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Landau-Zener model: Effects of finite coupling duration
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We present the generalization of the Landau-Zener model for a constant couplifivé duration. The
exact evolution matrix is expressed in terms of sums of by-products of parabolic cylinder functions estimated
at the turn-on time and at the turn-off time of the coupling. Various approximations in terms of simpler
functions are derived and applied to several physically distinct cases. They allow us to study the dependence
of the transition probability on the interaction parameters: coupling strength, coupling duration, and detuning
slope. Furthermore, the analytic approximations reveal the effects of the finite coupling duration as well as
those caused by adding a constant detuning shift, absence of a level crossing, turnanrttimeff time near
the crossing“half crossing”), turn-on timeand turn-off time near the crossin@nonsubstantial crossing):
The results are used to obtain analytic approximations to the time evolution in the original Landau-Zener
model. Furthermore, following related studies on other models, we define the Landauelesaf models
that, along with the finite Landau-Zener model presented in this work, contains an infinite number of members
that give the same transition probability. Comparison of this class to the Allen-Eberly class shows that the two
classes contain members with the same coupling but different detuning chirps as well as members with the
same chirp but different couplings. The former case reveals chirp effects while the latter demonstrates shape
effects.[S1050-29476)07505-1

PACS numbeps): 32.80.Bx, 33.80.Be, 42.50p

I. INTRODUCTION does not vanish as— =, which implies an infinite energy,
and second, the detuning, being a linear function of time,

Along with the simple Rabi solutiol], the Landau- goes to infinity ag— oo, which is also unphysical. These
Zener model(hereafter referred to as 42] is one of the problems are insignificant when the transitions take place in
most widely used two-state approximations in resonance narrow time interval around the crossing and outside this
physics. It is not an easy task to quote all the publicationgegion no substantial changes occur in the physically mea-
where the LZ model has been studied or used. We will onlysurable quantities as the two-level system is far from reso-
mention some recent generalizations of the original LZnance. Then the particular time dependences of the actual
model. They include accounting for relaxatif8l, electron  coupling and detuning far from the crossing are of no impor-
translation factors in atomic collisions studigd, analytic  tance. When transitions can occur far from the crossing,
approximations to the evolution matr[%], parabolic level however, the original LZ formula can fail. For instance, this
crossing 6], level crossing with two time scal¢g], multiple  is the case when the coupling is large or the detuning is
level crossingg8], and three-level systenj9]. Among the small. Then, to estimate the transition probability in a par-
experimental work, we note a recent detailed study of LZticular level-crossing problem, one cannot just apply the LZ
dynamics[10]. formula but should carry out more detailed calculations. An

There are several reasons for the wide usage of the L#nportant part of the latter is the evolution around the cross-
model. First of all, it describes the important physical casdng, which can still be described as a LZ problem but with a
when a two-level quantum system interacting with an extercoupling of a finite duration.
nal field passes through resonance. Such a situation can beIn this work, we consider the generalization of the LZ
met in a number of areas in physics including quantum opmodel in which the coupling duration is assumed tdibie.
tics, atomic and molecular collisions, magnetic resonancé/e call this modethe finite Landau-Zener modéthe origi-
nuclear physics, and solid-state physics. Second, in the LAal LZ model is obtained as a limiting case when the turn-on
model, the detuning is a linear function of time, which is aand the turn-off times of the coupling approach infinity. In
realistic assumption near the crossing. Third, the coupling iSec. Il, the exact evolution matrix and the transition prob-
constant; near the crossing this is a relatively good approxiability are derived in terms of sums of by-products of para-
mation if the actual coupling changes slowly in time com-bolic cylinder functions evaluated at the turn-on and the turn-
pared to the detuning, which is reasonably well satisfied iroff times. Various approximations in terms of simpler
many cases. Fourth, the LZ model provides a very simpldunctions are derived and discussed in Sec. lll. They cover
expression for the transition probability. Thus, as far aghe cases when the coupling begins and/or ends far from the
qualitative features are mainly concerned, the LZ model icrossing or near the crossing. In Sec. IV, we apply our results
relatively satisfactory in many cases. to study the time evolution of the transition probability in the

When more detailed knowledge of the interaction dynam-original LZ model by assuming that the turn-on time is at
ics is required, however, one finds that the LZ model suffers-c. In Sec. V, we discuss an interesting peculiarity of the
from two substantial defects. First, tlfjeonstankt coupling  two-level problem: the latter is degenerate in the sense that
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different pairs of couplings and detunings give the same tran- T=pt 4

sition probability. These pairs forralassesof models that

contain an infinite number of members. The class generate@s a new independent variable, and the scaled dimensionless
by the finite Landau-Zener model is presented explicitly incoupling strength

Sec. V A. It contains some interesting members that allow us

to make a comparison with similar pairs belonging to the 0= % (5)
Allen-Eberly class[7,11,13. In particular, the comparison B’

shows the effect of different coupling shapes for the same - ] ]
detuning chirp or the effect of different chirps for the sameThe probability amplitude€,(T) and Cy(Ty) at the final

coupling shape. Finally, in Sec. VI, we present a summary ofime Ty are connected to their valu€(T;) and C,(T;) at
the results. the initial timeT; by the evolution matriXJ(T;,T;):

Il. EXACT SOLUTION aC(T¢)=U(T;, T)C(Ty), (6)

The time evolution of a coherently driven two-level quan-whereC(T) =[C4(T),C,(T)]" andT, (= 8t; ; . As the exci-
tum system is described by the two coupled ordinary differtation is coherent, the probability is conserved and

ential equations U(T¢,T;) is a unitary matrix.
d To find the probability amplitudes, we decouple E@b.
iacl(t): —A(1)Cq (1) +Q(1)Cy(1), and obtain the following second-order equation @KT):
() d? ,
ad?cl(T)+(w2+T2—|)C1(T):o.

d
157 C2(D=Q(DCo (D + A Co(D)

. . This equation is related to the Weber equatiéi) and its

for the probability amplltudeéil(t)*and CZ(.t) of states| .1> solution is expressed in terms of the parabolic cylinder func-
and |2) where Q(t)=Hq,(t)/i=H3,(t)/% is the coupling tion D (2) [13,14 as

(assumed real between the two levelsA(t)=[H,(t) v '

—Hyy(D]/2f, and Hy, (t)=(j[H(t)|k) (j.k=1,2) are the AC,(T)=aDya,(TyBe 174+ D, 215(T 237,

Hamiltonian matrix elements. Equation§) are obtained @
from the Schrdinger equation with the wave function of the
two-level system written as wherea andb are constants. The solution f&(T) can be

_ —(i/2) [{{H15(t" )+ Hon(t") ]t obtained from here and Eg4) using the derivative property
|[#(D)=[Ca(D]1)+Ca(1)]2)]e S  (A2) of D.(2) and is
Equations of the forn{1) are met in a number of areas in

physics including quantum optics, magnetic resonance,

w . .
atomic collisions, solid state physics, etc. For example, in aCZ(T):Ee_lﬂm[_aD71+iw2/2(T\/§e_le4)
optics, Egs.(1) are derived by using the rotating-wave ap-
proximation. There 2(t)=—d-E(t)/% is the on-resonance +bD_4.; 2/2(T\/§ei3w/4)]_

Rabi frequency and 2(t) = w5 — w, is the atom-field detun-

ing, whered is the atomic transition dipole momeri(t) is  The constanta andb are to be found from the initial values
the electric field of the laser pulse, is the atomic transi- C4(T;) andC,(T,) and are

tion frequency, andv, is the laser frequency. ' '

In the original Landau-Zener model, the coupling and the 1
detuning are given by F( 1- Eiwz)
Q=04 A()=p% (2) e D_1+i022(TiN263™4HCy(T))
and the couplind)(t) is supposed to last from— —o0 to 2
t—+o.In the present work_, we assume that it is turned on — —e ™D, 25(T; \/Ee‘%"‘)Cz(Ti)}, (8)
at timet; and turned off at time;, that is, @
0 Qq, tHst<stg A 5 1
t)= t)=pt. — Zip2
010" anymhere aise M0=F% @ (1= 5ie?) -
b= D_11iwz2(TiV2e™'™HCy(TH)
Here the real constantQ, and 8 have the dimension of V2 ez o
frequency and will be assumed positive without loss of gen- 5z
erality. We have chosen the slopé of the detuning at the 4 N iniap. T [2e-im4 T
crossingt=0 to be positive in order to avoid unnecessary 0 ° wer2(Tiv2e )C2(T)], ©

complications: the case ak(t)=— 3%t leads to complex

conjugation of the evolution matrix and change of sign of thewhere we have used the Wronskian relatié3). Substitut-
nondiagonal elements. It turns out convenient to introducéng Eqgs.(8) and(9) into Eq. (7) and accounting for E(6)
the scaled dimensionless time we find the evolution matrix elements
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Up(Ts, T = Uzz(Tf Ti)

