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We present the generalization of the Landau-Zener model for a constant coupling of afinite duration. The
exact evolution matrix is expressed in terms of sums of by-products of parabolic cylinder functions estimated
at the turn-on time and at the turn-off time of the coupling. Various approximations in terms of simpler
functions are derived and applied to several physically distinct cases. They allow us to study the dependence
of the transition probability on the interaction parameters: coupling strength, coupling duration, and detuning
slope. Furthermore, the analytic approximations reveal the effects of the finite coupling duration as well as
those caused by adding a constant detuning shift, absence of a level crossing, turn-on timeor turn-off time near
the crossing~‘‘half crossing’’!, turn-on timeand turn-off time near the crossing~‘‘nonsubstantial crossing’’!.
The results are used to obtain analytic approximations to the time evolution in the original Landau-Zener
model. Furthermore, following related studies on other models, we define the Landau-Zenerclassof models
that, along with the finite Landau-Zener model presented in this work, contains an infinite number of members
that give the same transition probability. Comparison of this class to the Allen-Eberly class shows that the two
classes contain members with the same coupling but different detuning chirps as well as members with the
same chirp but different couplings. The former case reveals chirp effects while the latter demonstrates shape
effects.@S1050-2947~96!07505-1#

PACS number~s!: 32.80.Bx, 33.80.Be, 42.50.2p

I. INTRODUCTION

Along with the simple Rabi solution@1#, the Landau-
Zener model~hereafter referred to as LZ! @2# is one of the
most widely used two-state approximations in resonance
physics. It is not an easy task to quote all the publications
where the LZ model has been studied or used. We will only
mention some recent generalizations of the original LZ
model. They include accounting for relaxation@3#, electron
translation factors in atomic collisions studies@4#, analytic
approximations to the evolution matrix@5#, parabolic level
crossing@6#, level crossing with two time scales@7#, multiple
level crossings@8#, and three-level systems@9#. Among the
experimental work, we note a recent detailed study of LZ
dynamics@10#.

There are several reasons for the wide usage of the LZ
model. First of all, it describes the important physical case
when a two-level quantum system interacting with an exter-
nal field passes through resonance. Such a situation can be
met in a number of areas in physics including quantum op-
tics, atomic and molecular collisions, magnetic resonance,
nuclear physics, and solid-state physics. Second, in the LZ
model, the detuning is a linear function of time, which is a
realistic assumption near the crossing. Third, the coupling is
constant; near the crossing this is a relatively good approxi-
mation if the actual coupling changes slowly in time com-
pared to the detuning, which is reasonably well satisfied in
many cases. Fourth, the LZ model provides a very simple
expression for the transition probability. Thus, as far as
qualitative features are mainly concerned, the LZ model is
relatively satisfactory in many cases.

When more detailed knowledge of the interaction dynam-
ics is required, however, one finds that the LZ model suffers
from two substantial defects. First, the~constant! coupling

does not vanish ast→6`, which implies an infinite energy,
and second, the detuning, being a linear function of time,
goes to infinity ast→6`, which is also unphysical. These
problems are insignificant when the transitions take place in
a narrow time interval around the crossing and outside this
region no substantial changes occur in the physically mea-
surable quantities as the two-level system is far from reso-
nance. Then the particular time dependences of the actual
coupling and detuning far from the crossing are of no impor-
tance. When transitions can occur far from the crossing,
however, the original LZ formula can fail. For instance, this
is the case when the coupling is large or the detuning is
small. Then, to estimate the transition probability in a par-
ticular level-crossing problem, one cannot just apply the LZ
formula but should carry out more detailed calculations. An
important part of the latter is the evolution around the cross-
ing, which can still be described as a LZ problem but with a
coupling of a finite duration.

In this work, we consider the generalization of the LZ
model in which the coupling duration is assumed to befinite.
We call this modelthe finite Landau-Zener model. The origi-
nal LZ model is obtained as a limiting case when the turn-on
and the turn-off times of the coupling approach infinity. In
Sec. II, the exact evolution matrix and the transition prob-
ability are derived in terms of sums of by-products of para-
bolic cylinder functions evaluated at the turn-on and the turn-
off times. Various approximations in terms of simpler
functions are derived and discussed in Sec. III. They cover
the cases when the coupling begins and/or ends far from the
crossing or near the crossing. In Sec. IV, we apply our results
to study the time evolution of the transition probability in the
original LZ model by assuming that the turn-on time is at
2`. In Sec. V, we discuss an interesting peculiarity of the
two-level problem: the latter is degenerate in the sense that
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different pairs of couplings and detunings give the same tran-
sition probability. These pairs formclassesof models that
contain an infinite number of members. The class generated
by the finite Landau-Zener model is presented explicitly in
Sec. V A. It contains some interesting members that allow us
to make a comparison with similar pairs belonging to the
Allen-Eberly class@7,11,12#. In particular, the comparison
shows the effect of different coupling shapes for the same
detuning chirp or the effect of different chirps for the same
coupling shape. Finally, in Sec. VI, we present a summary of
the results.

II. EXACT SOLUTION

The time evolution of a coherently driven two-level quan-
tum system is described by the two coupled ordinary differ-
ential equations

i
d

dt
C1~ t !52D~ t !C1~ t !1V~ t !C2~ t !,

~1!

i
d

dt
C2~ t !5V~ t !C1~ t !1D~ t !C2~ t !

for the probability amplitudesC1(t) andC2(t) of statesu1&
and u2& whereV(t)5H12(t)/\5H21* (t)/\ is the coupling
~assumed real! between the two levels,D(t)5@H22(t)
2H11(t)]/2\, and Hjk(t)5^ j uH(t)uk& ( j ,k51,2) are the
Hamiltonian matrix elements. Equations~1! are obtained
from the Schro¨dinger equation with the wave function of the
two-level system written as

uc~ t !&5@C1~ t !u1&1C2~ t !u2&#e2~ i /2\!* t@H11~ t8!1H22~ t8!#dt8.

Equations of the form~1! are met in a number of areas in
physics including quantum optics, magnetic resonance,
atomic collisions, solid state physics, etc. For example, in
optics, Eqs.~1! are derived by using the rotating-wave ap-
proximation. There 2V(t)52d–E(t)/\ is the on-resonance
Rabi frequency and 2D(t)5vA2vL is the atom-field detun-
ing, whered is the atomic transition dipole moment,E(t) is
the electric field of the laser pulse,vA is the atomic transi-
tion frequency, andvL is the laser frequency.

In theoriginal Landau-Zener model, the coupling and the
detuning are given by

V~ t !5V0 , D~ t !5b2t ~2!

and the couplingV(t) is supposed to last fromt→2` to
t→1`. In the present work, we assume that it is turned on
at time t i and turned off at timet f , that is,

V~ t !5H V0 , t i<t<t f

0, anywhere else
D~ t !5b2t. ~3!

Here the real constantsV0 and b have the dimension of
frequency and will be assumed positive without loss of gen-
erality. We have chosen the slopeb2 of the detuning at the
crossingt50 to be positive in order to avoid unnecessary
complications: the case ofD(t)52b2t leads to complex
conjugation of the evolution matrix and change of sign of the
nondiagonal elements. It turns out convenient to introduce
the scaled dimensionless time

T5bt ~4!

as a new independent variable, and the scaled dimensionless
coupling strength

v5
V0

b
. ~5!

The probability amplitudesC1(Tf) andC2(Tf) at the final
time Tf are connected to their valuesC1(Ti) andC2(Ti) at
the initial timeTi by the evolution matrixU(Tf ,Ti):

aC~Tf !5U~Tf ,Ti !C~Ti !, ~6!

whereC(T)5@C1(T),C2(T)#
T andTi , f5bt i , f . As the exci-

tation is coherent, the probability is conserved and
U(Tf ,Ti) is a unitary matrix.

To find the probability amplitudes, we decouple Eqs.~1!
and obtain the following second-order equation forC1(T):

a
d2

dT2
C1~T!1~v21T22 i !C1~T!50.

This equation is related to the Weber equation~A1! and its
solution is expressed in terms of the parabolic cylinder func-
tion Dn(z) @13,14# as

aC1~T!5aDiv2/2~TA2e2 ip/4!1bDiv2/2~TA2ei3p/4!,
~7!

wherea andb are constants. The solution forC2(T) can be
obtained from here and Eqs.~1! using the derivative property
~A2! of Dn(z) and is

aC2~T!5
v

A2
e2 ip/4@2aD211 iv2/2~TA2e2 ip/4!

