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Implementing unitarity in perturbation theory
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Unitarity cannot be preserved order by order in ordinary perturbation theory because the cobidtrhint
=1 is nonlinear. However, the corresponding constrainterIn U, beingK=—KT, is linear so it can be
maintained in every order in a perturbative expansiok.ofhe perturbative expansion Kfmay be considered
as a non-Abelian generalization of the linked-cluster expansion in probability theory and in statistical mechan-
ics, and possesses similar advantages resulting from separating the short-range correlations from long-range
effects. This point is illustrated in two QCD examples, in which delicate cancellations encountered in summing
Feynman diagrams are avoided when they are calculated via the perturbative expafSidpplications to
other problems are briefly discussed.

DOI: 10.1103/PhysRevD.63.097901 PACS nuntderll.15.Bt, 11.10-z, 11.80-—m

Probability conservation is not maintained order by ordeftional to thenth nested commutator of the color matridgs
in ordinary perturbation theory. This happens because thgs]. In particular,(K,)#0 even forn>1. Therefore unitary
unitarity relationUUT=1 (for the time-evolution operator perturbation theory can be thought of as a generalization of
U) is nonlinear, whereas the constraints for the other exadhe non-abelian eikonal approximation.
conservation laws, such as energy, momentum, and charge, The relation betweek), andK,, can be obtained by ex-
are linear. Order-by-order probability conservation can bepanding the exponential expK,/n) to nth order. One ob-
restored if we expand insted¢i=In U=2,_,K,/n, for then tains

the unitarity constraint becomes the linear constraint 1 1
—K'. As long as everyK, is kept anti-Hermitian,U Un:(Em) i T KK, K unk (1)
=expK) will be unitary no matter where thi€ expansion is H m;

=1

truncated. We shall henceforth refer to the perturbation
theory in whichK=1In U is expanded as unitary perturbation
ngms'\iitggg?;g]my' such an expansion is known as th‘fmlmz- --m,) of the integern. If U is the time-evolution
" o . operator between time§’ and T, ordinary perturbation
In addition to unitarity, there is another reason to dealtheory tells us
with the perturbative expansidd, of K=InU, rather than
U=1+ Zn=1Un, because_the_former is_';he generalizat_ion of Un:(—i)nf dtH,(t) . H(6),  ume )
the linked-cluster expansion in probability theory and in sta- Rn
tistical mechanicq2], with the associated advantages in
separating short-range correlations from the long-range efwhere R, is the hyper-triangular integration regidi=t,
fects. It is also analogous to the expansion of the effective®- - -t,=T'}. Together with Eq.(1), this may be used to
potential in quantum field theory. The added complicationderive a dynamical expression fir, . In particular,
here is that we are dealing with noncommutative operators T
rather thanc-number functions. In QCD, short-range corre- Ki=U;= —if (dtH (1),
lations refer to correlations in time and in color. This point T
will be explained later with two QCD examples. Kp=2U,— U7
Unitary perturbation theory can also be regarded as an T ty
extension of the familiar eikonal approximation. For elastic :(_i)zf dtlf dt,[H,(t1).H,(t)] o (3
scattering of a high-energy particle from a static potential, T T
the scattering amplitude is diagonal in energy and the impact ) . . .
parameter. The scattering amplitud#) to all orders can be Th'e dlfferencg between ordmary and unitary perturbation
summed up to the formexp(y,))=exp(K,)), where(K,) is theories can be |IIu§tr9ted by a simple spirexample[7],
equal to the first Born approximatigi/;), and( . . .) is the ~ With interaction— 3o B(t), and an external magnetic field
matrix element in impact-parameter sp@8gl]. This eikonal  B(t)=(B, coswt,—B, sinwt,By). The longitudinal fieldB,
approximation is also valid for electron-electron scatteringcauses a Zeeman splitting of magnitiie=7% w; the trans-
when fermion loops are neglectgs]. For high-energy scat- verse fieldB, induces a transition between the lower and the
tering of a quark from a color potential, amplitudes of all upper states. Assuming the system to occupy the lower state
orders can again be summed up into the fofexpK)) initially, the probability to be in the upper state is plotted in
=exp(K)), but now(K) is a color matrix, withK,) propor-  Fig. 1, as a function of the scaled frequency variaBle
=h(w—wu)/B, at the scaled time=B, t/7=m. The solid,
dashed, dash-dotted, and dotted curves are, respectively, the
*Email address: lam@physics.mcgill.ca exact solution, the first Born approximatidh, =(U,), the