1
F( 1—- EI wz)
= T[DinIZ(Tf\/Ee_mM)
XD _11i022(TiN2€137)
+Di22(TiV26™)D 1 1,212
X (Tiv2e™' ™),

Ui T, T))=—U5(T¢,T)

-3

(10

2 . )
= ———— ™[ D (Ty2e7 1™

o\
XD 22Ty 2637)
+D,,22(T\263™) D, 2/o(Ti 2671741,
11

Provided the atom has initially been in its ground stafe
that is

Cu(T)=1, Cy(T)=0

the populations at time T; are given by
Pl(Tf1Ti):|U11(vaTi)|2- PZ(TfaTi):|U21(Tf-Ti)|2 with
P.(T¢, T))+Py(T;, T;)=1. We will only discuss P,
(T¢,T;), which represents the transition probability

| —Diy2/2(Tiy2€7 ™4
2

Po(T;, T))=
ZSinhE Tw
X D 2/2(Ti2€3™4) + D yo/o(Tr\/2€/374)

X D ,22(Tiv2e7 ™42, (12)

N. V. VITANOV AND B. M. GARRAWAY 53

power series expansion @f,(z), suitable for smalll; and
T¢. We consider two types of asymptotics. Theeak-
coupling asymptoticds valid whenT; and T; are much
larger than 1 and:

|Ti|,|Tf|>l,(1). (13)

In this case we use the large-argument asymptotics of

D,(2) given in Appendix A. Thestrong-coupling asymptot-

ics is expected to be valid whem,, T;, andw are simulta-

neously much larger than 1:
ITil,|T¢|, 0> 1. 14

In this case we use the large-argument and large-order as-

ymptotics of D,(z) also given in Appendix A. We also

present the adiabatic-following solutigderived in Appen-

dix B and obtained directly from Eq¢l) without using any

special functionkthat is valid for large coupling:

w>1.

We will see that the conditions of validity of the strong-
coupling asymptotics are much weaker thad): it is valid
when either T, ; or » are larger than 1. Thus, the strong-
coupling approximation contains both the weak-coupling ap-
proximation and the adiabatic-following solution as particu-
lar cases.

It is worth discussing the physical meaning of the charac-
teristic time scales of the problem. A scaled time equal to 1,
T=1, means a real timg;=8"1. Mullen and co-workers
[15] have shown that this is the characteristic transition time
in thesuddenimit (w<<1) (where, by the way, the transition
probability is very smajl Then the conditionT;|,|T¢|>1,
which we call “large time,” means that the time intervals
from the turn-on and the turn-off times to the crossing are
much larger than the transition time in the sudden limit:
[til,|t{|>ts. Mullen and co-workers have also shown that the
characteristic transition time in trediabaticlimit (w>1) is
given byt,=w/B=0Q,/B%. Hence, the weak-coupling con-
dition (13) means that the turn-on and the turn-off times are

Equations(10)—(12) areexact that is, no approximations much larger thgn the transition time in th.e.adiabatic limit:
have been made so far. The populations are expressed lffil:|ti/>ta, while the strong-coupling conditiofi4) means
terms of sums of by-products of parabolic cylinder functions that the ratio between, t;, andt, can be arbitrary. Finally,
These functions can be calculated numerically by usindg® avoid confusion, we should stress that we adopt the term
power series, asymptotic series, or integral representation&€ak couplingo indicate that the coupling is small com-
This, however, does not represent a serious advance, cor@@red toT; ¢, or in other words, the actual couplin, is

pared to the direct numerical integration of E(B, in pro-

small compared to the detunin?g(ti,f)zﬁzti,f evaluated at

viding an insight into the interaction dynamics and the dedi¢- In the case otrong couplingwhich can also be called
pendence of the populations on the model parameters, whicdbitrary coupling, the ratio betweefT; ; andw, that is be-

is in fact the motivation for the analytical treatment. This tweenQq andA(t; ()= % ¢, can be arbitrary. Note that the
determines the necessity of certain approximations that ar@tter case includes not only the actual strong coupling

considered in the next section.

Ill. APPROXIMATIONS
TO THE TRANSITION PROBABILITY

w>|T; 4| but also includes the weak coupling<|T; ;| as
well as the case of comparableandT; ¢: w~|T; ¢|.

In the finite LZ model, a universal approximation with
respect to the turn-on timg; and the turn-off timeT; is not
possible. In the following subsections, we consider several

We will derive several approximations to the transition cases wheff; andT; are large or small and of the same sign

probability that are valid when the turn-on tinfe and the

or of the opposite signs. These cases, shown schematically in

turn-off time T of the external field are far from or near the Fig. 1, are substantially different from a physical point of
crossingT=0. They are based on the asymptotic expansionsiew. In Sec. Il A, we study the case of a level crossing
of D,(2), suitable whenT; and T; are large, and on the occurring in the middle of the interaction callsgmmetric
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2w
@ A@) ® A@) © NG) Pyo(r,—7)~1—e" mo? _ - g o2 Vi—e " co<,(7)
(15

W Q@) 1 Q) (>1lw), (16)

t I8
where

f
1 0 )

-

- .

-
’,——\ ()
”_\

& b b 4 w? s o T 1,
Q) aw §W(T)=7In21- + 7 +Z+argl“ 1—§Iw . (17
t‘, t/ ’itf
0 0 0 2. Adiabatic-following solution
Time Time Time The condition for adiabatic evolution for the LZ model is

[Appendix B, Eq.(B2)]
FIG. 1. The cases studied in Sec. l{& Substantial crossing,
including symmetric crossingtop), asymmetric crossingmiddle), w
and no crossingbottom); (b) nonsubstantial crossingc) half mﬁ<l. (18)
crossing. The relation between the titnend the scaled tim€& used

throughout the paper = gt. This condition is least satisfied at the crossifg 0, when

crossing T;<0, T¢>0, |T;|=T;, bothT; andT; being large.  the left-hand side equals 1/¢2). Thus, if a crossing occurs

It is the natural generalization of the original LZ model asduring the interaction, as in the present case, then the adia-
the latter is obtained as a particular case whan| batic evolution requires large coupling>1; otherwisew
=T;—o. In Sec. Ill B, we generalize this case to unequalMay be small ifT; ; are large enougitsee Sec. Il ¢ The

and largdT;| andT;, thatisT;<0, T;>0, |T;|#T;. This is adiabatic solution can be obtained from the general result
the case of a level crossing occurring during the interactiodB3) derived in Appendix B and is

but displaced with respect to the middle. In Sec. Il C, we
consider the case df; and T; large but of the same sign,
T;<0, T;<0. Then no level crossing occurs during the in-
teraction. The crossing and the no-crossing cases are sub-
stantially different both from physical and from mathemati- (0>1), (20)
cal viewpoints. Physically, the transition probability in the

crossing case is much larger than in the noncrossing casghere

which demonstrates explicitly the importance of the presence

of a level crossing. Mathematically, the cases of negative and r+ P+ @2
positive T lead to different asymptotics of the parabolic cyl- ENT)=—E(— 1) =T{T°+ 0’ + 0l In——
inder functions involved in Eq410)—(12), which is a mani-
festation of the Stokes phenomenfi6,17. In Sec. Il D,
we discuss the case when bdthand Ty are small, which
suggests using the power series expansidn gf). We call
this case the “nonsubstantial crossing” as the transition In this case both and the scaled coupling strengthare
probability does not depend on the existence of a level crosdarge, that isr, 0> 1, the ratio between them being arbitrary.
ing but on the coupling duration only. In Sec. Ill E, we con- The asymptotics of the transition probability is obtained
sider the case whem;<0 is large andT; is small, that is from Egs.(12), (A7), and(A13) and is