1bD211 iv2/2~TA2ei3p/4!#.

The constantsa andb are to be found from the initial values
C1(Ti) andC2(Ti) and are

a5

GS 12
1

2
iv2D

A2p
FD211 iv2/2~TiA2ei3p/4!C1~Ti !

2
A2
v
eip/4Div2/2~TiA2ei3p/4!C2~Ti !G , ~8!

b5

GS 12
1

2
iv2D

A2p
FD211 iv2/2~TiA2e2 ip/4!C1~Ti !

1
A2
v
eip/4Div2/2~TiA2e2 ip/4!C2~Ti !G , ~9!

where we have used the Wronskian relation~A3!. Substitut-
ing Eqs.~8! and ~9! into Eq. ~7! and accounting for Eq.~6!
we find the evolution matrix elements
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U11~Tf ,Ti !5U22* ~Tf ,Ti !

5

GS 12
1

2
iv2D

A2p
@Div2/2~TfA2e2 ip/4!

3D211 iv2/2~TiA2ei3p/4!

1Div2/2~TfA2ei3p/4!D211 iv2/2

3~TiA2e2 ip/4!#, ~10!

U12~Tf ,Ti !52U21* ~Tf ,Ti !

5

GS 12
1

2
iv2D

vAp
eip/4@2Div2/2~TfA2e2 ip/4!

3Div2/2~TiA2ei3p/4!

1Div2/2~TfA2ei3p/4!Div2/2~TiA2e2 ip/4!#.

~11!

Provided the atom has initially been in its ground stateu1&,
that is

C1~Ti !51, C2~Ti !50

the populations at time Tf are given by
P1(Tf ,Ti)5uU11(Tf ,Ti)u2, P2(Tf ,Ti)5uU21(Tf ,Ti)u2 with
P1(Tf ,Ti)1P2(Tf ,Ti)51. We will only discuss P2
(Tf ,Ti), which represents the transition probability

P2~Tf ,Ti !5
1

2sinh
1

2
pv2

u2Div2/2~TfA2e2 ip/4!

3Div2/2~TiA2ei3p/4!1Div2/2~TfA2ei3p/4!

3Div2/2~TiA2e2 ip/4!u2. ~12!

Equations~10!–~12! areexact, that is, no approximations
have been made so far. The populations are expressed in
terms of sums of by-products of parabolic cylinder functions.
These functions can be calculated numerically by using
power series, asymptotic series, or integral representations.
This, however, does not represent a serious advance, com-
pared to the direct numerical integration of Eqs.~1!, in pro-
viding an insight into the interaction dynamics and the de-
pendence of the populations on the model parameters, which
is in fact the motivation for the analytical treatment. This
determines the necessity of certain approximations that are
considered in the next section.

III. APPROXIMATIONS
TO THE TRANSITION PROBABILITY

We will derive several approximations to the transition
probability that are valid when the turn-on timeTi and the
turn-off timeTf of the external field are far from or near the
crossingT50. They are based on the asymptotic expansions
of Dn(z), suitable whenTi and Tf are large, and on the

power series expansion ofDn(z), suitable for smallTi and
Tf . We consider two types of asymptotics. Theweak-
coupling asymptoticsis valid when Ti and Tf are much
larger than 1 andv:

uTi u,uTf u@1,v. ~13!

In this case we use the large-argument asymptotics of
Dn(z) given in Appendix A. Thestrong-coupling asymptot-
ics is expected to be valid whenTi , Tf , andv are simulta-
neously much larger than 1:

uTi u,uTf u,v@1. ~14!

In this case we use the large-argument and large-order as-
ymptotics of Dn(z) also given in Appendix A. We also
present the adiabatic-following solution@derived in Appen-
dix B and obtained directly from Eqs.~1! without using any
special functions# that is valid for large coupling:

v@1.

We will see that the conditions of validity of the strong-
coupling asymptotics are much weaker than~14!: it is valid
when either Ti , f or v are larger than 1. Thus, the strong-
coupling approximation contains both the weak-coupling ap-
proximation and the adiabatic-following solution as particu-
lar cases.

It is worth discussing the physical meaning of the charac-
teristic time scales of the problem. A scaled time equal to 1,
T51, means a real timets5b21. Mullen and co-workers
@15# have shown that this is the characteristic transition time
in thesuddenlimit (v!1) ~where, by the way, the transition
probability is very small!. Then the conditionuTi u,uTf u@1,
which we call ‘‘large time,’’ means that the time intervals
from the turn-on and the turn-off times to the crossing are
much larger than the transition time in the sudden limit:
ut i u,ut f u@ts . Mullen and co-workers have also shown that the
characteristic transition time in theadiabaticlimit (v@1) is
given by ta5v/b5V0 /b

2. Hence, the weak-coupling con-
dition ~13! means that the turn-on and the turn-off times are
much larger than the transition time in the adiabatic limit:
ut i u,ut f u@ta , while the strong-coupling condition~14! means
that the ratio betweent i , t f , andta can be arbitrary. Finally,
to avoid confusion, we should stress that we adopt the term
weak couplingto indicate that the couplingv is small com-
pared toTi , f , or in other words, the actual couplingV0 is
small compared to the detuningD(t i , f)5b2t i , f evaluated at
t i , f . In the case ofstrong coupling~which can also be called
arbitrary coupling!, the ratio betweenTi , f andv, that is be-
tweenV0 andD(t i , f)5b2t i , f , can be arbitrary. Note that the
latter case includes not only the actual strong coupling
v@uTi , f u but also includes the weak couplingv!uTi , f u as
well as the case of comparablev andTi , f : v'uTi , f u.

In the finite LZ model, a universal approximation with
respect to the turn-on timeTi and the turn-off timeTf is not
possible. In the following subsections, we consider several
cases whenTi andTf are large or small and of the same sign
or of the opposite signs. These cases, shown schematically in
Fig. 1, are substantially different from a physical point of
view. In Sec. III A, we study the case of a level crossing
occurring in the middle of the interaction calledsymmetric
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crossing, Ti,0,Tf.0, uTi u5Tf , bothTi andTf being large.
It is the natural generalization of the original LZ model as
the latter is obtained as a particular case whenuTi u
5Tf→`. In Sec. III B, we generalize this case to unequal
and largeuTi u andTf , that isTi,0, Tf.0, uTi uÞTf . This is
the case of a level crossing occurring during the interaction
but displaced with respect to the middle. In Sec. III C, we
consider the case ofTi andTf large but of the same sign,
Ti,0, Tf,0. Then no level crossing occurs during the in-
teraction. The crossing and the no-crossing cases are sub-
stantially different both from physical and from mathemati-
cal viewpoints. Physically, the transition probability in the
crossing case is much larger than in the noncrossing case,
which demonstrates explicitly the importance of the presence
of a level crossing. Mathematically, the cases of negative and
positiveTf lead to different asymptotics of the parabolic cyl-
inder functions involved in Eqs.~10!–~12!, which is a mani-
festation of the Stokes phenomenon@16,17#. In Sec. III D,
we discuss the case when bothTi andTf are small, which
suggests using the power series expansion ofDn(z). We call
this case the ‘‘nonsubstantial crossing’’ as the transition
probability does not depend on the existence of a level cross-
ing but on the coupling duration only. In Sec. III E, we con-
sider the case whenTi,0 is large andTf is small, that is
Tf is near the crossing; this is the ‘‘half-crossing’’ case,
which requires using both power series and asymptotic ex-
pansions.

A. Symmetric crossing

Let us first consider the case when the crossing point
T50 is in the middle of the coupling as illustrated in the
upper part of Fig. 1~a!, that isTi52t,0 andTf5t.0. The
coupling duration is therefore equal to 2t.

1. Weak-coupling asymptotics

In this caset is much larger than both unity and the
scaled coupling strengthv or, in other words, the coupling
duration is larger than the transition times both in the sudden
and in the adiabatic limit. The asymptotics of the transition
probability is obtained from Eqs.~12!, ~A5!, and~A6! and is

P2~t,2t!;12e2pv2
2
2v

t
e2pv2/2A12e2pv2

cosjw~t!

~15!

~t@1,v!, ~16!

where

jw~t!5
v2

2
ln2t21t21

p

4
1argGS 12

1

2
iv2D . ~17!

