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A STRONG STIELTJES MOMENT PROBLEM 
BY 

WILLIAM B. JONES, W. J. THRON AND HAAKON WAADELAND1 

ABSTRACT. This paper is concerned with double sequences of complex numbers 
C = {c,,Y' and with formal Laurent series Lo(C) = c -C z' and L,,(C) = 

SX'cmz' generated by them. We investigate the following related problems: (1) 
Does there exist a holomorphic function having Lo(C) and Los(C) as asymptotic 
expansions at z = 0 and z = oo, respectively? (2) Does there exist a real-valued 
bounded, monotonically increasing function 4(t) with infinitely many points of 
increase on [0, oo) such that, for every integer n, c, = f J(-t)' d4(t)? The latter 
problem is called the strong Stieltjes moment problem. We also consider a modified 
moment problem in which the function 4(t) has at most a finite number of points 
of increase. Our approach is made through the study of a special class of continued 
fractions (called positive T-fractions) which correspond to Lo(C) at z = 0 and 
Los(C) at z = oo. Necessary and sufficient conditions are given for the existence of 
these corresponding continued fractions. It is further shown that the even and odd 
parts of these continued fractions always converge to holomorphic functions which 
have Lo(C) and Los(C) as asymptotic expansions. Moreover, these holomorphic 
functions are shown to be represented by Stieltjes integral transforms whose 
distributions 4i(0)(t) and 4A()(t) solve the strong Stieltjes moment problem. Neces- 
sary and sufficient conditions are given for the existence of a solution to the strong 
Stieltjes moment problem. This moment problem is shown to have a unique 
solution if and only if the related continued fraction is convergent. Finally it is 
shown that the modified moment problem has a unique solution if and only if there 
exists a terminating positive T-fraction that corresponds to both Lo(C) and Lo,(C). 
References are given to other moment problems and to investigations in which 
negative, as well as positive, moments have been used. 

1. Introduction. In this paper we are concerned with double sequences of 
complex numbers 

C = {c }00-oo Cn E C, 

and with formal Laurent series (fLs) generated by them as follows 
00 00 

Lo(C) = I - C_mZm, Lm(C) = E Z (1.1) 
m=1 m=0 

We seek to determine functions G(z), holomorphic for z in some open region D, 
having 0 and x as boundary points, which have Lo(C) and Loo(C) as asymptotic 
expansions, with respect to D, at z = 0 and z = 00, respectively. 
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We recall (see, for example, the recent treatment by Henrici [2, Chapter 11]) that 
a series E z=,dmz- is called an asymptotic expansion of f(z) at z = 00, with 
respect to a region S which has x as a boundary point, if there exist sequences of 
positive numbers { Bn} and {pn} such that, for each n = 0, 1, 2,.. 

n 

f(z) - I dm z < mIlzl-F for I zI> p, z E S. (1.2) 
m=O 

Similarly, 2=okmzm is called an asymptotic expansion of g(z) at z = 0, with 
respect to a region U which has 0 on its boundary, if there exist sequences of 
positive numbers { on } and { an } such that, for each n = 0, 1, 2,.. 

n 

g(z) - E kmzm < a,,zl+' for Izi < 6, z E U. (1.3) 
m=O 

One way of obtaining solutions to the above problem is to ask under what 
conditions on the double sequence C is it possible to find a general T-fraction, 

F1z F2z F3z (1.4) 
1 +Glz +I+ G2Z +I+ G3Z + '(14 

satisfying Fn > 0, GQ > 0 for all n > 1, which corresponds to Lo(C) at z = 0 and 
to L,(C) at z = x0. The definition of correspondence will be given in ?2. Unless 
otherwise stated, continued fractions in this article will be nonterminating. 

Hereafter, general T-fractions (1.4) satisfying F, > 0, Gn > 0 for all n > 1 shall 
be called positive T-fractions. 

The notation Hk(,)(C) will be used for Hankel determinants as follows: 

Cn Cn+ 1 Cn+k-1 

Cn+I Cn +2 Cn+k 

Hk(C) = .C 

Cn+k-1 Cn+k Cn+2k-2 

n=O, +1, ?2,...,k= 1,2,3.... 