T: is near the crossing; this is the “half-crossing” case,

which requires using both power series and asymptotic ex- 2 __ 2 —— 270
pansions. Py(r,—7)~1—e " —e T 2\1—g" T 7 cost

w2

Po(7, = 1)~ 1= ——5C0Sé,(7) (19

(21)

3. Strong-coupling asymptotics

2

A. Symmetric crossin w
/ ° t 2 le ™~ (1-e ™ )cosE] (22

Let us first consider the case when the crossing point
T=0 is in the middle of the coupling as illustrated in the
upper part of Fig. (@), that isT;= —7<0 andT;=7>0. The (1,0>1), (23
coupling duration is therefore equal ta-.2

where
1. Weak-coupling asymptotics
In this caser is much larger than both unity and the w? ol 1 s s
scaled coupling strength or, in other words, the coupling (7=~ o te In E(TJF VTt %) | F VT 0t 4

duration is larger than the transition times both in the sudden
and in the adiabatic limit. The asymptotics of the transition

1
probability is obtained from Eq$12), (A5), and(A6) and is +argr( 1- Ei wz). (24
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A substantial advantage of the strong-coupling approxi-
mation(22) compared to the weak-coupling ofi5) and the
adiabatic solutiori19) is that the strong-coupling approxima-
tion is valid in a much larger range of values sofand w.
Indeed, it is readily verified that the strong-coupling asymp-
totics (22) contains the weak-coupling asymptotid$) as a
particular case in the limit> o and the adiabatic approxi-
mation (19) in the limit w>1 [with the use of the Stirling
expansion for thd” function in (24) in the latter casg We
should point out that in the derivation of the strong-coupling
approximation(22) we have not been fully consistent as we

—
o
N
)
/
\.
v
]
{
3
{
3
{
\
i
i
{
i
]
{
{
i
}
§
|
i
|
1
i
i
i
|

Transition Probability

have not expanded the function, which appears in the as- 2z 10

ymptotics (A13) through the connection formul@A6), by C;: 0sl i
using the Stirling formuld13,14. We have left thd" func- 2

tion unexpanded in order for the strong-coupling asymptotics & 067 ®=3

(22) to have the correct weak-coupling limit5) for any g

coupling strengthw, including for smallw; otherwise the Z 04 e
strong-coupling asymptotics would have the correct weak- Ev 0.2 — i%:%gi;::ﬂrég

coupling limit for 7> >1 only, that is for largas. On the
other hand, for largev the I' function tends to its Stirling 0
asymptotics anyway and keeping it unexpanded does not
lead to erroneous terms. This mathematical subtlety extends
considerably the range of validity of the strong-coupling ex-
pansion(22).

Evidently, both the weak-coupling asymptoticks) and FIG. 2. The transition probability in the case sfmmetric

the strong-coupling asymptotic®2) reduce to the well- crossing as a function of the dimensionless parameterfor
known LZ formula 0=0.3 and 3. The full curves represent the exact values obtained

by numerical integration of Eqgl), the dot-dashed curves repre-

0 2 4 6 8

02 sent the adiabatic-following solutiofil9), the long-line dashed
Py(+0,—0)=1—e ™ A= w2:_§ (25) curves show the weak-coupling asymptotis) and the short-line
B dashed curves show the strong-coupling asymptof®®. For

w=3, the strong-coupling asymptotics and the adiabatic solution
for 7—o0 and provide the corrections of the first order to it coincide with the exact values.
for 7 finite. Whenr increases the correction terms oscillate ) ]
with amplitudes that vanish as7/This can be seen in Fig. hand, Fig. 2 shows that fap=0.3 the strong-coupling ap-
2 where the transition probability is plotted as a function ofProximation (22) fits very well the numerical results for
7 for two moderately small and large values of the scaled 1 wrr]ule_for “’:d?’.'t IS ?CCLIJ.LQte even fif< 1H Th'ﬁ Sug-
coupling strengthw=0.3 and 3. In the same figure, we have gests that its con ltion of vall !ty IS weaker than t at' given
compared the approximationd5), (19), and (22) derived .by Eq.(23} and is rgther determined by>1 or w>1, which
above to the exact values obtained by numerical integratiof? conveniently written as
of Egs.( 1). The adiabatic-following solutiofil9), which is P+ w1, (27)
supposed to be valid for large, provides a good approxi-
mation forw=3 but fails forw=0.3. In contrast, the weak- The strong-coupling approximation can only fail when both
coupling asymptotic$15), which is supposed to be accurate @ and = are small. The regions of validity of the weak-
for 71,0, is relatively good foro=0.3 but fails com- coupling asymptotic$15), the adiabatic solutiori19), and
pletely for =3, even at larger. Another defect of the the strong-coupling asymptoti¢&2), defined by Eqs(26),
weak-coupling approximation, seen in Fig. 2 fo=0.3 and  (20), and(27), respectively, are shown in Fig. 3.
also later in Figs. 6, 7, and 9, is that it can violate unitarity The physically interesting conclusion from Fig. 2 is that
and give transition probabmty greater than unity or negative.the transition probablllty is an OSCi”ating function of the cou-
A more careful analysis of the weak-coupling approximationPling duration 2 with an oscillation amplitude vanishing as
(15) leads to the conclusion that its condition of validity is 1/7 at larger. The reason for these oscillations is the sudden
more restrictive than just>1,». The requirement that both change undergone by the system at the turn-on and the turn-
P,(7,—7), given by (15), and Py(7,—7)=1—P,(7,—7) off times. As 7 increases, the transition probability tends to
should be non-negative leads to the conditions its asymptotic value determined by the LZ form(@). Fur-
thermore, asv increases, the transition probability increases
as well and as a result of increasing adiabaticity, it tends to
>——1 20 e”w2—1,1, (26) unity at largew and large enough, thus leading to almost
e —1 complete population inversion.
The conclusions about the validity of the approximations
The latter of these is a particularly restrictive limitation on derived above are clearly illustrated in Fig. 4 where the tran-
7 even for moderat@. This explains the inaccuracy of the sition probability is plotted as a function of the scaled cou-
weak-coupling approximatiofil5) for ®«=3. On the other pling strengthw for 7=3. The adiabatic-following solution
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when the scaled coupling strengthincreases. The depen-
dence of the oscillation amplitude em[see Eq(22)] is the
same as for a rectangular coupling of constant detuftimg
so-called Rabi solution 1]. The physical reason for this be-
havior is again the sudden change undergone by the system
at the turn-on and the turn-off times.

B. Asymmetric crossing

1k ] Let us now consider the case when the crossing occurs
---------------------------------------------- during the interaction but the crossing poifit=0 is not
\f """ in the center of the coupling as illustrated in the middle
part of Fig. 1a, that is =#7, where T,
0 1 T =—7,<0 is the turn-on time and;=7;>0 is the turn-off
time. This case is a generalization of that considered in Sec.
FIG. 3. Sketch of the regions of validity of various approxima- Il A to which it reduces forr;=7;= 7. On the one hand, its
tions in terms of the scaled dimensionless coupling streagémd ~ comparison with the symmetric crossing demonstrates the
the dimensionless parameteequal to a half of the coupling dura- €effect of the asymmetry. On the other, a level crossing dis-
tion. The borders of the regions of validity of the weak-coupling placed from the middle of the coupling can be viewed as due
asymptotics(15) defined by(26) are shown by a long-line dashed to adding a constant detuning shif to A(t) (3) wheresé is
curve, those of the adiabatic solutitit®) defined by(20) are shown  a dimensionless parameter measuring the constant part of the
by a short-line dashed curve, and those of the strong-coupling agtetuning in units of8. In the standard LZ model adding a
ymptotics(22) defined by(27) are shown by a full curve. constant detuning does not change the populations but only
generates an unimportant phase shift in the nondiagonal ele-
(19 fits the exact values fap> 1.5 but is inaccurate at small ments of the evolution matrix. In the finite LZ model, how-
. This is because at small the adiabatic condition is vio- ever, the presence of a constant detuning leads to observable
lated in the crossing region aroufié= 0, where nonadiabatic changes in the interaction dynamics. if & the coupling
transitions take place. The weak-coupling asymptdii&is  duration, then instead of in terms efand7¢, we can study
accurate foro<1 but fails for @>1. The strong-coupling the interaction dynamics in terms efandJ, parameters that
asymptotics(22) is very accurate for any value @f: it fits ~ may be easier to vary experimentally. The connections be-
the exact values not only in the regions where the other twdween these parameters are given by
approximations are valid but also in the region between them
and is almost indistinguishable from the exact values. The T T Tt T
physically interesting observation from Fig. 4 is that the tran- as= 5 TS T (28)
sition probability oscillates with an increasing amplitude