2. Adiabatic-following solution

The condition for adiabatic evolution for the LZ model is
@Appendix B, Eq.~B2!#

v

2~v21T2!3/2
!1. ~18!

This condition is least satisfied at the crossingT50, when
the left-hand side equals 1/(2v2). Thus, if a crossing occurs
during the interaction, as in the present case, then the adia-
batic evolution requires large coupling,v@1; otherwisev
may be small ifTi , f are large enough~see Sec. III C!. The
adiabatic solution can be obtained from the general result
~B3! derived in Appendix B and is

P2~t,2t!;12
v2

t21v2cos
2ja~t! ~19!

~v@1!, ~20!

where

ja~t!52ja~2t!5tAt21v21v2ln
t1At21v2

v
.

~21!

3. Strong-coupling asymptotics

In this case botht and the scaled coupling strengthv are
large, that ist,v@1, the ratio between them being arbitrary.
The asymptotics of the transition probability is obtained
from Eqs.~12!, ~A7!, and~A13! and is

P2~t,2t!;12e2pv2
2e2pv2/2A12e2pv2 2tv

t21v2 cosj

1
v2

t21v2 @e2pv2
2~12e2pv2

!cos2j# ~22!

~t,v@1!, ~23!

where

j~t!52
v2

2
1v2lnF 1

A2
~t1At21v2!G1tAt21v21

p

4

1argGS 12
1

2
iv2D . ~24!

FIG. 1. The cases studied in Sec. III.~a! Substantial crossing,
including symmetric crossing~top!, asymmetric crossing~middle!,
and no crossing~bottom!; ~b! nonsubstantial crossing;~c! half
crossing. The relation between the timet and the scaled timeT used
throughout the paper isT5bt.
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A substantial advantage of the strong-coupling approxi-
mation~22! compared to the weak-coupling one~15! and the
adiabatic solution~19! is that the strong-coupling approxima-
tion is valid in a much larger range of values oft andv.
Indeed, it is readily verified that the strong-coupling asymp-
totics ~22! contains the weak-coupling asymptotics~15! as a
particular case in the limitt@v and the adiabatic approxi-
mation ~19! in the limit v@1 @with the use of the Stirling
expansion for theG function in ~24! in the latter case#. We
should point out that in the derivation of the strong-coupling
approximation~22! we have not been fully consistent as we
have not expanded theG function, which appears in the as-
ymptotics ~A13! through the connection formula~A6!, by
using the Stirling formula@13,14#. We have left theG func-
tion unexpanded in order for the strong-coupling asymptotics
~22! to have the correct weak-coupling limit~15! for any
coupling strengthv, including for smallv; otherwise the
strong-coupling asymptotics would have the correct weak-
coupling limit for t@v@1 only, that is for largev. On the
other hand, for largev the G function tends to its Stirling
asymptotics anyway and keeping it unexpanded does not
lead to erroneous terms. This mathematical subtlety extends
considerably the range of validity of the strong-coupling ex-
pansion~22!.

Evidently, both the weak-coupling asymptotics~15! and
the strong-coupling asymptotics~22! reduce to the well-
known LZ formula

P2~1`,2`!512e2pL, L5v25
V0

2

b2 ~25!

for t→` and provide the corrections of the first order to it
for t finite. Whent increases the correction terms oscillate
with amplitudes that vanish as 1/t. This can be seen in Fig.
2 where the transition probability is plotted as a function of
t for two moderately small and large values of the scaled
coupling strengthv50.3 and 3. In the same figure, we have
compared the approximations~15!, ~19!, and ~22! derived
above to the exact values obtained by numerical integration
of Eqs.~ 1!. The adiabatic-following solution~19!, which is
supposed to be valid for largev, provides a good approxi-
mation forv53 but fails forv50.3. In contrast, the weak-
coupling asymptotics~15!, which is supposed to be accurate
for t@1,v, is relatively good forv50.3 but fails com-
pletely for v53, even at larget. Another defect of the
weak-coupling approximation, seen in Fig. 2 forv50.3 and
also later in Figs. 6, 7, and 9, is that it can violate unitarity
and give transition probability greater than unity or negative.
A more careful analysis of the weak-coupling approximation
~15! leads to the conclusion that its condition of validity is
more restrictive than justt@1,v. The requirement that both
P2(t,2t), given by ~15!, and P1(t,2t)512P2(t,2t)
should be non-negative leads to the conditions

t@
2v

Aepv2
21

,1, t@2vAepv2
21,1. ~26!

The latter of these is a particularly restrictive limitation on
t even for moderatev. This explains the inaccuracy of the
weak-coupling approximation~15! for v53. On the other

hand, Fig. 2 shows that forv50.3 the strong-coupling ap-
proximation ~22! fits very well the numerical results for
t.1 while for v53 it is accurate even fort,1. This sug-
gests that its condition of validity is weaker than that given
by Eq.~23! and is rather determined byt@1 or v@1, which
is conveniently written as

t21v2@1. ~27!

The strong-coupling approximation can only fail when both
v and t are small. The regions of validity of the weak-
coupling asymptotics~15!, the adiabatic solution~19!, and
the strong-coupling asymptotics~22!, defined by Eqs.~26!,
~20!, and~27!, respectively, are shown in Fig. 3.

The physically interesting conclusion from Fig. 2 is that
the transition probability is an oscillating function of the cou-
pling duration 2t with an oscillation amplitude vanishing as
1/t at larget. The reason for these oscillations is the sudden
change undergone by the system at the turn-on and the turn-
off times. Ast increases, the transition probability tends to
its asymptotic value determined by the LZ formula~25!. Fur-
thermore, asv increases, the transition probability increases
as well and as a result of increasing adiabaticity, it tends to
unity at largev and large enought, thus leading to almost
complete population inversion.

The conclusions about the validity of the approximations
derived above are clearly illustrated in Fig. 4 where the tran-
sition probability is plotted as a function of the scaled cou-
pling strengthv for t53. The adiabatic-following solution

FIG. 2. The transition probability in the case ofsymmetric
crossing as a function of the dimensionless parametert for
v50.3 and 3. The full curves represent the exact values obtained
by numerical integration of Eqs.~1!, the dot-dashed curves repre-
sent the adiabatic-following solution~19!, the long-line dashed
curves show the weak-coupling asymptotics~15! and the short-line
dashed curves show the strong-coupling asymptotics~22!. For
v53, the strong-coupling asymptotics and the adiabatic solution
coincide with the exact values.
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~19! fits the exact values forv.1.5 but is inaccurate at small
v. This is because at smallv the adiabatic condition is vio-
lated in the crossing region aroundT50, where nonadiabatic
transitions take place. The weak-coupling asymptotics~15! is
accurate forv,1 but fails forv.1. The strong-coupling
asymptotics~22! is very accurate for any value ofv: it fits
the exact values not only in the regions where the other two
approximations are valid but also in the region between them
and is almost indistinguishable from the exact values. The
physically interesting observation from Fig. 4 is that the tran-
sition probability oscillates with an increasing amplitude

when the scaled coupling strengthv increases. The depen-
dence of the oscillation amplitude onv @see Eq.~22!# is the
same as for a rectangular coupling of constant detuning~the
so-called Rabi solution! @1#. The physical reason for this be-
havior is again the sudden change undergone by the system
at the turn-on and the turn-off times.

B. Asymmetric crossing

Let us now consider the case when the crossing occurs
during the interaction but the crossing pointT50 is not
in the center of the coupling as illustrated in the middle
part of Fig. 1~a!, that is t iÞt f , where Ti
52t i,0 is the turn-on time andTf5t f.0 is the turn-off
time. This case is a generalization of that considered in Sec.
III A to which it reduces fort i5t f5t. On the one hand, its
comparison with the symmetric crossing demonstrates the
effect of the asymmetry. On the other, a level crossing dis-
placed from the middle of the coupling can be viewed as due
to adding a constant detuning shiftbd to D(t) ~3! whered is
a dimensionless parameter measuring the constant part of the
detuning in units ofb. In the standard LZ model adding a
constant detuning does not change the populations but only
generates an unimportant phase shift in the nondiagonal ele-
ments of the evolution matrix. In the finite LZ model, how-
ever, the presence of a constant detuning leads to observable
changes in the interaction dynamics. If 2t is the coupling
duration, then instead of in terms oft i andt f , we can study
the interaction dynamics in terms oft andd, parameters that
may be easier to vary experimentally. The connections be-
tween these parameters are given by

ad5
t f2t i
2

, t5
t f1t i
2

, ~28!

at i5t2d, t f5t1d. ~29!