where the sum is taken over all partitionm)=
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FIG. 2. (a),(b),(c): High-energy quark-quark scattering diagrams to
one-loop order(d),(e): Meson-nucleon scattering at larbk in the
tree approximation.
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of Fig. 2(b), with N. being the number of colors in the
theory. This number is to be set equal to 0 for QED. The
second Born amplitude, being the sum of Figd) 2nd Zc),
is (U,)=(—ig*2m)l,(— miG,—InsGNS/2). Note the can-
! cellation of the Irs factor in the term proportional t6,. The
G, term consists of a color-octet exchange. It is not negli-
gible compared to the first Born amplituddJ;) in the
leading-log approximation wheg#<1 andg?In s=0(1). In
fact it is the beginning of the reggeized gluon contribution.
The color factorG,=G;X G, consists of two color-octet
first unitary approximatiotd P, =(exp(,)), and the second exchanges, which can be decomposed into a color-octet and
unitary approximatiord P,=(expK;+K,/2)). The notation a color-singlet. Its coefficient in the impact-parameter repre-
(...) represents the matrix element between the upper ansentation is equal to the coefficient 6 X G, in $(U?), a
the lower states. We see from Fig. 1 that the probabilityfactor of Ins down from the coefficient of th&, term. Its
given by the Born approximation is larger than 1 for smallcolor-octet contribution is therefore negligible in the leading-
|Q|, violating unitarity, but both unitary approximations stay log approximation, but its color-singlet component is leading
within the unitarity bound. As a function of at the reso- and constitute the beginning of the Pomeron amplitude. For
nance frequency) =0, the exact solution as well as the two QED, the factoiN. in front of G, is zero, ands, is replaced
unitary approximations are periodic, with a periog @scil- by 1. Hence(U,)=3(U,)? in the impact-parameter repre-
lating between 0 and 1, whereas the Born approximatiorsentation.
grows monotonically liker?, making it a worse and worse To summarize, a delicate cancellation ofsloccurs be-
approximation at large. For QCD, the unitary perturbation tween Figs. &) and Zc) in QED, and in the color-singlet
theory can be used to classify unitary parton-parton elastichannel of QCD. This is reminiscent of the delicate cancel-
amplitudes and to produce unitary model for Pomeron amlation of the volume factor in the grand partition function in
plitudes[11]. statistical mechanics unless the linked-cluster expansion is
In addition to unitarity, it is often more profitable to com- used[2]. As a result, thé color-octet exchange amplitude in
pute U, via K,,, becauseK,, contains short-time and color QCD is proportional tm?*(g?Ins)?> ¥ (k=1,2), and it is this
correlations via the appearance of the commutator of thelependence that leads to the Reggeon amplitudes in QCD.
H,’s, instead of their product itJ,. | will illustrate this ~ We shall now see that if we calcula{®),) via (K%) and
remark with two second-order QCD examples. Higher-ordeXK,), then delicate cancellation is not needed, and the en-
situations will be discussed later. ergy dependence needed for the Reggeon structure becomes
The first example concerns high-energy electron-electroimmediate.
and quark-quark elastic scattering near the forward direction, Since (K,)=(U,), it is given simply by Fig. 2a). For
with Mandelstam variables andt. The only difference be- (K,/2), it can be computed from Fig.(®, provided the
tween the two cases is the presence of a color mgfiat the  product of the color matricest, in the upper quark line is
vertices of QCD diagrams, Figs(@-2(c). The formulas for  replaced by their commutatdt,,t,] [6], thus making the
quark-quark amplitudes[8] are equally applicable to color factor purelyG,. Otherwise, the result is identical to
electron-electron amplitudes if we replageby 1. All am-  that of Fig. Zc). In the impact-parameter representation
plitudes have a common factés/2m? which will be fac-  whereK; are diagonal, we obtain in this way the same result
tored out, leaving the rest to B&J). Figure 2a) gives the  as before{K,/2) is given by theG, coefficient of Fig. 2c),
first Born amplitude(U,)=(ig?/A%)G,, where A is the  or that of (U,), and(K,)%/2 is given by theG,=G,;X G,
(transverse momentum transfer with=—A? andG;=t,  coefficient of(U,). The absence of the &tfactor in(K,)%2
Xt, is the color factor of Fig. @. The amplitude for is not due to cancellation; it is simply a consequence that
Fig. 2(b) is (—ig*/2m)l,In(se ™)G,, and that for Fig. &)  (K;) is independent of. This is the same as in statistical
is  (ig%2m)1,InS(G,+G;NJ/2), where |,=[d%k, / mechanics when linked cluster expansion is ug&d The
[(Zw)zkf(A—kl)z]. The color factorG,=G;XG;, is that  reggeized gluon contribution is now isolated K,/2) alone,
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FIG. 1. Unitary perturbation theory vs ordinary perturbation theory
in a two-level example.
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without having to combine two Feynman diagrams to obtain=K;, U,=(C2+C,)/2=(K2+K,)/2, U3=(C3+C,C,)/6
it. Its octet origin can be traced back to the color commutator (C,C,+ C3)/3= K§/6+ (KK, +K,K,)/4+K4/3.  From
in the upper quark line, or the commutator structureKgf  these relation, or more generally by comparing 8g.with
shown in Eq.(3). This gives(K,) a physical meaning as Eg. (5), one obtains the commutator structure Kyf to be
(part of) the one-Reggeon amplitude. K,=C,+R,, with Rij=R,=0, R3=[C,,C,]/4, and R,