T T ari=7—96, Ti=71+0. (29

1. Weak-coupling asymptotics
It is obtained from Eqgs(12), (A5), and(A6) and reads

— 2 _ 2 _ 2
aPy(r¢,—m)~1—€e "™ —we T12\1-e ™

Transition Probability

y Coty,( Ti)+ COSE(71) (30

T Tf

® a(Ti’f>1,w,2w\/e”‘”2—1),

FIG. 4. The transition probability in the case symmetric
crossingas a function of the dimensionless coupling strengtfor ~ where the functiorg,,(7) is given by Eq.(17).
7=3. The full curve represents the exact values obtained by nu-
merical integration of Eqg1), the dot-dashed curve represents the
adiabatic-following solutior{19), the long-line dashed curve is the
weak-coupling asymptotic&l5) and the short-line dashed curve is ~ This is the regime of large couplings>1. The solution
the strong-coupling asymptoti¢®2). The strong-coupling asymp- can be obtained from the general res@8) derived in Ap-
totics is almost invisible as it nearly coincides with the exact valuespendix B:

2. Adiabatic-following solution
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. whereé (7 1) is given by Eq.(21).

PZ(Tf;_Ti)NE-f— 2\/(7'i2+w2)(7'$+w2)

3. Strong-coupling asymptotics

_wzcosfgga(rfwfa(ri)] -
2\/(Ti +w2)(1'f+w2)
This asymptotics is obtained from Egd.2), (A7), and
(w>1), (A13) and is
1 (1 2) Ti Tt Y — TiTE® cost(7) = cost(7y)
Po(ri,—m)~5+|5—e ™ —e M2\ 1—g" +
Am T3 V(7 0?) (77t 0?) V(o) (Zro)l 7 7

N w{e ™ cod £(ry) — é(77)]— (1— e~ ™" )cod &(ry) + £(1)) 1} (32

2\(77+ 0?)(TE+ w?)

(Ti2+ w?>1; Tf2+w2>1),
|
whereé&(7) is given by Eq.(24). It is readily verified that the In Fig. 6, we have plotted the transition probability as a

strong-coupling asymptotid82) contains the weak-coupling function of 7 (28), representing half of the coupling duration,
asymptotics(30) as a particular case in the limi ,7>w  for §=1 and for two moderately small and large values of
and the adiabatic approximati¢@l) in the limit o>1. o, »=0.3 and 3. The adiabatic-following soluti¢&1) con-
The comparison between Ed45), (19), and(22), which  siderably overestimates the transition probability for
describe the transition probability for symmetric crossing,, =0.3 and is not shown while fap=3 it is very accurate
and Eqs(30), (31), and(32) for asymmetric crossing Shows ang in practice, indistinguishable from the exact values. In
that the asymmetry leads to more complicated oscillatory.ntrast the weak-coupling asymptotit30) fits well the
terms. For example, Fig. 5 shows that if we fix the turn-Ongyact values foro=0.3 but fails for w=3. The strong-

time T;=—7;=— 10 and vary the turn-off time;, the tran- .4 pjing asymptotic§32) is very accurate in both cases. The
smon_probablhty oscillates around the value for symmetrici ansition probability is seen to exhibit “beats” for
crossing. »=0.3, which are absent for symmetric crossiffigs. 2
and 4. The reason for these beats is that whenhanges,
7; and7; change as wellsee(29)]; so do&(r;) andé(7;) in
(32). For relatively larger , where the beats are observed,
the term on the second line of E@2) (which is of the order
of 1/7) dominates the term on the third lifhich is of the
order of 1#?). The former includes a sum of two cosines
whose argument§(r;) and () change in a different way
when varyingr; thus, the interference between the two co-
sines generates the beats. Equatid®) also explains why
the beats are present far=0.3 but not forow=3: the oscil-

lation amplitude is proportional te™ 70?12 gnd thus it van-
ishes exponentially whew increases.

In Fig. 7, we have plotted the transition probability as a
‘ ‘ , , , function of the time-independent detuning shét(28) for
0 2 4 6 { 10 two values ofr, =3 and 10, and for two values ab,

w= 0.3 and 3. The point=0 corresponds to symmetric

T crossing, ;= 7¢= 7, while §= 7 corresponds to half cross-
ing, 7;,=0, 7:= 7 (Sec. lll B. Again, the adiabatic-following
solution (31) is good forw= 3 (and larger while the weak-
crossingas a function of the dimensionless turn-off time for coupling asymptotlcs(30). IS accuratg forf_u=0.3 (and
T,= —7,=—10 and two scaled coupling strengths=0.3 and 3. smalley. The strong-coupling asymptoti€32) is very accu-
The full curves represent the exact values obtained by numericd€ everywhere except ned r for »=0.3. The reason for
integration of Eqs(1) while the dashed curves show the strong- this inaccuracy is that fof=r, the turn-on time is equal to
coupling asymptotics32), which almost coincide with the full Z€ro,7;=0, and the strong-coupling asymptotics at this point
curves. The arrows indicate the values for symmetric crossindails if @ is small. One can see from the figures that the
(7i=7;=10): P,~0.224 forw=0.3 andP,~0.963 forw=3. transition probability generally decreases wheiincreases

Transition Probability

FIG. 5. The transition probability in the case asymmetric
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0 4 8 12 16 and até= 7 for w=3 it tends to values near one-half, which
0.4 ' ‘ ' is the asymptotic value for adiabatic excitation in the case of
z half crossing(Sec. Il B), in contrast to the value of unity for
B symmetric crossing. We also conclude that the number of
2 oscillations increases with, which is easy to explain by
& looking at thed dependence of(7; ), defined by(24) and
g involved in (32).
g
é C. No crossing
0 A rather different situation arises when both the turn-on
time and the turn-off time are situated on the same side with
2 1O respect to the crossing, both being large. Without loss of
= 08l generality T; and T; will be assumed negativel;= — 7;
% ‘ <0, Tt= —7;<0 as illustrated in the lower part of Fig(d).
£ 06 This means that no crossing occurs during the interaction,
g which makes this case substantially different from those con-
g 041 sidered above and from the LZ model itself.
ﬁ exact
[ I N | strong-coupling i
e 02 [T weak-coupling 1. Weak-coupling asymptotics
00 2 4" 5 g It is obtained from Eqgs(12), (A5), and(A6) and reads
5 w? (1 1\
T — — )~ — -
2( Tf 1 7-I) 4 Tf Ti
FIG. 6. The transition probability in the case asymmetric 4 2 w® 7 1 s 2
crossing as a function of the dimensionless parameter + T Sl 7'”; + E(Tf —-7)
7=(7;—7;)/2 for =1 and two scaled coupling strengths=0.3
and 3. The full curves represent the exact values obtained by nu- (33

merical integration of Eqg.1), the dot-dashed curves represent the
adiabatic-following solutior{31), the long-line dashed curves show
the weak-coupling asymptotic€30), and the short-line dashed
curves show the strong-coupling asymptoti88). For =0.3, the
adiabatic solution considerably overestimates the exact values and This asymptotics is obtained from Egd.2), (A7), and
is not shown. Forw=3, the strong-coupling asymptotics and the (A13) and is

adiabatic solution are indiscernible from the exact values.

(1> lw; 7> 1lw).

2. Strong-coupling asymptotics

= ( ) 1 Ti Tt
— T, —Ti)~=—
| SR N NS SR AR S 2 f ! 2 9 \/ ( Ti2 4 wz)( sz 4 wz)
0.8 |
ML s | 2 _ i
0.6 1:==30.3 \ m;& v cog &(mr)—&(m)] (34)
2\/( ’Ti2+ wz)(Tf—F w?)