1. Weak-coupling asymptotics

It is obtained from Eqs.~12!, ~A5!, and~A6! and reads

aP2~t f ,2t i !;12e2pv2
2ve2pv2/2A12e2pv2

3Fcosjw~t i !

t i
1
cosjw~t f !

t f
G ~30!

a~t i , f@1,v,2vAepv2
21!,

where the functionjw(t) is given by Eq.~17!.

2. Adiabatic-following solution

This is the regime of large coupling,v@1. The solution
can be obtained from the general result~B3! derived in Ap-
pendix B:

FIG. 3. Sketch of the regions of validity of various approxima-
tions in terms of the scaled dimensionless coupling strengthv and
the dimensionless parametert equal to a half of the coupling dura-
tion. The borders of the regions of validity of the weak-coupling
asymptotics~15! defined by~26! are shown by a long-line dashed
curve, those of the adiabatic solution~19! defined by~20! are shown
by a short-line dashed curve, and those of the strong-coupling as-
ymptotics~22! defined by~27! are shown by a full curve.

FIG. 4. The transition probability in the case ofsymmetric
crossingas a function of the dimensionless coupling strengthv for
t53. The full curve represents the exact values obtained by nu-
merical integration of Eqs.~1!, the dot-dashed curve represents the
adiabatic-following solution~19!, the long-line dashed curve is the
weak-coupling asymptotics~15! and the short-line dashed curve is
the strong-coupling asymptotics~22!. The strong-coupling asymp-
totics is almost invisible as it nearly coincides with the exact values.
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P2~t f ,2t i !;
1

2
1

t it f

2A~t i
21v2!~t f

21v2!

2
v2cos@ja~t f !1ja~t i !#

2A~t i
21v2!~t f

21v2!
~31!

~v@1!,

whereja(t i , f) is given by Eq.~21!.

3. Strong-coupling asymptotics

This asymptotics is obtained from Eqs.~12!, ~A7!, and
~A13! and is

P2~t f ,2t i !;
1

2
1S 122e2pv2D t it f

A~t i
21v2!~t f

21v2!
2e2pv2/2A12e2pv2 t it fv

A~t i
21v2!~t f

21v2!
Fcosj~t i !

t i
1
cosj~t f !

t f
G

1
v2$e2pv2

cos@j~t f !2j~t i !#2~12e2pv2
!cos@j~t f !1j~t i !#%

2A~t i
21v2!~t f

21v2!
~32!

~t i
21v2@1; t f

21v2@1!,

wherej(t) is given by Eq.~24!. It is readily verified that the
strong-coupling asymptotics~32! contains the weak-coupling
asymptotics~30! as a particular case in the limitt i ,t f@v
and the adiabatic approximation~31! in the limit v@1.

The comparison between Eqs.~15!, ~19!, and~22!, which
describe the transition probability for symmetric crossing,
and Eqs.~30!, ~31!, and~32! for asymmetric crossing shows
that the asymmetry leads to more complicated oscillatory
terms. For example, Fig. 5 shows that if we fix the turn-on
time Ti52t i5210 and vary the turn-off timet f , the tran-
sition probability oscillates around the value for symmetric
crossing.

In Fig. 6, we have plotted the transition probability as a
function oft ~28!, representing half of the coupling duration,
for d51 and for two moderately small and large values of
v, v50.3 and 3. The adiabatic-following solution~31! con-
siderably overestimates the transition probability for
v50.3 and is not shown while forv53 it is very accurate
and in practice, indistinguishable from the exact values. In
contrast, the weak-coupling asymptotics~30! fits well the
exact values forv50.3 but fails for v53. The strong-
coupling asymptotics~32! is very accurate in both cases. The
transition probability is seen to exhibit ‘‘beats’’ for
v50.3, which are absent for symmetric crossing~Figs. 2
and 4!. The reason for these beats is that whent changes,
t i andt f change as well@see~29!#; so doj(t i) andj(t f) in
~32!. For relatively larget , where the beats are observed,
the term on the second line of Eq.~32! ~which is of the order
of 1/t) dominates the term on the third line~which is of the
order of 1/t2). The former includes a sum of two cosines
whose argumentsj(t i) andj(t f) change in a different way
when varyingt; thus, the interference between the two co-
sines generates the beats. Equation~32! also explains why
the beats are present forv50.3 but not forv53: the oscil-
lation amplitude is proportional toe2pv2/2 and thus it van-
ishes exponentially whenv increases.

In Fig. 7, we have plotted the transition probability as a
function of the time-independent detuning shiftd ~28! for
two values oft, t53 and 10, and for two values ofv,
v5 0.3 and 3. The pointd50 corresponds to symmetric
crossing,t i5t f5t, while d5t corresponds to half cross-
ing, t i50, t f5t ~Sec. III E!. Again, the adiabatic-following
solution ~31! is good forv53 ~and larger! while the weak-
coupling asymptotics~30! is accurate forv50.3 ~and
smaller!. The strong-coupling asymptotics~32! is very accu-
rate everywhere except neard5t for v50.3. The reason for
this inaccuracy is that ford5t, the turn-on time is equal to
zero,t i50, and the strong-coupling asymptotics at this point
fails if v is small. One can see from the figures that the
transition probability generally decreases whend increases

FIG. 5. The transition probability in the case ofasymmetric
crossingas a function of the dimensionless turn-off timet f for
Ti52t i5210 and two scaled coupling strengths,v50.3 and 3.
The full curves represent the exact values obtained by numerical
integration of Eqs.~1! while the dashed curves show the strong-
coupling asymptotics~32!, which almost coincide with the full
curves. The arrows indicate the values for symmetric crossing
(t i5t f510): P2'0.224 forv50.3 andP2'0.963 forv53.
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and atd5t for v53 it tends to values near one-half, which
is the asymptotic value for adiabatic excitation in the case of
half crossing~Sec. III E!, in contrast to the value of unity for
symmetric crossing. We also conclude that the number of
oscillations increases witht, which is easy to explain by
looking at thed dependence ofj(t i , f), defined by~24! and
involved in ~32!.

C. No crossing

A rather different situation arises when both the turn-on
time and the turn-off time are situated on the same side with
respect to the crossing, both being large. Without loss of
generality Ti and Tf will be assumed negative,Ti52t i
,0, Tf52t f,0 as illustrated in the lower part of Fig. 1~a!.
This means that no crossing occurs during the interaction,
which makes this case substantially different from those con-
sidered above and from the LZ model itself.

1. Weak-coupling asymptotics

It is obtained from Eqs.~12!, ~A5!, and~A6! and reads

P2~2t f ,2t i !;
v2

4 H S 1t f 2
1

t i
D 2

1
4

t ft i
sin2Fv2

2
ln

t f
t i

1
1

2
~t f

22t i
2!G J

~33!

~t i@1,v;t f@1,v!.

2. Strong-coupling asymptotics

This asymptotics is obtained from Eqs.~12!, ~A7!, and
~A13! and is

P2~2t f ,2t i !;
1

2
2

t it f

2A~t i
21v2!~t f

21v2!

2
v2cos@j~t f !2j~t i !#

2A~t i
21v2!~t f

21v2!
~34!

~t i
21v2@1;t f

21v2@1!,

wherej(t i , f) is given by Eq.~24!. The leading term~34! of
the strong-coupling asymptotics has the same form as the
adiabatic-following solution. This is due to the fact that
when no crossing occurs the adiabatic condition~18! is
easier to satisfy. Fort i ,t f@v the strong-coupling asymptot-
ics contains the weak-coupling asymptotics~33! as a particu-
lar case. The transition probability is plotted in Fig. 8 as a
function of the turn-off timeTf52t f,0 for a fixed turn-on
time Ti52t i5220 and for two values of the coupling
strength:v50.3 and 3. It is seen that the weak-coupling
asymptotics~33! is accurate forv50.3 even near the cross-
ing T50, while for v53 it is good for larget f only. The
strong-coupling asymptotics~34! is quite accurate for any
v including near the crossing. In contrast to the case of a
crossingduring the interaction, here the transition probabil-
ity is small. This represents another clear example of the
importance of level crossing in quantum physics. The useful
point in the present case is that the coupling and the detuning

FIG. 6. The transition probability in the case ofasymmetric
crossing as a function of the dimensionless parameter
t5(t f2t i)/2 for d51 and two scaled coupling strengths,v50.3
and 3. The full curves represent the exact values obtained by nu-
merical integration of Eqs.~1!, the dot-dashed curves represent the
adiabatic-following solution~31!, the long-line dashed curves show
the weak-coupling asymptotics~30!, and the short-line dashed
curves show the strong-coupling asymptotics~32!. Forv50.3, the
adiabatic solution considerably overestimates the exact values and
is not shown. Forv53, the strong-coupling asymptotics and the
adiabatic solution are indiscernible from the exact values.