The second example is pion-nucleon elastic scattering irF[C3,C.]/3. In general,R, is given by commutators of
the largeN, limit. The tree diagrams are shown in Figs. Cp,, with increasingly complicated coefficients as in-
2(d),2(e), with pion-quark interaction given by a Hamil- creases. .
tonian of the formH,~qTf- E-q, whereT is a matrix that We can use these relations betwéds,nandcm_ to calcu-_
contains the isospin and spin information. The effective cou!ate quark-q_uark and_ electron-electron scatterings to hlgh_er

ling at each vertex is proportional ¥H >/JN_ Where orders, avoiding delicate cancellations, and obtaining di-
bling brop . : ' ) rectly the energy dependence necessary for Reggeon struc-
(...) repr_ese_nts the nucleon matrix element and__ 'S tures in QCD, viz, an amplitude proportional to
the norm_allzat|on factor need_ed for each external pion. Smcazk(gz In9" %G, when k color-octet objects are being ex-

a color-singlet nucleon contaimé; quarks(H,)~N¢, sothe  change in thet channel[6,11]. They can also be used to
effective coupling at each vertex is of ordgN,, making  obtain the correct amplitudgL2] ~N ™2 for 7-nucleon
each tree amplitude-N.. However, the term proportional to  jnelastic scattering with— 1 pions in the final state, without
N, is canceled in the sum of the two diagrams, leaving a totahaving to deal with delicate cancellation of- 1 powers of
amplitude(U,) of order unity in the largeN. limit. This can N, encountered by summing Feynman tree diagrf@hsAs
be understood9] directly from Eq.(3) first becaus€K) mentioned at the beginning, Abelian and non-Abelian eiko-
=0 on account of energy-momentum conservation: an onnal approximations are special cases of these formulas. In-
shell nucleon cannot absorb or emit a massive pion and rdrared structure of QED can be obtained from these formulas,
mains on-shell. ThugU,)=3(K,). Since the commutator of Wwith K; containing the Bloch-Nordsieck resuk, giving
two one-body operators is again a one-body operator, hendlf_iﬁe(;o ths C0U|0m?1 pI?T\I/IS'e'daIImf:fO{:{%a n=3 [1I3'1‘E|)- The

SO o S S - o g andau-Pomeranchuk-Migdal effe can also be cast
([H1,HoD)~(Q'[I'y: 71, Iz m2]0) ZNC' Taking into ac- gt K form[16] with K, =0 for n=3. Other applications
count the normalization factor 4N for two pions, we con- may require knowing the diagrammatic rules for calculating
clude tha{U,)=3(K;)~Nc/N.=1, as needed. As with the "o 5ED such rules are knowia4]. For tree diagrams
situation in example 1, again there is no need to cancel thg, QCD involving an energetic particle such rules are also
N. term explicitly, because the commutator structurekef  known [6], but the general case for QCD still has to be
already provides for it. Physically, the one-body natur&ef \worked out.
tells us that the two pions must interact with the same quark So far we have emphasized situations whekis the time-
in the nucleon. evolution operator with a known Hamiltonian. If the dynam-

With these two examples, it is clear that the commutatoiics is unknown, we can still us€,, in Eg. (1), or C, in Eq.
structure ofK, is the key to the simplification. The question (5), to parametrize thenitary dynamics. As long a¥,, is
is whetherK,, still possesses such commutator structures foanti-Hermitian, it is clear that) is unitary. As long a<;,, is
highern. The answer is “yes,” though the detailed structure anti-Hermitian, it can also be showWi7] thatU is unitary,
is increasingly more complicated. Let us define anti-though the proof is much more involved. A Wolfenstein-like
Hermitian operatorE, to have the simple nested commuta- parametrization of the CKM matrix to all orders can be de-
tor structure, duced from these parametrizations. They can also be used to

study the unitary matrix describing the overlap of the unper-

an(—i)"f d™[Hy,[Hou[ ... [HooHal - 1110 en turbed and the perturb energy eigenfunctifihig. In conclu-
Rn sion, we have given a number of examples to show that the

(4)  unitary perturbation theory, in whicK=InU is expanded
perturbatively, is in many ways better than the ordinary per-

whereH;=H,(t;). Then it can be showfiL0] that turbation theory, wher# is directly expanded.

k
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where the sum is taken over all partitionsm) Marc Grisaru, Greg Mahlon, Sheung-Tsun Tsou, Wu-ki
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