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Implementing unitarity in perturbation theory
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Unitarity cannot be preserved order by order in ordinary perturbation theory because the constraintUU†

51 is nonlinear. However, the corresponding constraint forK5 ln U, beingK52K†, is linear so it can be
maintained in every order in a perturbative expansion ofK. The perturbative expansion ofK may be considered
as a non-Abelian generalization of the linked-cluster expansion in probability theory and in statistical mechan-
ics, and possesses similar advantages resulting from separating the short-range correlations from long-range
effects. This point is illustrated in two QCD examples, in which delicate cancellations encountered in summing
Feynman diagrams are avoided when they are calculated via the perturbative expansion ofK. Applications to
other problems are briefly discussed.
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Probability conservation is not maintained order by ord
in ordinary perturbation theory. This happens because
unitarity relationUU†51 ~for the time-evolution operato
U) is nonlinear, whereas the constraints for the other ex
conservation laws, such as energy, momentum, and cha
are linear. Order-by-order probability conservation can
restored if we expand insteadK5 ln U[(n>1Kn /n, for then
the unitarity constraint becomes the linear constraintK5
2K†. As long as everyKn is kept anti-Hermitian,U
5exp(K) will be unitary no matter where theK expansion is
truncated. We shall henceforth refer to the perturbat
theory in whichK5 ln U is expanded as unitary perturbatio
theory. Mathematically, such an expansion is known as
Magnus expansion@1#.

In addition to unitarity, there is another reason to d
with the perturbative expansionKn of K5 ln U, rather than
U511(n>1Un , because the former is the generalization
the linked-cluster expansion in probability theory and in s
tistical mechanics@2#, with the associated advantages
separating short-range correlations from the long-range
fects. It is also analogous to the expansion of the effec
potential in quantum field theory. The added complicat
here is that we are dealing with noncommutative opera
rather thanc-number functions. In QCD, short-range corr
lations refer to correlations in time and in color. This po
will be explained later with two QCD examples.

Unitary perturbation theory can also be regarded as
extension of the familiar eikonal approximation. For elas
scattering of a high-energy particle from a static potent
the scattering amplitude is diagonal in energy and the imp
parameter. The scattering amplitude^U& to all orders can be
summed up to the form̂exp(K1)&5exp(̂ K1&), where^K1& is
equal to the first Born approximation^U1&, and^ . . . & is the
matrix element in impact-parameter space@3,4#. This eikonal
approximation is also valid for electron-electron scatter
when fermion loops are neglected@5#. For high-energy scat
tering of a quark from a color potential, amplitudes of
orders can again be summed up into the form^exp(K)&
5exp(̂ K&), but now^K& is a color matrix, witĥ Kn& propor-
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tional to thenth nested commutator of the color matricesta
@6#. In particular,^Kn&Þ0 even forn.1. Therefore unitary
perturbation theory can be thought of as a generalization
the non-abelian eikonal approximation.

The relation betweenUn andKn can be obtained by ex
panding the exponential exp((Kn /n) to nth order. One ob-
tains

Un5(
(m)

1

k!

1

)
i 51

k

mi

Km1
Km2

. . . Kmk
, unk, ~1!

where the sum is taken over all partition (m)5
(m1m2•••mk) of the integern. If U is the time-evolution
operator between timesT8 and T, ordinary perturbation
theory tells us

Un5~2 i !nE
R n

dnt HI~ t1! . . . HI~ tn!, uh, ~2!

whereRn is the hyper-triangular integration region$T>t1
>•••tn>T8%. Together with Eq.~1!, this may be used to
derive a dynamical expression forKn . In particular,

K15U152 i E
T8

T

dt HI~ t !,

K252U22U1
2

5~2 i !2E
T8

T

dt1E
T8

t1
dt2@HI~ t1!,HI~ t2!# k12. ~3!

The difference between ordinary and unitary perturbat
theories can be illustrated by a simple spin-1

2 example@7#,
with interaction2 1

2 sW •BW (t), and an external magnetic fiel
BW (t)5(B' cosvt,2B' sinvt,B0). The longitudinal fieldB0
causes a Zeeman splitting of magnitudeB05\v0; the trans-
verse fieldB' induces a transition between the lower and t
upper states. Assuming the system to occupy the lower s
initially, the probability to be in the upper state is plotted
Fig. 1, as a function of the scaled frequency variableV
5\(v2v0)/B' at the scaled timet5B't/\5p. The solid,
dashed, dash-dotted, and dotted curves are, respectively
exact solution, the first Born approximationP15^U1&, the
©2001 The American Physical Society01-1
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first unitary approximationUP15^exp(K1)&, and the second
unitary approximationUP25^exp(K11K2/2)&. The notation
^ . . . & represents the matrix element between the upper
the lower states. We see from Fig. 1 that the probabi
given by the Born approximation is larger than 1 for sm
uVu, violating unitarity, but both unitary approximations sta
within the unitarity bound. As a function oft at the reso-
nance frequencyV50, the exact solution as well as the tw
unitary approximations are periodic, with a period 2p oscil-
lating between 0 and 1, whereas the Born approxima
grows monotonically liket2, making it a worse and wors
approximation at larget. For QCD, the unitary perturbatio
theory can be used to classify unitary parton-parton ela
amplitudes and to produce unitary model for Pomeron a
plitudes@11#.