(Ti2+ w2>1;7'f2+ w2>1),

whereé&(r; ;) is given by Eq.(24). The leading ternt34) of

the strong-coupling asymptotics has the same form as the
adiabatic-following solution. This is due to the fact that
when no crossing occurs the adiabatic conditid®) is

% 1 2 30 2 4 6 8 10 easier to satisfy. For, , 7> w the strong-coupling asymptot-
ics contains the weak-coupling asymptoti88) as a particu-

lar case. The transition probability is plotted in Fig. 8 as a

- S . function of the turn-off timeT ;= — ;<0 for a fixed turn-on
FIG. 7. The transition probability in the case asymmetric time T,=—7=—20 and for two values of the coupling

crossingas a function of the time-independent dimensionless detun- L - .
ing shift 6 for two values of the dimensionless parameterr=3 strength:w=0.3 and 3. It is seen that the weak-coupling

and 10, and two scaled coupling strengtias= 0.3 and 3. The full 2Symptotics(33) is accurate fow=0.3 even near the cross-
curves represent the exact values obtained by numerical integratidR9 T=0, while for »=3 it is good for larger; only. The

of Egs.(1), the dot-dashed curves represent the adiabatic-followingtrong-coupling asymptoticé34) is quite accurate for any
solution (31), the long-line dashed curves show the weak-coupling® including near the crossing. In contrast to the case of a
asymptoticS30) and the short-line dashed curves show the strongCrossingduring the interaction, here the transition probabil-
coupling asymptotics(32). For =10 and w=3, the strong- ity is small. This represents another clear example of the
coupling asymptotics and the adiabatic solution are indiscerniblémportance of level crossing in quantum physics. The useful
from the exact values. point in the present case is that the coupling and the detuning

Transition Probability
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0.005 , . ‘ eral; otherwise the presence or the absence of a crossing
would be of no importance, which is not the case, as we have
seen above. The fact that the first termPo{T;,T;) depends
on T;—T, only is not surprising because this term represents
the first-order perturbation theory result, while the presence
of this property in the second term is more difficult to ex-
plain and appears to be accidental. We should also stress that
in the derivation of Eq(35) no assumptions have been made
about the signs of; andT;, that is about the presence or the
, ‘ , absence of a level crossing. This is because no Stokes phe-
0.5 — - ; nomenon occurs in power series expansions in contrast to
A asymptotic series. From a physical point of view, the depen-
dence of the lowest terms &f,(T;,T;) on the coupling du-
i ration only, irrespective of whether or not a crossing occurs
during the interaction, means that the two-level atdoes
not recognizethe presence of a crossing. This provides the
reason for referring to this regime as tm®nsubstantial
crossing

0.004
0.003
0.002
0.001¢

Transition Probability

exact
-~ strong-coupling
------- weak-coupling

Transition Probability
()
[\

; ; : E. Half crossing
-20 -15 -10 -5 0
In this case, the crossing occurs near the turn-on fime
T or the turn-off timeT;. In other words, one of; andT; is
small while the other is large. For simplicity and without loss
N o . of generality we will assume that the turn-on time
FIQ. 8. The tran3|_t|on pfobablllty in the casgnni crossingas a T,=—r,<0 is far from the crossing and negative and the
flfj_nft_'orL cifz Othaen ddtlv\r?oer::ggdeisoutﬁ:;n-ogrezr?ﬁ;fo_;;m(;o; turn-off time T;= ; is near the crossing, positive or negative
T piing gllae=". cricdS illustrated in Fig. (). Then we have to use the power-
The full curves represent the exact values obtained by numerlcaSeries expansioniAd) for the parabolic cylinder functions
integration of Eqs(1), the long-line dashed curves show the weak- ith P ts | Vi . E 10 1y d th K
coupling asymptotic$33), and the short-line dashed curves show with arguments involvingry In gs.(10-12 an € weak-
coupling or the strong-coupling asymptotic expansions for

the strong-coupling asymptotic§34). For =3, the strong- ) . . ; . .
coupling asymptotics is indiscernible from the exact values. the parabolic cylinder functions with arguments involving
Ti -

have the same time dependence in the case of crossing and
no crossing; this eliminates any contribution from pulse-
shape effects or different chirps. We have to note that a It is obtained from Eqs(12), (A5), and(A6) and reads
similar analysis for the Nikitin model has recently been car-

ried out by one of the present auth¢is|. 1 ()
g P ) Polr — )~ 5 (1 ™) = 2 \1-e ™o, (7)

2 ( 2’7’i
1 711'(4)2
Let us now consider the case when both the turn-on time torvl-e CoSx (36)
T; and the turn-off timeT; are small compared te !

as —
illustrated in Fig. 1b). Both T; and T; can be negative or (1> 10,20Ve™ - 10| r|<1),
positive. In this case one can use the power-series expansio ) )
(A4) of the parabolic cylinder functions in Eq12). The Wmeregw(ﬂ) is defined by Eq(17) and
transition probability is small and is given by

1. Weak-coupling asymptotics

D. Nonsubstantial crossing

7 N 1 w? 1 w? 3
, , w? , X=7 argF2|4 argl’ |4. (37
Pa(Te . Ti) =™ (Ty=T)"| 1= 5 (Ty=T)"+ - -
(35 2. Adiabatic-following solution

This is the regime of large coupling. The solution can be

(@]Ti|, 0| Ty|<1). obtained from the general res(®3) derived in Appendix B,

Note thatw(T;—T;) is the pulse area, which is small in this

case. An important observation from E@5) is that up to Py(r— 1)~ }Jr TiTi  wC0q &a(T)+Ea(7i)]
the fourth order inT; and T; the transition probability de- 20 T2 20\ 7+ 0? 27+ w?
pends on the couplinduration T;—T; only but not on the (38
turn-on time T; and the turn-off timeT; separately. We

should stress that the sixth-order term, which is not given for (w>1;0| 1| <1),

the sake of brevity, does not share this property and does
depend onT; and T; separately, as dod®,(T;,T;) in gen-  where&,(7 ) is given by Eq.(21).
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3. Strong-coupling asymptotics

0.15
This asymptotics is obtained from Eqgd.2), (A7), and =
(Al3) and is E
£ o.10f
Pa(r )~ 5| 1-e T £
Ts,— Ti) ™ & - T
PANCE | i 2 ’7"2-‘{‘ w2 5
E 005r
w *77(1)2 g exact )
EENEEor 1-e "™ cos(m) = T g
' 0
1 7i 1.0f
+§w7'f\/1_e—77w2(1+—'2 Ccosy E ©=3 |
Ti +w _g 0.8F 1 il
s .
(39 g% 0.6
=]
(724 0> 10|17 <1), £ 04
wherey is given by Eq.(37). It is readily verified that the § 02k T
strong-coupling asymptotid89) contains the weak-coupling &=
asymptoticg(36) as a particular case in the limi{>w® and 0 : :
the adiabatic approximatiof38) in the limit >1, 7;=0. In -12 8 4 0

the particular case of a turn-on time at infinity,
T,=—7——o, and a turn-off time exactly at the crossing, i
7:=0, EQ. (39) recovers an earlier result found by Carroll

and Hioe[9]: FIG. 9. The transition probability in the caselwdlf crossingas

a function of the dimensionless turn-on tifg= — r; for T=0 and

two scaled coupling strength&,=0.3 and 3. The full curves rep-
resent the exact values obtained by numerical integration of Egs.
(1), the long-line dashed curves show the weak-coupling asymptot-
It is this particular case that provides the reason for the ternts (36), and the short-line dashed curves show the strong-coupling
half crossingadopted by us. For large, the excited-state asymptoticg39). For w=0.3, the adiabatic-following solutio88)
population tends to one-half, which resembles excitation bys not shown as it gives rather too large values whiledet3; the
asymmetric pulses with constant detuning reported recentlgtrong-coupling asymptotics and the adiabatic solution are indis-
[19]. The second term on the right-hand sides) of Eq.(39)  cernible from the exact values.

describes the first-order correction due to the finite turn-on

time 7;. As a function ofr;, it generates oscillations around proximation is the no-crossing or@4), which in the limit

the value determined by the first, zeroth-order term. TheT,— — gives
third term on the rhs of Eq(39) describes the first-order

correction due to the nonzero turn-off time. In contrast to

P,(0,~ )= %(1—ef”w2’2). (40)

. . . ; 1 T
the second term, the third term is a linear functionrpind Py(T,—®)~=+———— (T<O0). (41)
does not oscillate. 2 2 2T+ w?

