which the electron effective mass is small compared 
to the free-electron mass, Le. kcc-electron kinetic energies can be neglected compared 
to the electron energy relative to the band edge. In this approximation the band 
structure for the conduction band, with the energy zero taken at the band edge, is 

E ( E  + E,) = ( h k P / m ) *  (10.1) 

where P = lPcvl k the modulus of the interband momentum matrix element, Pcv, and 
E-' is the parameter ai in Nag and Mukhopadhyay (1991). The energy-dependent 
effective mass m,( E )  is given by 

= m,(o)(l t E / E g )  (10.2) 

with 

m/m,(O) = 2 P 2 / m E g .  (10.3) 

The group velocity U is given by 

U = ( I / h ) d E / d k  = hk/[m,(O)( l+ 2E/E, )]  (10.4) 
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where the velocity effective mass, m,(O)(l +2E/Eg) ,  has twice as large a correction 
for non-parabolicity as the energy effective mass in (10.2). For a plane wave normal- 
ized to a length L, the current will be u/L.  On the other hand, the energydependent 
effective-mass expression for the conserved current is (Burt 1988b) 

[ 1 /mc( E)]Re[  F:( -ih d F,/dz)]. (10.5) 

For a plane wave ( A,/L1/2)exp(ikr) this gives a current 

J = ~ l ~ A z / ~ ~ ~ ~ / l ~ c ~ ~ ~ ~ ~  + E/Eg)I .  (10.6) 

It is now tempting to argue that IAJ2 = 1 for a normalized plane wave and that 
J given by (10.6) is incorrect because it does not agree with u / L  deduced from 
(10.4). The error in the argument lies in assuming that IA,I2 = 1 gives the correct 
normalization. This is good enough in the parabolic regime, but not here. The correct 
normalization is IAJ2 = 1 / (  1 + E/E, )  and is derived as follows. The wavefunction 
is given by 

q = Feu, 4- F,U, (10.7) 

where the U’s are normalized so that IUJ2 has mean value unity over a unit cell. 
Provided the components in the plane-wave expansion are in the inner half of the 
Brillouin zone, then the normalization integral (over interval L )  is 

1 ) @ I 2  d r  = / lFJ2 d t  + / IF,I’ dz .  (10.8) 

Now for the plane wave 

F, = (A,/L1’2)exp(i!cr) (10.9) 

one has 

F, = (A,/L”2)exp(ilcr) (10.10) 

A, = (hkP,/mEg)A,. (10.11) 

1A,1* = 1/[1 + (tl!cP/mEg)’] = 1/(1 + E/E,).  

with 

For normalization one needs 

(10.12) 

With (10.6) this gives a current that agrees with the group velocity expression to fmt 
order in E / E g  in keeping with the accuracy to which we have been working. One 
can readily extend this argument to include the case of a combination of an incident 
and a reflected wave. 

So, for situations in which the energy-dependent effective mass gives a reason- 
able description of the band structure, the boundary condition [l/m,( E ) ]  d F , / d t  
continuous wiIl conserve current. 
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11. Summary 

We have seen that the major problem with conventional justifications for applying 
the effective-mass approximation to microstructures is the assumption that the eigen- 
functions at highsymmetry points in the Brillouin zone are approximately the same 
for the constituent aystals; the terms in the Hamiltonian that one throws away on 
making this assumption can easily be of the same order of magnitude as those one 
retains, i.e. the k . p type terms. Without this assumption, the almost ubiquitous as- 
sumption of continuity of the envelope function at an abrupt interface is a non-starter 
and undermines the usual discussions on the boundary condition for the derivative. 
It is also ditficult to conceive of a well constructed mathematical theory that involves 
a change in periodic basis functions as one goes from one material to another. 