In addition to unitarity, it is often more profitable to com
pute Un via Kn , becauseKn contains short-time and colo
correlations via the appearance of the commutator of
HI ’s, instead of their product inUn . I will illustrate this
remark with two second-order QCD examples. Higher-or
situations will be discussed later.

The first example concerns high-energy electron-elec
and quark-quark elastic scattering near the forward direct
with Mandelstam variabless and t. The only difference be-
tween the two cases is the presence of a color matrixta at the
vertices of QCD diagrams, Figs. 2~a!–2~c!. The formulas for
quark-quark amplitudes@8# are equally applicable to
electron-electron amplitudes if we replaceta by 1. All am-
plitudes have a common factoris/2m2 which will be fac-
tored out, leaving the rest to be^U&. Figure 2~a! gives the
first Born amplitude^U1&5( ig2/D2)G1, where D is the
~transverse! momentum transfer witht52D2, and G15ta
3ta is the color factor of Fig. 2~a!. The amplitude for
Fig. 2~b! is (2 ig4/2p)I 2 ln(se2pi)G2, and that for Fig. 2~c!
is (ig4/2p)I 2 ln s(G21G1Nc/2), where I 25*d2k' /
@(2p)2k'

2 (D2k')2#. The color factorG25G13G1 is that

FIG. 1. Unitary perturbation theory vs ordinary perturbation the
in a two-level example.
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of Fig. 2~b!, with Nc being the number of colors in th
theory. This number is to be set equal to 0 for QED. T
second Born amplitude, being the sum of Figs. 2~b! and 2~c!,
is ^U2&5(2 ig4/2p)I 2(2p iG22 ln sG1Nc/2). Note the can-
cellation of the lns factor in the term proportional toG2. The
G1 term consists of a color-octet exchange. It is not neg
gible compared to the first Born amplitudêU1& in the
leading-log approximation whereg2!1 andg2 ln s5O(1). In
fact it is the beginning of the reggeized gluon contributio
The color factorG25G13G1 consists of two color-octe
exchanges, which can be decomposed into a color-octet
a color-singlet. Its coefficient in the impact-parameter rep
sentation is equal to the coefficient ofG13G1 in 1

2 ^U1
2&, a

factor of lns down from the coefficient of theG1 term. Its
color-octet contribution is therefore negligible in the leadin
log approximation, but its color-singlet component is leadi
and constitute the beginning of the Pomeron amplitude.
QED, the factorNc in front of G1 is zero, andG2 is replaced
by 1. Hence^U2&5 1

2 ^U1&
2 in the impact-parameter repre

sentation.
To summarize, a delicate cancellation of lns occurs be-

tween Figs. 2~b! and 2~c! in QED, and in the color-single
channel of QCD. This is reminiscent of the delicate canc
lation of the volume factor in the grand partition function
statistical mechanics unless the linked-cluster expansio
used@2#. As a result, thek color-octet exchange amplitude i
QCD is proportional tog2k(g2 ln s)22k (k51,2), and it is this
dependence that leads to the Reggeon amplitudes in Q
We shall now see that if we calculate^U2& via ^K1

2& and
^K2&, then delicate cancellation is not needed, and the
ergy dependence needed for the Reggeon structure bec
immediate.

Since ^K1&5^U1&, it is given simply by Fig. 2~a!. For
^K2/2&, it can be computed from Fig. 2~c!, provided the
product of the color matricestatb in the upper quark line is
replaced by their commutator@ ta ,tb# @6#, thus making the
color factor purelyG1. Otherwise, the result is identical t
that of Fig. 2~c!. In the impact-parameter representati
whereKi are diagonal, we obtain in this way the same res
as before:̂ K2/2& is given by theG1 coefficient of Fig. 2~c!,
or that of ^U2&, and ^K1&

2/2 is given by theG25G13G1
coefficient of^U2&. The absence of the lns factor in ^K1&

2/2
is not due to cancellation; it is simply a consequence t
^K1& is independent ofs. This is the same as in statistica
mechanics when linked cluster expansion is used@2#. The
reggeized gluon contribution is now isolated in^K2/2& alone,

y

FIG. 2. ~a!,~b!,~c!: High-energy quark-quark scattering diagrams
one-loop order.~d!,~e!: Meson-nucleon scattering at largeNc in the
tree approximation.
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BRIEF REPORTS PHYSICAL REVIEW D 63 097901
without having to combine two Feynman diagrams to obt
it. Its octet origin can be traced back to the color commuta
in the upper quark line, or the commutator structure ofK2
shown in Eq.~3!. This gives^K2& a physical meaning a
~part of! the one-Reggeon amplitude.