In Fig. 9, the transition probability is plotted as a function

of T;= —7; for Ty= 7= 0 and two scaled coupling strengths, |n contrast to the case of a finite turn-on time, there are no
w=0.3 and 3. Again, the adiabatic-following soluti(®8) is  oscillations, which shows that they originate from the sudden
accurate for largew but fails for small . The weak- turn on of the coupling. The transition probability is small
coupling asymptotic¢36) is good for smallw, but is inac-  and for|T|>w,1 it tends toP,(T,— %)~ w?/4T?.

curate for largan. The strong-coupling asymptoti¢39) fits At small timeT (near the crossingegardless of its sign,
the exact results very well for any. the transition probability is given by the half-crossing ap-

proximation(39), which in the limitT;— — reduces to
IV. APPLICATION TO TIME EVOLUTION

IN THE ORIGINAL LANDAU-ZENER MODEL

1 2 2

The results obtained in Sec. Ill provide a possibility to  P2(T,=*)~5(1—e ™ 2)+ 0TV1-e ™ cosy(w)
study time-dependent effects by fixing the turn-on time
then considering the transition probability as a function of
T; gives its time evolution. We will consider in more detalil (0|T|<1), (42
the particular case wheh,— —o, representing the original
LZ model. The transition probability at tim&=T can be wherey is given by Eq.(37). At T=0, only the first term on
approximated by using the strong-coupling expansi@$,  the rhs survives in agreement with0) while for T#0 the
(39), and(32) in three regimes: whefi; is large and nega- transition probability increases linearly with. Therefore,
tive, whenT; is small and whenT; is large and positive Eq. (42 gives the correct value and the slope of the transi-

At large and negative tim&<O0, | T|>1, the relevant ap- tion probability at the crossing poifit=0, but a more accu-
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scribed in Appendix C. The no-crossing asymptoti¢$) is
formally plotted forT>0, that is, after the crossing; so is the
asymmetric-crossing asymptoti¢4$3) for T<O0, that is, be-
fore the crossing. Fow>1 they give fairly good approxi-
mations in these regions formally forbidden for them. For
<1, however, they are only accurate in the regions where
they are supposed to be valid, but not outside them.

V. APPLICATION TO SHAPE AND CHIRP EFFECTS

A. The degeneracy of the two-level problem

The results obtained in Sec. Il turn out to be very useful
in studying the effect of different coupling shapes for the
same detuning chirp or the effect of different chirps for the
same coupling shape. This is possible because of an interest-
ing but not very widely known peculiarity of the two-level
problem: the existence of different pairs of couplings and
detunings that give the same transition probability. This can
be easily shown in two ways. The first is due to Delos and
co-workers[20] who showed that in terms of the new inde-
pendent variable,

Transition Probability

t
s(t)= JOQ(t’)dt’, (44)

Egs. (1) take the simpler form

T
: : - I d (Bi(s)| [=O(s) 1 |(By(s)
FIG. 10. The time evolution of the transition probability in the i— = , (45)
original LZ model (T;— —) for three scaled coupling strengths, ds| By(s) 1 O(s)/\Ba(s)

0=0.3, 1, and 3. The dimensionless tifigs defined by Eq(4). _

The full curves represent the exact values, the long-line dashe\alherel?’lz(s)_Cl'Z[t(S):| and
curves show the no-crossing strong-coupling asympté4tys and A[t(s)]
the short-line dashed curves show the substantial-crossing strong- O(s)= —.
coupling asymptotic$43). The no-crossing asymptoticsfirmally Q[t(s)]
plotted for T>0, that is, after the crossing; so is the substantial-
crossing asymptotics fol <O, that is, before the crossing. For
=3 the three curves coincide.

(46)

Equationg45) show that in terms of the variabf the two-
level dynamics depends amne function ©(s) only, called
sometimes the Stueckelberg variable. Let us now suppose

rate approximation in this region requires accounting forthat the solution for certaid(t) and{)(t) is known. Then

more terms in the power series of the parabolic cyIindePNe can find the function_?.(t) from (44) and@(s) fr_om (46).

functions (Appendix O. Inasmuch as .the solutloq depend_s ®1(s) only, if we re-
At large and positive tim@> 1, that is after the crossing, place the parhpular coupling func_ﬂc(’rz(t) by_ another func-

the transition probability is best approximated by its tion and then find the corresponding detunikfy) from Eq.

tric- : t ) i totid82). (46) using the presumably knowf(s), the solution will
\?v?fgn:r? {Lceﬁ:r%?f+ng_> _soorogr;\?ezoup ing  asymptotid82) remain unchanged. All pairs @f(t) andQ(t) found in such
I

a way form aclassof models. This class contains an infinite
number of members in which(t) andQ(t) are connected

P(T L2 ﬂw2> T by
ALtz T e :
A(t)=Q(t)®( Q(t’)dt’).
—e” 71'0)2/21 /1_ e wwzwcof(T) (T> 0), JO
T°+ w?

We should point out that the populations induced by differ-
(43)  ent pairs are the same ondifter the couplings have turned
off. During the interaction the populations evolve in different
where &(T) is given by Eq.(24). The transition probability ways because different couplinggt) lead to different map-
oscillates irrespective of whether or not the turn-on tifpés ~ pings oft ontos.
finite. The transition probability is large and fdr—oo it An alternative though equivalent approach has been used
tends to the LZ formulg25). In Fig. 10 we compare our by Hioe and Carrol[21]. They introduce an arbitrary inde-
analytical approximation$41) and (43) to the exact values pendent variable=z(t), which is positive, monotonic, and
for three scaled coupling strengths=0.3, 1, and 3. The satisfiesz(—=)=0, z(+«>)=1. In terms ofz, Eqgs.(1) be-
exact values are calculated numerically by the approach deeome
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TABLE I. Various pairs of the couplings and the detunings belonging to the finite Landau-Zener class
(47) and the Allen-Eberly clasg9). The first two pairga) have the same linear chirp, but different coupling
shapes; the second paity have the same hyperbolic-tangent chirp, but different coupling shapes; the third
pairs (c) have the same rectangular coupling, but different chirps; the fourth gdirbave the same
hyperbolic-secant coupling, but different chirps.

Finite Landau-Zener class Allen-Eberly class

(@ Apz(t)=Ape(t)=p%
QL (t)=Qq (|t|$t0) QAE(t):ﬂ-QO“V(ZtO e(wt/Zto)z_l)
(b) ALy (t)= A ne(t) = (2/) B2 tanh(mt/2ty)

Q5(t) = Qgtanht/2t,)/ V2In[coshe/2ty) Qae(t) = Qgsech@t/2ty)
2
lt|=< 7—Ttoln(e“2’8+ Ver - 1)

© QuA)=Qae(t)=Q¢ (Jt|<to)
A (t)=p% Ape(t) = (2/7) B2t otan(mt/2t )

(d) Q7(t) =Qae(t) =Qgsech@rt/2ty)

A (1) = B?to[ (4lm) tan L(e™20) — 1]sechgrt/2t,) Apg(t) = (2/7) BPtotanh(mrt/2t,)
d [ Ci(2) ~A(z) QUz)\[Cy(2) In contrast to the rather simple time dependencaA @) and
id—Z ~ =| _ - ~ , Q(t) in the finite LZ model(3), the class(47) contains a
Ca(2) Q) A7)/ \CaA2) number of pairs in whichA(t) and Q(t) are smooth func-

tions of time. For example, such a pair is the last one in

where O(2)=0Q[t(2))/z, A(2)=A[t(2)]/z, and C,2) Table | and in Fig. 11 below.