FIG. 7. The transition probability in the case ofasymmetric
crossingas a function of the time-independent dimensionless detun-
ing shift d for two values of the dimensionless parametert, t53
and 10, and two scaled coupling strengths,v50.3 and 3. The full
curves represent the exact values obtained by numerical integration
of Eqs.~1!, the dot-dashed curves represent the adiabatic-following
solution ~31!, the long-line dashed curves show the weak-coupling
asymptotics~30! and the short-line dashed curves show the strong-
coupling asymptotics~32!. For t510 and v53, the strong-
coupling asymptotics and the adiabatic solution are indiscernible
from the exact values.
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have the same time dependence in the case of crossing and
no crossing; this eliminates any contribution from pulse-
shape effects or different chirps. We have to note that a
similar analysis for the Nikitin model has recently been car-
ried out by one of the present authors@18#.

D. Nonsubstantial crossing

Let us now consider the case when both the turn-on time
Ti and the turn-off timeTf are small compared tov21 as
illustrated in Fig. 1~b!. Both Ti and Tf can be negative or
positive. In this case one can use the power-series expansion
~A4! of the parabolic cylinder functions in Eq.~12!. The
transition probability is small and is given by

P2~Tf ,Ti !5v2~Tf2Ti !
2F12

v2

3
~Tf2Ti !

21••• G
~35!

~vuTi u,vuTf u!1!.

Note thatv(Tf2Ti) is the pulse area, which is small in this
case. An important observation from Eq.~35! is that up to
the fourth order inTi and Tf the transition probability de-
pends on the couplingduration Tf2Ti only but not on the
turn-on time Ti and the turn-off timeTf separately. We
should stress that the sixth-order term, which is not given for
the sake of brevity, does not share this property and does
depend onTi andTf separately, as doesP2(Tf ,Ti) in gen-

eral; otherwise the presence or the absence of a crossing
would be of no importance, which is not the case, as we have
seen above. The fact that the first term ofP2(Tf ,Ti) depends
onTf2Ti only is not surprising because this term represents
the first-order perturbation theory result, while the presence
of this property in the second term is more difficult to ex-
plain and appears to be accidental. We should also stress that
in the derivation of Eq.~35! no assumptions have been made
about the signs ofTi andTf , that is about the presence or the
absence of a level crossing. This is because no Stokes phe-
nomenon occurs in power series expansions in contrast to
asymptotic series. From a physical point of view, the depen-
dence of the lowest terms ofP2(Tf ,Ti) on the coupling du-
ration only, irrespective of whether or not a crossing occurs
during the interaction, means that the two-level atomdoes
not recognizethe presence of a crossing. This provides the
reason for referring to this regime as thenonsubstantial
crossing.

E. Half crossing

In this case, the crossing occurs near the turn-on timeTi
or the turn-off timeTf . In other words, one ofTi andTf is
small while the other is large. For simplicity and without loss
of generality we will assume that the turn-on time
Ti52t i,0 is far from the crossing and negative and the
turn-off timeTf5t f is near the crossing, positive or negative
as illustrated in Fig. 1~c!. Then we have to use the power-
series expansion~A4! for the parabolic cylinder functions
with arguments involvingt f in Eqs.~10–12! and the weak-
coupling or the strong-coupling asymptotic expansions for
the parabolic cylinder functions with arguments involving
t i .

1. Weak-coupling asymptotics

It is obtained from Eqs.~12!, ~A5!, and~A6! and reads

P2~t f ,2t i !;
1

2
~12e2pv2/2!2

v

2t i
A12e2pv2

cosjw~t i !

1vt fA12e2pv2
cosx ~36!

~t i@1,v,2vAepv2
21;vut f u!1!,

wherejw(t i) is defined by Eq.~17! and

x5
p

4
1argGS 122 i

v2

4 D2argGS 12 i
v2

4 D . ~37!

2. Adiabatic-following solution

This is the regime of large coupling. The solution can be
obtained from the general result~B3! derived in Appendix B,

P2~t f ,2t i !;
1

2
1

t it f

2vAt i
21v2

2
vcos@ja~t f !1ja~t i !#

2At i
21v2

~38!

~v@1;vut f u!1!,

whereja(t i , f) is given by Eq.~21!.

FIG. 8. The transition probability in the case ofno crossingas a
function of the dimensionless turn-off timeTf52t f for
Ti52t i5220 and two scaled coupling strengths,v50.3 and 3.
The full curves represent the exact values obtained by numerical
integration of Eqs.~1!, the long-line dashed curves show the weak-
coupling asymptotics~33!, and the short-line dashed curves show
the strong-coupling asymptotics~34!. For v53, the strong-
coupling asymptotics is indiscernible from the exact values.
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3. Strong-coupling asymptotics

This asymptotics is obtained from Eqs.~12!, ~A7!, and
~A13! and is

P2~t f ,2t i !;
1

2 S 12e2pv2/2
t i

At i
21v2D

2
v

2At i
21v2

A12e2pv2
cosj~t i !

1
1

2
vt fA12e2pv2S 11

t i

At i
21v2D cosx

~39!

~t i
21v2@1;vut f u!1!,

wherex is given by Eq.~37!. It is readily verified that the
strong-coupling asymptotics~39! contains the weak-coupling
asymptotics~36! as a particular case in the limitt i@v and
the adiabatic approximation~38! in the limit v@1, t f50. In
the particular case of a turn-on time at infinity,
Ti52t i→2`, and a turn-off time exactly at the crossing,
t f50, Eq. ~39! recovers an earlier result found by Carroll
and Hioe@9#:

P2~0,2`!5
1

2
~12e2pv2/2!. ~40!

It is this particular case that provides the reason for the term
half crossingadopted by us. For largev, the excited-state
population tends to one-half, which resembles excitation by
asymmetric pulses with constant detuning reported recently
@19#. The second term on the right-hand side~rhs! of Eq. ~39!
describes the first-order correction due to the finite turn-on
time t i . As a function oft i , it generates oscillations around
the value determined by the first, zeroth-order term. The
third term on the rhs of Eq.~39! describes the first-order
correction due to the nonzero turn-off timet f . In contrast to
the second term, the third term is a linear function oft f and
does not oscillate.

In Fig. 9, the transition probability is plotted as a function
of Ti52t i for Tf5t f50 and two scaled coupling strengths,
v50.3 and 3. Again, the adiabatic-following solution~38! is
accurate for largev but fails for small v. The weak-
coupling asymptotics~36! is good for smallv, but is inac-
curate for largev. The strong-coupling asymptotics~39! fits
the exact results very well for anyv.

IV. APPLICATION TO TIME EVOLUTION
IN THE ORIGINAL LANDAU-ZENER MODEL

The results obtained in Sec. III provide a possibility to
study time-dependent effects by fixing the turn-on timeTi ;
then considering the transition probability as a function of
Tf gives its time evolution. We will consider in more detail
the particular case whenTi→2`, representing the original
LZ model. The transition probability at timeTf[T can be
approximated by using the strong-coupling expansions~34!,
~39!, and~32! in three regimes: whenTf is large and nega-
tive, whenTf is small, and whenTf is large and positive.

At large and negative timeT,0, uTu@1, the relevant ap-

proximation is the no-crossing one~34!, which in the limit
Ti→2` gives

P2~T,2`!;
1

2
1

T

2AT21v2
~T,0!. ~41!

In contrast to the case of a finite turn-on time, there are no
oscillations, which shows that they originate from the sudden
turn on of the coupling. The transition probability is small
and for uTu@v,1 it tends toP2(T,2`);v2/4T2.