These problems have been circumvented by applying the original Luttinger-Kohn 
envelope-function expansion to a microstructure in its entirety using the same peri- 
odic basis functions throughout even though they are not necessary eigenstates of the 
constituent crystals. In this way one has a well defined unique envelope-function ex- 
pansion, the envelope functions and all their derivatives being continuous everywhere 
including at atomically abrupt interfaces. The boundaycondition problem is imme- 
diately sidelined thereby. Because this new envelope-function expansion is unique 
and invertible, exact equations for the envelope functions can be derived, equations 
that are completely equivalent m the original Schrodinger equation, the complexity of 
which is not restricted; spin-orbit interaction, including wavevector-dependent terms, 
non-local potentials and even strain can be catered for. Starting with these exact 
envelope-function equations it has been possible to derive effective-mass equations in 
a systematic way such that the errors in the approximations made can be estimated, if 
need be. The crucial point in these derivations is not to start from the limit of slowly 
varying composition changes, as have Karavaev and Tikhodeev (1991) for instance, 
but rather from the limit of slowly varying envelope functions. One asks the question, 
if the envelope function(s) are slowly varying, what approximate simplified equation@) 
do they obey? The boundary conditions for these approximate equations have been 
examined and it has been found that kinks appear in the envelope functions when 
second derivatives are dropped and the coefficients in the envelope-function equations 
are approximated by piecewisecontinuous functions representing abrupt composition 
changes. 

By focusing on the equations satisficd by slowly varying envelope functions, it 
becomes clear why the effective-mass approximation works so well for quantum wells 
only a monolayer or so wide. The ground state is only weakly bound and the state 
necessarily extended and the envelope function slowly varying. We have managed 
to derive the effective-mass equation using only this slow variation and the usual 
assumption of the dominance of one envelope function; no assumption that the 
composition is slowly varying has been made. The slowly varying envelope function 
is only affected by the long-wavelength components of the compositional variation. 
Similarly, in short-period superlattices, where the electron tunnels easily through the 
barriers, the envelope function will have a very small derivative and the derivation of 
the effective-mass equation given here will still hold. 

Our derivation of the new effective-mass equation includes the differences in the 
zone-centre eigenstates between the constituent crystals via the inclusion of the off- 
diagonal elements of the zone-centre Hamiltonian. The reason that one can still 
derive an effective-mass equation is that, in sulficiently high-symmetry crystals, there 
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are relatively few pairs of zonecentre eigenstates of the reference crystal that are 
coupled by both the Hamiltonian and the momentum, and those that are have large 
energy separations. The result is that, in the second-order perturbation theory, the 
perturbation being composed of a sum of k . p  and Hamiltonian terms, the influence 
of cross terms, i.e. those linear in both 12. p and the Hamiltonian, is minimal. Time- 
reversal symmetry also plays a role in reducing the overall effect of these terms since 
it is this symmetry that eliminates the linear k terms in the band structure in the 
absence of spin-orbit interaction F a n e  1966). 

Much of the formal work has been extensively illustrated using a one-dimensional 
model superlattice, focusing on the ground state for one of the bands. me wavefunc- 
tion shows a pronounced soft kink in its envelope and this is also displayed by the 
principal envelope function. It demonstrates what the author had already deduced 
algebraically, that the kink in the conventional envelope function due to the use of 
the boundary condition ( l / m ’ ) d F / d r  continuous at a discontinuity of the effective 
mass is an artefact of too severe an approximation. The envelope function, as defined 
by the author, has a rapid change in its derivative that appears as a soft kink. The 
numerical work shows a similar behaviour in the wavefunction. For the modcl used, 
the new effective-mass equation proposed by the author, in which the coefficients 
are less severely approximated than is usual, gives an excellent approximation for the 
principal envelope function. 

The use of the WannicrSlater version of the new envelope functions as an alter- 
native to the Luttinger-Kohn typc has been examined. It has becn shown that exact 
equations can be derived for these envelope functions as well. An effective-mass 
equation has been derived using these envelope functions for the case of small, but 
abrupt, compositional changes. The derivation is more cumbersome than that given 
for the Luttinger-Kohn type envelope functions. It becomes cven more so when one 
tries to account for compositional changes to second order, as was managed with rel- 
ative ease with the Luttinger-Kohn envelope functions. It appears, then, that, while 
the WannierSlater envelope functions are well suited to dealing with weak fields in 
bulk crystals, the Luttinger-Kohn envelope functions are better for deriving effective- 
mass-type approximations in microstructures. Of course, the position for numerical 
work may be different. 

As an example of how the author’s approach can help resolve controversy, we have 
investigated the recent proposal that for non-parabolic bands the velocity effective 
mass should be used in the derivative boundary condition, rather than the energy 
mass suggested by so-called k . p  theory, in order to conserve probability current. We 
have shown that the approximate envelope-function equations derived in this paper 
do conserve current and that, in particular, for the two-band model in the limit of 
small band gap the energy effective mass is the correct mass to use in the derivative 
boundary condition. 