The second example is pion-nucleon elastic scatterin
the large-Nc limit. The tree diagrams are shown in Fig
2~d!,2~e!, with pion-quark interaction given by a Hami
tonian of the formHI;q†GW •pW q, whereGW is a matrix that
contains the isospin and spin information. The effective c
pling at each vertex is proportional tôHI&/ANc, where
^ . . . & represents the nucleon matrix element and 1/ANc is
the normalization factor needed for each external pion. Si
a color-singlet nucleon containsNc quarks,̂ HI&;Nc , so the
effective coupling at each vertex is of orderANc, making
each tree amplitude;Nc . However, the term proportional t
Nc is canceled in the sum of the two diagrams, leaving a to
amplitude^U2& of order unity in the large-Nc limit. This can
be understood@9# directly from Eq. ~3! first becausê K1&
50 on account of energy-momentum conservation: an
shell nucleon cannot absorb or emit a massive pion and
mains on-shell. ThuŝU2&5 1

2 ^K2&. Since the commutator o
two one-body operators is again a one-body operator, he

^@H1 ,H2#&;^q†@GW 1•pW 1 ,GW 2•pW 2#q&;Nc . Taking into ac-
count the normalization factor 1/ANc

2 for two pions, we con-
clude that̂ U2&5 1

2 ^K2&;Nc /Nc51, as needed. As with th
situation in example 1, again there is no need to cancel
Nc term explicitly, because the commutator structure ofK2
already provides for it. Physically, the one-body nature ofK2
tells us that the two pions must interact with the same qu
in the nucleon.

With these two examples, it is clear that the commuta
structure ofK2 is the key to the simplification. The questio
is whetherKn still possesses such commutator structures
highern. The answer is ‘‘yes,’’ though the detailed structu
is increasingly more complicated. Let us define an
Hermitian operatorsCn to have the simple nested commut
tor structure,

Cn5~2 i !nE
R n

dnt@H1 ,@H2 ,@ . . . ,@Hn21 ,Hn# . . . ###, cn,

~4!

whereHi[HI(t i). Then it can be shown@10# that

Un5(
(m)

)
j 51

k
1

(
i 5 j

k

mi

Cm1
Cm2

. . . Cmk
, xic, ~5!

where the sum is taken over all partitions (m)
5(m1m2 . . . mk) of the numbern. In particular, U15C1
s
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5K1, U25(C1
21C2)/25(K1

21K2)/2, U35(C1
31C1C2)/6

1(C2C11C3)/35K1
3/61(K1K21K2K1)/41K3/3. From

these relation, or more generally by comparing Eq.~1! with
Eq. ~5!, one obtains the commutator structure ofKn to be
Kn5Cn1Rn , with R15R250, R35@C2 ,C1#/4, and R4
5@C3 ,C1#/3. In general,Rn is given by commutators o
Cm , with increasingly complicated coefficients asn in-
creases.

We can use these relations betweenUn andCm to calcu-
late quark-quark and electron-electron scatterings to hig
orders, avoiding delicate cancellations, and obtaining
rectly the energy dependence necessary for Reggeon s
tures in QCD, viz., an amplitude proportional t
g2k(g2 ln s)n2kGk when k color-octet objects are being ex
change in thet channel@6,11#. They can also be used t
obtain the correct amplitude@12# ;Nc

12n/2 for p-nucleon
inelastic scattering withn21 pions in the final state, withou
having to deal with delicate cancellation ofn21 powers of
Nc encountered by summing Feynman tree diagrams@9#. As
mentioned at the beginning, Abelian and non-Abelian eik
nal approximations are special cases of these formulas
frared structure of QED can be obtained from these formu
with K1 containing the Bloch-Nordsieck result,K2 giving
rise to the Coulomb phase, andKn50 for n>3 @13,14#. The
Landau-Pomeranchuk-Migdal effect@15# can also be cas
into this form@16# with Kn50 for n>3. Other applications
may require knowing the diagrammatic rules for calculati
Kn . For QED such rules are known@14#. For tree diagrams
in QCD involving an energetic particle such rules are a
known @6#, but the general case for QCD still has to b
worked out.

So far we have emphasized situations whenU is the time-
evolution operator with a known Hamiltonian. If the dynam
ics is unknown, we can still useKn in Eq. ~1!, or Cn in Eq.
~5!, to parametrize theunitary dynamics. As long asKn is
anti-Hermitian, it is clear thatU is unitary. As long asCn is
anti-Hermitian, it can also be shown@17# that U is unitary,
though the proof is much more involved. A Wolfenstein-lik
parametrization of the CKM matrix to all orders can be d
duced from these parametrizations. They can also be use
study the unitary matrix describing the overlap of the unp
turbed and the perturb energy eigenfunctions@17#. In conclu-
sion, we have given a number of examples to show that
unitary perturbation theory, in whichK5 ln U is expanded
perturbatively, is in many ways better than the ordinary p
turbation theory, whereU is directly expanded.
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