At small timeT ~near the crossing! regardless of its sign,
the transition probability is given by the half-crossing ap-
proximation~39!, which in the limitTi→2` reduces to

P2~T,2`!;
1

2
~12e2pv2/2!1vTA12e2pv2

cosx~v!

~vuTu!1!, ~42!

wherex is given by Eq.~37!. At T50, only the first term on
the rhs survives in agreement with~40! while for TÞ0 the
transition probability increases linearly withT. Therefore,
Eq. ~42! gives the correct value and the slope of the transi-
tion probability at the crossing pointT50, but a more accu-

FIG. 9. The transition probability in the case ofhalf crossingas
a function of the dimensionless turn-on timeTi52t i for Tf50 and
two scaled coupling strengths,v50.3 and 3. The full curves rep-
resent the exact values obtained by numerical integration of Eqs.
~1!, the long-line dashed curves show the weak-coupling asymptot-
ics ~36!, and the short-line dashed curves show the strong-coupling
asymptotics~39!. Forv50.3, the adiabatic-following solution~38!
is not shown as it gives rather too large values while forv53; the
strong-coupling asymptotics and the adiabatic solution are indis-
cernible from the exact values.
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rate approximation in this region requires accounting for
more terms in the power series of the parabolic cylinder
functions~Appendix C!.

At large and positive timeT@1, that is after the crossing,
the transition probability is best approximated by its
asymmetric-crossing strong-coupling asymptotics~32!,
which in the limitTi→2` gives

P2~T,2`!;
1

2
1S 122e2pv2D T

AT21v2

2e2pv2/2A12e2pv2vcosj~T!

AT21v2
~T.0!,

~43!

wherej(T) is given by Eq.~24!. The transition probability
oscillates irrespective of whether or not the turn-on timeTi is
finite. The transition probability is large and forT→` it
tends to the LZ formula~25!. In Fig. 10 we compare our
analytical approximations~41! and ~43! to the exact values
for three scaled coupling strengths,v50.3, 1, and 3. The
exact values are calculated numerically by the approach de-

scribed in Appendix C. The no-crossing asymptotics~41! is
formally plotted forT.0, that is, after the crossing; so is the
asymmetric-crossing asymptotics~43! for T,0, that is, be-
fore the crossing. Forv.1 they give fairly good approxi-
mations in these regions formally forbidden for them. For
v,1, however, they are only accurate in the regions where
they are supposed to be valid, but not outside them.

V. APPLICATION TO SHAPE AND CHIRP EFFECTS

A. The degeneracy of the two-level problem

The results obtained in Sec. III turn out to be very useful
in studying the effect of different coupling shapes for the
same detuning chirp or the effect of different chirps for the
same coupling shape. This is possible because of an interest-
ing but not very widely known peculiarity of the two-level
problem: the existence of different pairs of couplings and
detunings that give the same transition probability. This can
be easily shown in two ways. The first is due to Delos and
co-workers@20# who showed that in terms of the new inde-
pendent variable,

s~ t !5E
0

t

V~ t8!dt8, ~44!

Eqs.~1! take the simpler form

i
d

dsSB1~s!

B2~s!
D 5S 2Q~s! 1

1 Q~s!
D SB1~s!

B2~s!
D , ~45!

whereB1,2(s)5C1,2@ t(s)# and

Q~s!5
D@ t~s!#

V@ t~s!#
. ~46!

Equations~45! show that in terms of the variables, the two-
level dynamics depends onone function Q(s) only, called
sometimes the Stueckelberg variable. Let us now suppose
that the solution for certainD(t) andV(t) is known. Then
we can find the functions(t) from ~44! andQ(s) from ~46!.
Inasmuch as the solution depends onQ(s) only, if we re-
place the particular coupling functionV(t) by another func-
tion and then find the corresponding detuningD(t) from Eq.
~46! using the presumably knownQ(s), the solution will
remain unchanged. All pairs ofD(t) andV(t) found in such
a way form aclassof models. This class contains an infinite
number of members in whichD(t) andV(t) are connected
by

D~ t !5V~ t !QS E
0

t

V~ t8!dt8D .
We should point out that the populations induced by differ-
ent pairs are the same onlyafter the couplings have turned
off. During the interaction the populations evolve in different
ways because different couplingsV(t) lead to different map-
pings of t onto s.

An alternative though equivalent approach has been used
by Hioe and Carroll@21#. They introduce an arbitrary inde-
pendent variablez5z(t), which is positive, monotonic, and
satisfiesz(2`)50, z(1`)51. In terms ofz, Eqs.~1! be-
come

FIG. 10. The time evolution of the transition probability in the
original LZ model (Ti→2`) for three scaled coupling strengths,
v50.3, 1, and 3. The dimensionless timeT is defined by Eq.~4!.
The full curves represent the exact values, the long-line dashed
curves show the no-crossing strong-coupling asymptotics~41!, and
the short-line dashed curves show the substantial-crossing strong-
coupling asymptotics~43!. The no-crossing asymptotics isformally
plotted for T.0, that is, after the crossing; so is the substantial-
crossing asymptotics forT,0, that is, before the crossing. For
v53 the three curves coincide.
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i
d

dzS C̃1~z!

C̃2~z!
D 5S 2D̃~z! Ṽ~z!

Ṽ~z! D̃~z!
D S C̃1~z!

C̃2~z!
D ,

where Ṽ(z)5V@ t(z)#/ ż, D̃(z)5D@ t(z)#/ ż, and C̃1,2(z)
5C1,2@ t(z)#. If the solution for certainD(t) and V(t) is
known we can choose an appropriate functionz(t) @its
choice does not have to be related toD(t) andV(t) and is a
matter of convenience# and then, we can find the functions

Ṽ(z) and D̃(z), which define the class. From these generat-
ing functions we can find the other members of the class by
choosing various functionsz(t). Since the number of the
auxiliary functionsz(t) is infinite, the number of pairs in the
class is infinite too.

The generalization of the LZ model for a finite coupling
duration, considered in the previous section, belongs to a
class of models as well. For simplicity, we will only consider
the case of symmetric crossing~Sec. III A! whenTi52t,
Tf5t. In terms of the variables , this class is readily veri-
fied to have a very simple definition

Q~s!5
s

v2 ~ usu<vt!. ~47!

In contrast to the rather simple time dependence ofD(t) and
V(t) in the finite LZ model~3!, the class~47! contains a
number of pairs in whichD(t) andV(t) are smooth func-
tions of time. For example, such a pair is the last one in
Table I and in Fig. 11 below.

There are several classes of analytically solvable models
that can be obtained from the exact solutions listed, e.g., in
Refs. @22# and @23#. We can find similar pairs in different
classes in which either the couplingV(t) or the detuning
D(t) is the same. There are, however, some limitations. For
example, if the detuningD(t) of a given pair in a class
changes sign, say att50, thenQ(0)50 and the detunings of
all pairs in the same class should change sign att50 as well.
Also, if the ‘‘pulse area’’ for a certain member of the class is
infinite ~as in the original LZ model! then it is infinite for any
other member too. The requirement that the detuning passes
through resonance att50 limits the number of classes that
can be compared to the LZ class~47! to just two: the Nikitin
class@18# and the Allen-Eberly class@12#. We choose the
latter, which provides the transition probability in terms of
elementary functions while in the Nikitin class it is given in
terms of confluent hypergeometric functions@18#.

TABLE I. Various pairs of the couplings and the detunings belonging to the finite Landau-Zener class
~47! and the Allen-Eberly class~49!. The first two pairs~a! have the same linear chirp, but different coupling
shapes; the second pairs~b! have the same hyperbolic-tangent chirp, but different coupling shapes; the third
pairs ~c! have the same rectangular coupling, but different chirps; the fourth pairs~d! have the same
hyperbolic-secant coupling, but different chirps.