The new envelope-function method described here is very powerful. It can deal 
with spin-orbit interaction, non-local potentials and strained structures (Burt 1989). 
In this paper it has been presented with the basis functions as periodic with respect 
to a Bravais lattice. However, it is not restricted to this case and perhaps it is 
appropriate to finish by giving a couple of examples. First, one could extend it to 
cases in which the basis functions all change by the same phase factor on translation 
by a lattice vector (Burt 1989). This would be suitable for electron states associated 
with zone-edge states such as those at X and L in zincblende structures. Second, in 
some structures, one might have states that are a mixture of zone-ccntre and zone- 
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edge states such as the r and X states in GaAslAIAS (001) layered structures. In 
that case, one might by using a reference Bravais lattice twice the size of that of 
the constituent crystals. Both the zone-centre and zone-edge states of the constituent 
crystals would be periodic with respect to this reference Bravais lattice. The periodic 
basis functions for the envelope function expansion could be chosen so that each basis 
function had the tmnslational symmetry of either the mne-centre or the zone-edge 
states of the constituent crystals. The new envelope-function equations would have 
the Same form as derived here, but there would now be. coupling between zone-centre 
and zoneedge-type hasis functions via the Hamiltonian, but not the k . p ,  terms near 
the interfaces. 
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Appendix 1. A note on the choice of Brillouin zones 

The envelope-function expansion used by the author involves a complete set of func- 
tions, U , ( R ) ,  that are periodic with respect to a Bravais lattice. The associated 
envelope functions, F,,(R), are defined to have a plane-wave expansion restricted to 
wavevectors within the Brillouin zone. If unnecessary complications are to he avoided, 
it is important to choose the Brillouin zone one uses with care. 

A Brillouin zone is a range of wavevectors k such that the set of functions 
exp(ik. R) is a complete set of non-degenerate eigenfunctions for each of the three 
primitive translations, ai, of the Bravais lattice, so that the eigenvalue exp(ik.  ai) 
appears only once. A simple way of doing this is to take a parallelepiped repre- 
senting the unit cell of the reciprocal lattice rather than the more complex conven- 
tional construction. Another way suitable for multilayer structures is to follow the 
method used for generating the band structure for complex wavevector. One takes a 
two-dimensional Bravais lattice with the same translational symmetry as that of the 
multilayer parallel to its interfaces. The two-dimensional Bravais lattice will have a 
two-dimensional Brillouin zone constructed in the usual way. By projecting this two- 
dimensional zone perpendicular to its plane one can construct a prism that contains 
sufficient k-values to provide the eigenfunctions for the third primitive translation 
of the reference Bravais lattice, Le. the primitive translation that is not paratlel, but 
also not necessarily perpendicular, to the interface planes. In this way the three- 
dimensional Brillouin zone has the same height for all points in the two-dimensional 
Brillouin zone. An example of this type of construction can be found in Burt (1980) 
in connection with the band structure for complex wavevector in the (111) direction 
for GaAs. The two-dimensional Brillouin zone in this case is a regular hexagon and 
the three-dimensional zone for GaAs b a prism with its axis along (111) and a hexag- 
onal aoss section. Such a construction would circumvent the problem encountered 
by Cuypers and van Haeringen (1991) of having more than one envelope function per 
band for a given component of k parallel to the interfaces. For multilayer structures 
with interfaces along low-index planes, the three-dimensional Bravais lattice recom- 
mended here would not usually correspond to the Bravais lattice of the constituent 
materials. 
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Appendix 2. Resolution of potential term into local and non-locnl parts 

The effective potential for envelope functions is given by 

where 

When the original potential V is local, the effective potential V, , , (R,R' )  can be 
resolved into local and non-local parts, though, as noted previously (Burt 1988a), this 
resolution may not he unique. ?b demonstrate the resolution, write the local potential 
V as a plane-wave expansion 

with 

(k + GIVIk'+ G') = <&G,-G,(k,)  (m4) 

where kl = k - k' + GI is in the Brillouin zone and G I  is a reciprocal-lattice vector. 
For faed k', k can be replaced in favour of k, to obtain 

x exp(-ik'. RI). ('42.5) 