=C,Jt(2)]. If the solution for certainA(t) and Q(t) is .
known we can choose an appropriate functigft) [its There are several classes of analytically solvable models
choice does not have to be relatedit¢t) andQ(t) and is a that can be obtained from the exact solutions listed, e.g., in

matter of conveniendeand then, we can find the functions Refs.[22] and [23]. We can find similar pairs in different

ﬁ(z) andZ(z), which define the class. From these generat—Classes in which either the couplir@(t) or the detuning

ing functions we can find the other members of the class by* (1) IS the same. There are, however, some limitations. For
choosing various functiong(t). Since the number of the €Xxample, if the detuning\(t) of a given pair in a class
auxiliary functionsz(t) is infinite, the number of pairs in the changes sign, say &0, then®(0)=0 and the detunings of
class is infinite too. all pairs in the same class should change sigr=di as well.
The generalization of the LZ model for a finite coupling Also, if the “pulse area” for a certain member of the class is
duration, considered in the previous section, belongs to &finite (as in the original LZ modglthen it is infinite for any
class of models as well. For simplicity, we will only consider other member too. The requirement that the detuning passes
the case of symmetric crossiri§ec. Ill A) whenT;=—r, through resonance at=0 limits the number of classes that
T¢=7. In terms of the variabls , this class is readily veri- can be compared to the LZ clag¥) to just two: the Nikitin
fied to have a very simple definition class[18] and the Allen-Eberly clasgl2]. We choose the
latter, which provides the transition probability in terms of
elementary functions while in the Nikitin class it is given in

s
B(s)= ? (Isl<wm). (“47) terms of confluent hypergeometric functioris].
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FIG. 11. Plot of the couplings and the detunings from Table I.
Throughout, a long-line dashed curve shows a quantity belonging to FIG. 12. The transition probabilities for the finite Landau-Zener
the finite LZ class, while a short-line dashed curve shows a quantitglass(full curve) and the Allen-Eberly clas&lashed curveplotted
belonging to the Allen-Eberly class; a full line shows a quantity thatas functions of the dimensionless parametéor w=3.
is the same for both classe®) The same linear chirp, different
coupling shapes(b) the same hyperbolic-tangent chirp, different pyt different couplings. Caséb) shows pairs wittthe same
coupling shapegr) the same rectangular coupling, different chirps; hyperbolic-tangent detuning chirput different couplings.
(d) the same hyperbolic-secant coupling, different chirps. Case(c) shows pairs wittthe same rectangular couplirtgit
different detuning chirps. Cagd) shows pairs witlthe same
hyperbolic-secant couplingut different detuning chirps.
Demkov and Kunicke were the first who solved a little In Fig. 12, we compare the transition probabilities for the
known papef7,11,23) the model that was later treated by a finite LZ class and the AE class plotted as functions- dbr
number of authors. A particular case of this model was latew= 3. In Fig. 13, we compare the transition probabilities as
solved independently by Allen and Ebef§2]. It is this  functions ofw for 7=1. It is seen that the models in the LZ
particular caséreferred to hereafter as Ahat we are going class generate oscillations with much larger amplitudes. On
to consider. It is defined by the one hand, for the models with the same detufitages
(@) and (b)] this fact can be explained as due to the sudden
2,82t0t n mt (48) changes undergone by the system at the turn-on and the turn-
T a h2TO off times of the coupling for the models in the LZ class. In
other words, the models in the AE class are much more
and the corresponding class is defined in terms of the variadiabatic. On the other hand, for the models with the same
ables (44) by coupling[casedc) and(d)], this feature comes from the fact
that the system spends a longer time near reson@hatis

B. Shape and chirp effects

Q(t)onsecI}T;—t, A(t)=
0

For <27/ the cosine is to be replaced by a hyperbolic
cosine. The reason for the way in which the parameters of
the AE model(48) are written is to allow comparison with
the finite LZ model(3) studied in the preceding sections: the R R
maximum coupling strengtk), , the pulse areaQ,t,, and 0 2 4 6 8 10
the detuning slop@? at the crossing are the same for the AE
model and the finite LZ model. o

In Table I, we have compared members of the finite LZ
class to members of the AE class in four cases. They are FIG. 13. The transition probabilities for the finite Landau-Zener
shown schematically in Fig. 11. Ca&® both in Table | and  class(full curve) and the Allen-Eberly clas&lashed curveplotted
in Fig. 11 shows pairs witlthe same linear detuning chirp as functions of the dimensionless coupling strengtfor 7=1.

O(s)= 27 TS _ 49
(s)=_—tan, — (Isl=w7), (49 | | | |

where w=Q4/8, 7=pty. The transition probability at
t— +oo for a two-level system, initially in its ground state at 2
t— —, is given by E
2
47 47 £
P,=1-seck—cog| 2~ 2_ —4 (50) g
™ ™ 2
g
H
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the detuning increases more slowfgr the LZ models than that the no-crossing approximation provides a very good fit
for the AE models. Casdg) and(d) also show that oscilla- to the exact values for negative times and the substantial-
tions can be generated not only by a sudden turn-on or turrerossing approximation is very accurate for positive times.
off of the interaction but also if the external field is near Near crossing, it is the half-crossing approximation that de-
resonance with the system for a sufficiently long time. scribes most accurately the time evolution. The exact time
evolution of the transition probability has been calculated

numerically by a new algorithm, presented in Appendix C,

which can be useful in other related studies on coherent ex-

We have presented the generalization of the Landaucitation.
Zener model for a constant coupling ofiaite duration. The The finite LZ model has been compared to the Allen-
exact evolution matrix has been expressed in terms of sunfsberly model. Comparison has been facilitated by the degen-
of by-products of the parabolic cylinder functidh,(z) es- e€racy of the two-level problem, which results in the fact that
timated at the scaled turn-on tirfe and at the turn-off ime  the same transition probability is obtained not only for a
T¢. Several approximations in terms of simpler functionsSingle model but for @lassof models. The classes generated
have been derived based 6inthe large-argument asymptot- by the finite Landau-Zener model and the Allen-Eberly
ics of D,(z) corresponding to largd; and T; and weak Mmodel contain members with the same coupling but different
coupling; (i) the large-argument and large-order asymptoticgietuning chirps as well as members with the same chirp but
of D,(z) corresponding to larg&; and T; and strong cou- different couplings. The former pairs show chirp effects
pling; (iii) the power-series expansion Bf,(z) correspond- While the latter pairs demonstrate pulse-shape effects.
ing to smallT; andT;; (iv) the adiabatic-following solution ~ Finally, the results reported in this paper can be used to
corresponding to large coupling irrespectiveTofand T,. ~ Model the interaction dynamics near the crossing in any
These approximations have been applied to several physigvel-crossing problem whenever the finite transition time is
cally distinct cases. The most important of them is the casé® P& accounted for. In a forthcoming paper, some of the
of substantial crossingn which the crossing occurs during "esults, obtained in this work for a single level crossing, are
the interaction and botfi, andT; are far from the crossing. aPplied to multiple level crossings, a case encountered in
A particular case of this is the symmetric crossing whencoherent mt_eractlon of atoms and molecules with frequency
T,=—T;. Itis the straightforward generalization of the stan-medulated light.
dard LZ model and provides the correction for a finite cou-
pling duration. The case of nonsymmetficand T; demon- ACKNOWLEDGMENTS
strates the effect of adding a constant detuning that displaces The authors are grateful to Professor P.L. Knight for the
the crossing point. Comparison of the substantial-crossingiscussions. This work was supported in part by the Royal
case with the case afo crossing when the detuning is a Society, the UK Engineering and Physical Sciences Research

linear function of time but is far from resonance, so that acouncil, and the Research Institute for Theoretical Physics,
crossing does not occur during the interaction, demonstratagniversity of Helsinki.

explicitly the importance of level crossing in quantum phys-

VI. SUMMARY OF THE RESULTS AND CONCLUSIONS

ics. Namely, the transition' probability is much Iarger.in the APPENDIX A: RELEVANT PROPERTIES

former case for other_\lee equ_al parametdupling OF THE PARABOLIC CYLINDER FUNCTION
strength, coupling duration, detuning slopEurthermore, a

different physical situation arises in the case of tloasub- The parabolic cylindefWebe) function D ,(z) [13] is a
stantial crossingwhen bothT; andT; are near the crossing: solution of the Weber equation

then up to the fourth order ifi; andT; the transition prob- 42 11

ability depends on the time duration only_rather than on the ?Dy(z)+ o — _Zz> D,(2)=0. (A1)
presence or the absence of a level crossing. Finally, the last d 2 4

analytically treated case is that of thalf crossing when

T, is far from the crossing whil&; is near the crossing. Then
in the adiabatic limit the transition probability tends to one- d ,
half rather than to unity as for the substantial crossing. It has d—[eZ “D (2)]=ve’*D,_4(2) (A2)
been shown that in all approximations are the cdeg&sept z
for nonsubstantial crossingthe adiabatic approximations
are very precise for largev, irrespective of where the
turn-on and the turn-off times are. The weak-coupling as- d d
ymptotics is accurate for turn-on and turn-off times far from WiD.(2),.D,(=2)}=D(2) g;Du(=2)=D.(~2) 1-D.(2)
the crossing and much larger than the scaled coupling