Finite Landau-Zener class Allen-Eberly class

~a! DLZ(t)5DAE(t)5b2t

VLZ(t)5V0 (utu<t0) VAE(t)5pV0utu/(2t0Ae(pt/2t0)
2
21)

~b! DLZ(t)5DAE(t)5(2/p)b2t0tanh(pt/2t0)

VLZ(t)5V0tanh(putu/2t0)/A2ln@cosh(pt/2t0)# VAE(t)5V0sech(pt/2t0)

Futu< 2

p
t0ln~ep2/81Aep2/421!G

~c! VLZ(t)5VAE(t)5V0 (utu<t0)

DLZ(t)5b2t DAE(t)5(2/p)b2t0tan(pt/2t0)

~d! VLZ(t)5VAE(t)5V0sech(pt/2t0)

DLZ(t)5b2t0@(4/p)tan
21(ept/2t0)21#sech(pt/2t0) DAE(t)5(2/p)b2t0tanh(pt/2t0)
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B. Shape and chirp effects

Demkov and Kunicke were the first who solved~in a little
known paper@7,11,23#! the model that was later treated by a
number of authors. A particular case of this model was later
solved independently by Allen and Eberly@12#. It is this
particular case~referred to hereafter as AE! that we are going
to consider. It is defined by

V~ t !5V0sech
pt

2t0
, D~ t !5

2b2t0
p

tanh
pt

2t0
~48!

and the corresponding class is defined in terms of the vari-
ables ~44! by

Q~s!5
2t

pv
tan

ps

2vt
~ usu<vt!, ~49!

where v5V0 /b, t5bt0 . The transition probability at
t→1` for a two-level system, initially in its ground state at
t→2`, is given by

P2512sech2
4t2

p
cos2F2tAv22

4t2

p2 G . ~50!

For v,2t/p the cosine is to be replaced by a hyperbolic
cosine. The reason for the way in which the parameters of
the AE model~48! are written is to allow comparison with
the finite LZ model~3! studied in the preceding sections: the
maximum coupling strengthV0 , the pulse area 2V0t0 , and
the detuning slopeb2 at the crossing are the same for the AE
model and the finite LZ model.

In Table I, we have compared members of the finite LZ
class to members of the AE class in four cases. They are
shown schematically in Fig. 11. Case~a! both in Table I and
in Fig. 11 shows pairs withthe same linear detuning chirp

but different couplings. Case~b! shows pairs withthe same
hyperbolic-tangent detuning chirpbut different couplings.
Case~c! shows pairs withthe same rectangular couplingbut
different detuning chirps. Case~d! shows pairs withthe same
hyperbolic-secant couplingbut different detuning chirps.

In Fig. 12, we compare the transition probabilities for the
finite LZ class and the AE class plotted as functions oft for
v53. In Fig. 13, we compare the transition probabilities as
functions ofv for t51. It is seen that the models in the LZ
class generate oscillations with much larger amplitudes. On
the one hand, for the models with the same detuning@cases
~a! and ~b!# this fact can be explained as due to the sudden
changes undergone by the system at the turn-on and the turn-
off times of the coupling for the models in the LZ class. In
other words, the models in the AE class are much more
adiabatic. On the other hand, for the models with the same
coupling@cases~c! and~d!#, this feature comes from the fact
that the system spends a longer time near resonance~that is

FIG. 11. Plot of the couplings and the detunings from Table I.
Throughout, a long-line dashed curve shows a quantity belonging to
the finite LZ class, while a short-line dashed curve shows a quantity
belonging to the Allen-Eberly class; a full line shows a quantity that
is the same for both classes.~a! The same linear chirp, different
coupling shapes;~b! the same hyperbolic-tangent chirp, different
coupling shapes;~c! the same rectangular coupling, different chirps;
~d! the same hyperbolic-secant coupling, different chirps.

FIG. 12. The transition probabilities for the finite Landau-Zener
class~full curve! and the Allen-Eberly class~dashed curve! plotted
as functions of the dimensionless parametert for v53.

FIG. 13. The transition probabilities for the finite Landau-Zener
class~full curve! and the Allen-Eberly class~dashed curve! plotted
as functions of the dimensionless coupling strengthv for t51.
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the detuning increases more slowly! for the LZ models than
for the AE models. Cases~c! and~d! also show that oscilla-
tions can be generated not only by a sudden turn-on or turn-
off of the interaction but also if the external field is near
resonance with the system for a sufficiently long time.

VI. SUMMARY OF THE RESULTS AND CONCLUSIONS

We have presented the generalization of the Landau-
Zener model for a constant coupling of afinite duration. The
exact evolution matrix has been expressed in terms of sums
of by-products of the parabolic cylinder functionDn(z) es-
timated at the scaled turn-on timeTi and at the turn-off time
Tf . Several approximations in terms of simpler functions
have been derived based on~i! the large-argument asymptot-
ics of Dn(z) corresponding to largeTi and Tf and weak
coupling;~ii ! the large-argument and large-order asymptotics
of Dn(z) corresponding to largeTi andTf and strong cou-
pling; ~iii ! the power-series expansion ofDn(z) correspond-
ing to smallTi andTf ; ~iv! the adiabatic-following solution
corresponding to large coupling irrespective ofTi and Tf .
These approximations have been applied to several physi-
cally distinct cases. The most important of them is the case
of substantial crossingin which the crossing occurs during
the interaction and bothTi andTf are far from the crossing.
A particular case of this is the symmetric crossing when
Ti52Tf . It is the straightforward generalization of the stan-
dard LZ model and provides the correction for a finite cou-
pling duration. The case of nonsymmetricTi andTf demon-
strates the effect of adding a constant detuning that displaces
the crossing point. Comparison of the substantial-crossing
case with the case ofno crossing, when the detuning is a
linear function of time but is far from resonance, so that a
crossing does not occur during the interaction, demonstrates
explicitly the importance of level crossing in quantum phys-
ics. Namely, the transition probability is much larger in the
former case for otherwise equal parameters~coupling
strength, coupling duration, detuning slope!. Furthermore, a
different physical situation arises in the case of thenonsub-
stantial crossing, when bothTi andTf are near the crossing:
then up to the fourth order inTf andTi the transition prob-
ability depends on the time duration only rather than on the
presence or the absence of a level crossing. Finally, the last
analytically treated case is that of thehalf crossing, when
Ti is far from the crossing whileTf is near the crossing. Then
in the adiabatic limit the transition probability tends to one-
half rather than to unity as for the substantial crossing. It has
been shown that in all approximations are the cases~except
for nonsubstantial crossing!, the adiabatic approximations
are very precise for largev, irrespective of where the
turn-on and the turn-off times are. The weak-coupling as-
ymptotics is accurate for turn-on and turn-off times far from
the crossing and much larger than the scaled coupling
strengthv. The strong-coupling asymptotics are valid when
v and/or Ti , f are large, which means that it contains the
adiabatic approximation and the weak-coupling asymptotics
as particular cases.

The strong-coupling asymptotics for no crossing, half
crossing, and asymmetric substantial crossing have been ap-
plied to study the time dependence in the original LZ model
when the coupling is turned on at2`. It has been shown

that the no-crossing approximation provides a very good fit
to the exact values for negative times and the substantial-
crossing approximation is very accurate for positive times.
Near crossing, it is the half-crossing approximation that de-
scribes most accurately the time evolution. The exact time
evolution of the transition probability has been calculated
numerically by a new algorithm, presented in Appendix C,
which can be useful in other related studies on coherent ex-
citation.

The finite LZ model has been compared to the Allen-
Eberly model. Comparison has been facilitated by the degen-
eracy of the two-level problem, which results in the fact that
the same transition probability is obtained not only for a
single model but for aclassof models. The classes generated
by the finite Landau-Zener model and the Allen-Eberly
model contain members with the same coupling but different
detuning chirps as well as members with the same chirp but
different couplings. The former pairs show chirp effects
while the latter pairs demonstrate pulse-shape effects.

Finally, the results reported in this paper can be used to
model the interaction dynamics near the crossing in any
level-crossing problem whenever the finite transition time is
to be accounted for. In a forthcoming paper, some of the
results, obtained in this work for a single level crossing, are
applied to multiple level crossings, a case encountered in
coherent interaction of atoms and molecules with frequency
modulated light.
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APPENDIX A: RELEVANT PROPERTIES
OF THE PARABOLIC CYLINDER FUNCTION

The parabolic cylinder~Weber! functionDn(z) @13# is a
solution of the Weber equation

d2

dz2
Dn~z!1S n1

1

2
2
1

4
z2DDn~z!50. ~A1!

It has the derivative property

d

dz
@ez

2/4Dn~z!#5nez
2/4Dn21~z! ~A2!

and satisfies the Wronskian relation

W$Dn~z!,Dn~2z!%[Dn~z!
d

dz
Dn~2z!2Dn~2z!

d

dz
Dn~z!