In the 'local' approximation G, is set to zero, noting that this only affects the sum- 
mand when k, + k' is outside the Brillouin zone, a region of little importance for 
slowly varying envelope functions. Denoting this local approximation to V,,,(R, R') 
by V:!F)(R,R') we find that 
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Append= 3. Asymptotic form of the potential term far from an interface 

Again we start with the effective potential for envelope functions 

1 
V , , , ( R , N )  = - X e x p ( + i k .  n)~", , , , (rc ,k')exp(- ik' .~')  (~3.1) 

k,k' 

where 

V,, , , (k ,k ' )  = U:,& + GIVlk'+ G')Unt0,. 
0,G' 

using 

(k+GlVlk'+G')= ~ / V ( R " ) e x p [ - i ( k - k ' + G - G ' ) . R " ] d 3 R "  (-43.3) 

for a local potential, one can write 

V,,,(R,R') = U&U,,,, A ( R -  E")V(R")exp[-i(G'-G).R"] 
G,G' J 

x A(R" - R') d3R". (A3.4) 

Now A(R)  (defined in (3.10)) is only appreciable near R = 0 and tends to zero at 
large R, so for R and R' far from any interface the integrand in (A3.4) will only be 
appreciable in the region around R and R'. Hence in this asymptotic region one can 
replace V(R") in the integrand by Vbulk(R''), the potential of the appropriate bulk 
crystal. Expanding Vburk(R)  in plane waves 

Vbulk(R) = V&Ik exp(iG. R) ('43.5) 
G 

one has 

( k +  GIVb""1k'+ G') = Vhy'&,Skk,. 

V,,$k(R,R') = V,;!'A(R- R') ('43.7) 

W.6) 

Using (A3.6) in (A3.2) and then (A3.2) in (A3.1) gives asymptotically 

where 

We note that in this asymptotic region far from interfaces the effective potential 
V,,,(R,R') corresponds to the local part, i.e. the non-local part is restricted to the 
interface regions. 
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Appendix 4. V,,,,(R) for a superlattice 

Eike Cartesian axes with the (z,y) plane parallel to the interfaces but without 
assuming that the crystal constituents of the superlattice have cubic symmetry. The 
superlattice potential has the form 

V$)exp(iG. R) { $ V$)exp(iG. R) 

for 0 < z < L ,  

for L ,  < z < L ,  + L ,  
(A4.1) V ( R )  = 

where the G‘s are the reciprocal-lattice vectors for a Bravais lattice that has the 
same translational symmetry as the superlattice in the (z,y) plane. Wr  superlattices 
with interfaces parallel to high-index planes, the Bravais lattice will be that of the 
constituent bulk crystals. The plane-wave expansion coeficients vG(h)  will be zero 
except when the component of h in the (z,y) plane is zero., So V,,,(n) will be 
a function of z only and from equation (A2.6) we sec that (we use IC: for the z 
component of k) 

(A4.2) v,,t(z) = C U~GPG-G,(I<)Un,G4e i K i  

K G,G’ 

where 

(A4.3) 

and i is ihe unit vector in the z direction, i.e. perpendicular to the interfaces. Using 
manipulations similar to those used for the single interface in one dimension (Burt 
1988a), one finds 

vG(k7) = ~ j V ( R ) e x p [ - i ( l i i +  1 G ) . R ] d 3 R  

V,,,(Z) = v,’:!(z) + V!$(z) (A4.4) 

where Vi:!(z) depends only on the bulk properties of the constituent crystals and 
the structure of the superlattice. V,,t!(z)  is periodic in z with period L = L ,  + L ,  
as one would expect and in the region 0 < z < L is given by 

where Vi:! and Vi:), are the bulk values of V,,,(z) for the constituent crystals and 
S(z) is the usual step function but wiih itsplane-wave erpom;on h i l e d  10 wnvevectors 
wirhin h e  BrZlouin zone, ie. the abrupt step is softened by Gibbs oscillations. The 
interface term V,’?,(z) is given by 

with 



Appbing flective-niass approxiintation 10 micrmrruciures 6689 

Here Ag = g - g' where g is the component of G in the (z, y) plane, ie. (9, G) 
denotes G, G being the z component of G. On examining (A4.7) one sees that the 
wavevector denominators are always large and this makes the interface terms small. 
One can also readily verify from (A4.6) that, when the layer widths are sufficiently 
large, then V:$(z) will tend to zero except near the interfaces. 
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