It has the derivative property

and satisfies the Wronskian relation

strengthw. The strong-coupling asymptotics are valid when NI

w and/orT; ; are large, which means that it contains the = T(—v) (A3)
adiabatic approximation and the weak-coupling asymptotics

as particular cases. We can simplify the exact resultd0)—(12) when the

The strong-coupling asymptotics for no crossing, halfscaled turn-on timd; and the turn-off timeT; are small or
crossing, and asymmetric substantial crossing have been ajrge compared to unity. In these cases we have used the
plied to study the time dependence in the original LZ modelapproximations to the parabolic cylinder functions listed be-
when the coupling is turned on atw. It has been shown low.
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1. Power-series expansion (1,0— %, 7l w is arbitrary
This expansion is convenient for small or T; and has
the form[24] where
- —z\2)"
D,(2)=2"271%71* 3 (-22) (Ad) 0 o2 |1 ;
n=0 _ - - s
n'r E(l—n—y) an= 7 + 5 In \/§(T+ \/?—l—wi) + 2\/7'24-0)2,
(A11)
2. Large-argument asymptotic expansions
These expansions are convenient whgior T; are much
larger than unityand w and have the formpl3] _ \/ T
acosH(n)=\/z| 1+ —|,
) 2 v 7'2+ o)2
DV(Z)"“ZVe_Z 14
( 1 ) 1 1 1
N T2V 2T 2 asinﬁ(r)z\/— 1-— (A12)
<[> " "1 o2 N 2\ 7 v e

and r and w are assumed positive. The paramedeis ex-

(A5) actly the angle of the rotation connecting the diabatic and the

adiabatic basesee Appendix B For functions with a phase

37 _ of the argument equal to7@4, the large-order and large-
|argz|<T, v fixed, |Z|—>°°), argument asymptotics can be obtained from E@s7)—

(A10) by using the connection formulgA6) and are given

where @),=I'(a+n)/T'(a). To find the asymptotics for by
other values of aig of the parabolic cylinder functions in-
volved in Eqgs.(10)—(12) we can make use of the connection
formula[13]

aDin/z( T\/Eei3”’4) ~Ccosd( T)e—377w2/8+i 7

. N2m YT G
D,(2)=€D (- 2)+ ———e"* V72D | (~iz). * 1y Sind(7)
I'(—v) I'i1-ziw?
(A6) 2
o w?/8—im—i
The existence of different asymptotic expansions for differ- X g~ T Bin=imld (A13)
ent values of argis merely a manifestation of the Stokes
phenomenohi16,17). ‘
aD_1.,22(7V2634)
3. Large-argument and large-order asymptotics
. . . 2 o
These expansions are convenient when the turn-on time ~ —sind( T)e—37rw2/8+lrz—l3w/4
T; or the turn-off timeT; and the scaled coupling strength w
o are simultaneously much larger than unity. These expan- N
sions are much more complicated than the weak-coupling cog}(f)e—ﬂwZ/B—iv
asymptotics(A5). For the particular functions involved in F( 1— Eiwz)
Egs.(10)—(12) with phases of the arguments equakittd the 2
asymptotic expansions can be derived from the general re- (A14)
sults of Olver[25] and their leading terms are
D;.2/2(T2€ 1 ™%) ~ cosd( 7)™ /8 Hin, (A7) (1,0— %, 7w is arbitrary.
iml4 Tw2l8—i
D _i,22(7V/2€™4)~ cosd(7)e 7, (A8) APPENDIX B: ADIABATIC-FOLLOWING SOLUTION
_ 2 o The adiabatic solution can be obtained by transforming
D_1_in2za(7\26 ™%~ —sind(r)e™ [8=in=iml4 Egs.(1) into the adiabatic representation by the unitary trans-

(A9) formation

i 2 - C(T)=R(T)A(T),
D_1.in2a(Ty2e7 ™4~ gsinﬁ(r)e"‘“z’8+I +iml4

(A10)  where
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cosH(T)  sind(T) with &,(T) defined by(21).
| =sin(T) cosH(T))’
APPENDIX C: NUMERICAL INTEGRATION
AUT) o OF THE LANDAU-ZENER PROBLEM
tan29(T)= F: T (B1)
(T) The numerical integration of the two-state equati¢bs
The Schrdinger equation in the adiabatic representation ha$or the original LZ model?2) is not a trivial problem because
the form the coupling does not vanish at infinity and the detuning goes
o to infinity too slowly. The straightforward way of integrating
A= —VQ +A% —id Egs.(1) is to start at a certain large negative time and propa-
1A= i 9 JOZ¥ Az gate the solution towards— +«. Starting at a finite time,

where the primes mean differentiation with respect tBy

however, generates spurious oscillations in the solution as
can be seen from Eq§32) and (34). Certainly, their ampli-

deﬁnition, the SyStem evolves adiabatically if it remains intude decreases when one moves the Start_up time towards
the same adiabatiC State; thIS happens W|th a |arge pl’obabllltﬁg — 0 but nonethe'eSS, they are a|WayS present a|th0ugh

if the adiabatic condition

| 9| < Q%+ A? (B2)

they can be made invisible in a figure. Furthermore, this
procedure requires large computational time. To a great ex-
tent this can be remedied by choosing the initial state, at

is satisfied. Then it is readily shown that the adiabatic am+large” finite time, to be the adiabatic state at that instant.

plitudes evolve as
A(Tg)=Ua(T¢, THA(T),
gita(Tr.T) 0
Ua(Tf’Ti):< 0 e
where

cum o= [ VT AT

is the adiabatic phase. The evolution matrix in the original

diabatic representation is

U(Ts, T)=R(T)Us(T;, THRY(T)).

Thus, we find the adiabatic-following solution for the transi-

tion probability P,(T¢, T;))=|U,y(T;, T)|%

Py(Ty Ty~ = Uil
R PN T
(1)2
— C T !Ti s
N TTr ot Ty ) el Te Ty

(B3)

where

ga(Tf ,Ti): ij\ T4+w dT
T

1
=5 (T Ti+ 0? =TT+ 0?)
. w_zlan+ T+ 0?
2 T,+ \/Ti2+ w?

1
:E[ga(Tf) —&a(T))]
(B4)

We know that far away from the crossing region the adia-
batic state is a good approximation to the real solution, and
the numerical integration proceeds without oscillations until
we approach the nonadiabatic region. However, we propose
here an alternative, rigorous, and much more efficient solu-
tion to this problem. The method is based on three key
points: (i) we start the integration a&=0 and propagate the
solution towards the desired tim@i) we solve the equation
for the population inversion rather than E¢b); (iii) we find
the initial conditions at=0 by using the dependence of the
half-crossing transition probabilit{42) on the turn-off time.

To find the equation for the population inversion we apply
the Feynman-Vernon-Hellwarth transformatif@e]

U=C,C}+CC,,

V=-i(C,C; —CiCy),

W=C,C} —C,C*

to Egs.(1) and obtain the well-known optical Bloch equa-
tions

0] O -T O U

d
Glv]zol T 0o - Vv
a7 2 @

W 0 w 0 W

By repeated differentiation we can decouple these equations
to obtain the following third-order differential equation for
the population inversioV:

TW' =W +4T(0?+T?)W' —40?W=0.

The numerical integration of this equation by a standard
fourth-order Runge-Kutta algorithm requires the values of up
to the third derivative ofV at T=0. They can be found by
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keeping more terms in the half-crossing equaiié®), W(0)= _ g mw?2

1
PoT,—=)=3(1-e 7o?2) 1, T\1—e ™ cosy W' (0)=2wV1—e ™ cosy,

W"(O) — 40)28_ 7Tw2/2,

1
2124~ Twll2 3
to T e +tzol W”(0)=4w(siny— 2w2cosy) V1—e ™,
. We should also note that the exact values of the transition
X (siny—2w%cosy) V1—e ™+ .. ., probability can be found from E¢12) by taking the asymp-

totic limits of the parabolic cylinder functions ate and
where xy(w) is given by(37). This is in fact the Taylor ex- calculating their values at tim&; by using power series,
pansion of the transition probability versilis We can there- integral representations, or asymptotic series. This, however,
fore identify the initial values of the derivatives of does not represent a more efficient approach than that de-

W(T)=2P,(T,—»)—1 as scribed above.
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