5
A2p

G~2n!
. ~A3!

We can simplify the exact results~10!–~12! when the
scaled turn-on timeTi and the turn-off timeTf are small or
large compared to unity. In these cases we have used the
approximations to the parabolic cylinder functions listed be-
low.
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1. Power-series expansion

This expansion is convenient for smallTi or Tf and has
the form @24#

Dn~z!52n/2p1/2ez
2/4(

n50

`
~2zA2!n

n!GF12 ~12n2n!G . ~A4!

2. Large-argument asymptotic expansions

These expansions are convenient whenTi or Tf are much
larger than unityandv and have the form@13#

Dn~z!;zne2z2/4

3F (
n50

N S 2
1

2
n D

n
S 122

1

2
n D

n

n! S 2
1

2
z2D

n

1O~ uz2u2N21!G
~A5!

S uargzu,
3p

4
, n fixed, uzu→` D ,

where (a)n5G(a1n)/G(a). To find the asymptotics for
other values of argz of the parabolic cylinder functions in-
volved in Eqs.~10!–~12! we can make use of the connection
formula @13#

Dn~z!5eipnDn~2z!1
A2p

G~2n!
e~ in11!p/2D212n~2 iz!.

~A6!

The existence of different asymptotic expansions for differ-
ent values of argz is merely a manifestation of the Stokes
phenomenon@16,17#.

3. Large-argument and large-order asymptotics

These expansions are convenient when the turn-on time
Ti or the turn-off timeTf and the scaled coupling strength
v are simultaneously much larger than unity. These expan-
sions are much more complicated than the weak-coupling
asymptotics~A5!. For the particular functions involved in
Eqs.~10!–~12! with phases of the arguments equal top/4 the
asymptotic expansions can be derived from the general re-
sults of Olver@25# and their leading terms are

Div2/2~tA2e2 ip/4!;cosq~t!epv2/81 ih, ~A7!

D2 iv2/2~tA2eip/4!;cosq~t!epv2/82 ih, ~A8!

D212 iv2/2~tA2eip/4!;
A2
v
sinq~t!epv2/82 ih2 ip/4,

~A9!

D211 iv2/2~tA2e2 ip/4!;
A2
v
sinq~t!epv2/81 ih1 ip/4

~A10!

~t,v→`,t/v is arbitrary!

where

ah52
v2

4
1

v2

2
lnF 1

A2
~t1At21v2!G1

t

2
At21v2,

~A11!

acosq~t!5A1

2 S 11
t

At21v2D ,

asinq~t!5A1

2 S 12
t

At21v2D ~A12!

and t andv are assumed positive. The parameterq is ex-
actly the angle of the rotation connecting the diabatic and the
adiabatic bases~see Appendix B!. For functions with a phase
of the argument equal to 3p/4, the large-order and large-
argument asymptotics can be obtained from Eqs.~A7!–
~A10! by using the connection formula~A6! and are given
by

aDiv2/2~tA2ei3p/4!;cosq~t!e23pv2/81 ih

1
vAp

GS 12
1

2
iv2D sinq~t!

3e2pv2/82 ih2 ip/4, ~A13!

aD211 iv2/2~tA2ei3p/4!

;
A2
v
sinq~t!e23pv2/81 ih2 i3p/4

1
A2p

GS 12
1

2
iv2D cosq~t!e2pv2/82 ih

~A14!

~t,v→`,t/v is arbitrary!.

APPENDIX B: ADIABATIC-FOLLOWING SOLUTION

The adiabatic solution can be obtained by transforming
Eqs.~1! into the adiabatic representation by the unitary trans-
formation

C~T!5R~T!A~T!,

where
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R~T!5S cosq~T! sinq~T!

2sinq~T! cosq~T!
D ,

tan2q~T!5
V~T!

D~T!
5

v

T
. ~B1!

The Schro¨dinger equation in the adiabatic representation has
the form

iA85S 2AV21D2 2 iq8

iq8 AV21D2DA,
where the primes mean differentiation with respect toT. By
definition, the system evolves adiabatically if it remains in
the same adiabatic state; this happens with a large probability
if the adiabatic condition

uq8u!AV21D2 ~B2!

is satisfied. Then it is readily shown that the adiabatic am-
plitudes evolve as

A~Tf !5Ua~Tf ,Ti !A~Ti !,

Ua~Tf ,Ti !5S ei za~Tf ,Ti ! 0

0 e2 i za~Tf ,Ti !D ,
where

za~Tf ,Ti !5E
Ti

TfAV2~T!1D2~T!dT

is the adiabatic phase. The evolution matrix in the original
diabatic representation is

U~Tf ,Ti !5R~Tf !Ua~Tf ,Ti !R
T~Ti !.

Thus, we find the adiabatic-following solution for the transi-
tion probabilityP2(Tf ,Ti)5uU21(Tf ,Ti)u2,

P2~Tf ,Ti !'
1

2
2

TiTf

2A~Ti
21v2!~Tf

21v2!

2
v2

2A~Ti
21v2!~Tf

21v2!
cos2za~Tf ,Ti !,

~B3!

where

za~Tf ,Ti !5E
Ti

TfAT21v2dT

5
1

2
~TfATf

21v22TiATi21v2!

1
v2

2
ln
Tf1ATf

21v2

Ti1ATi21v2

5
1

2
@ja~Tf !2ja~Ti !#

~B4!

with ja(T) defined by~21!.

APPENDIX C: NUMERICAL INTEGRATION
OF THE LANDAU-ZENER PROBLEM

The numerical integration of the two-state equations~1!
for the original LZ model~2! is not a trivial problem because
the coupling does not vanish at infinity and the detuning goes
to infinity too slowly. The straightforward way of integrating
Eqs.~1! is to start at a certain large negative time and propa-
gate the solution towardst→1`. Starting at a finite time,
however, generates spurious oscillations in the solution as
can be seen from Eqs.~32! and ~34!. Certainly, their ampli-
tude decreases when one moves the start-up time towards
t→2` but nonetheless, they are always present although
they can be made invisible in a figure. Furthermore, this
procedure requires large computational time. To a great ex-
tent this can be remedied by choosing the initial state, at
‘‘large’’ finite time, to be the adiabatic state at that instant.
We know that far away from the crossing region the adia-
batic state is a good approximation to the real solution, and
the numerical integration proceeds without oscillations until
we approach the nonadiabatic region. However, we propose
here an alternative, rigorous, and much more efficient solu-
tion to this problem. The method is based on three key
points: ~i! we start the integration att50 and propagate the
solution towards the desired time;~ii ! we solve the equation
for the population inversion rather than Eqs.~1!; ~iii ! we find
the initial conditions att50 by using the dependence of the
half-crossing transition probability~42! on the turn-off time.

To find the equation for the population inversion we apply
the Feynman-Vernon-Hellwarth transformation@26#

U5C1C2*1C1*C2 ,

V52 i ~C1C2*2C1*C2!,

W5C2C2*2C1C1*

to Eqs.~1! and obtain the well-known optical Bloch equa-
tions

d

dTS U

V

W
D 52S 0 2T 0

T 0 2v

0 v 0
D S U

V

W
D .

By repeated differentiation we can decouple these equations
to obtain the following third-order differential equation for
the population inversionW:

TW-2W914T~v21T2!W824v2W50.

The numerical integration of this equation by a standard
fourth-order Runge-Kutta algorithm requires the values of up
to the third derivative ofW at T50. They can be found by
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keeping more terms in the half-crossing equation~42!,

P2~T,2`!5
1

2
~12e2pv2/2!1vTA12e2pv2

cosx

1v2T2e2pv2/21
1

3
vT3

3~sinx22v2cosx!A12e2pv2
1•••,

wherex(v) is given by~37!. This is in fact the Taylor ex-
pansion of the transition probability versusT. We can there-
fore identify the initial values of the derivatives of
W(T)52P2(T,2`)21 as

W~0!52e2pv2/2,

W8~0!52vA12e2pv2
cosx,

W9~0!54v2e2pv2/2,

W-~0!54v~sinx22v2cosx!A12e2pv2
.

We should also note that the exact values of the transition
probability can be found from Eq.~12! by taking the asymp-
totic limits of the parabolic cylinder functions at2` and
calculating their values at timeTf by using power series,
integral representations, or asymptotic series. This, however,
does not represent a more efficient approach than that de-
scribed above.
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