The conditions on the double sequence C for there to exist a positive T-fraction 
corresponding to Lo(C) and L,,<(C), respectively, will be shown to be 

Hnj-nt(C) > 0, n > 0; H2-2n)(C) > 0, H?-2n+l)(C) < 0, n > 1. (1.5) 

Positive T-fractions are shown to have integral representations of the form 

G(z) =fz d(t) Z E R, C- (1.6) 

Here 

R = [z: larg zj < ], (1.7) 

and P is the set of all real-valued monotone nondecreasing functions 4(t) defined 
on 0 < t < 00, with 4A0) = 0 and lim, 4A(t) < 00. ' is further subdivided into 
the set 'F of those functions which have only a finite number of points of increase 
and the set *I' of those functions 41 having an infinite number of points of 
increase. 
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In addition to R it is convenient to introduce the regions 

Ra = [z: larg zl < a], O <a < 'T. 

The function 41 occurring in (1.6) will be in 'F iff the positive T-fraction is 
terminating and in ',, if the T-fraction is nonterminating. Further, the function 4, 
in (1.6) satisfies the conditions 

00 

cn =f (-t)n d,P(t), n = +1 +2, . (1.8) 

and is thus a solution of a moment problem for the double sequence C. By a strong 
Stielties moment problem we shall mean the following: For a given double sequence 
C = {cn}Z0, does there exist a 41 E 'P satisfying (1.8)? There also is a moment 
problem for 41 C 'F. This will be called a modified moment problem. 

The functions G(z) defined in (1.6) have the series Lo(C) and L.(C) as 
asymptotic expansions, with respect to Ra C R, 0 < a < 7T, at z = 0 and z = so, 
respectively. 

A natural question to ask is the following: If a general T-fraction converges to a 
functionf(z), holomorphic in a region D, having 0 and ox on its boundary, are the 
fLs, to which the general T-fraction corresponds, asymptotic expansions of f(z) 
with respect to some region D' c D? Surprisingly the only general class of cases 
known so far in which the question has an affirmative answer is that of the positive 
T-fractions. 

Other questions relating to a doubly infinite sequence of moments have been 
previously considered by Covindarajula [1], Kabe [7], Mendenhall and Lehman [10] 
and Thomas [14]. 

The contents of this paper are as follows. In ?2, necessary and sufficient 
conditions for the existence of a general T-fraction corresponding to two given fLs 
are obtained. ?3 is devoted to a study of positive T-fractions. We characterize those 
double sequences C for which there is a positive T-fraction corresponding to Lo(C) 
and Lco,(C). The convergence behavior of positive T-fractions is then investigated 
and it is shown that the odd and even parts of positive T-fractions always have 
integral representations. In ?4 we establish that (1.8) holds for the given double 
sequence C and the functions 4(?) obtained from the integral representations of the 
positive T-fraction corresponding to Lo(C) and L,ev(C). It is also proved that the 
functions G(o)(z), to which the odd and even parts of the positive T-fraction 
converge, have Lo(C) and Lco,(C) as asymptotic expansions. ?5 is concerned with 
terminating positive T-fractions and a solution of the modified moment problem. 
In ?6, necessary and sufficient conditions for the solvability of the strong Stieltjes 
moment problem, as well as for the uniqueness of the solution, are given. 

We conclude this introduction by summarizing a few elementary facts about 
continued fractions that will subsequently be used. A continued fraction is an 
ordered pair <<{a }a {bn}>, {fn}>, where a1, a2, . . . and bo, b1, b2,... are 
complex numbers with an # 0 for all n and where { fn} is a sequence in the 
extended complex plane defined by 

fn= Sn(0) n = 0, 1, 2 ..... (1.9a) 
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Here { S,(w)} is the sequence of linear fractional transformations 

SO(w) = sO(w); S,(W) = SnAsn(WA n = 1, 2, 3, ... , (1.9b) 

where 

so(w) = bo + w; n(1.9c) 

The numbers an, bn are called the elements of the continued fraction and fn is called 
the nth approximant. For convenience we usually denote a continued fraction 
<<{ an}, { fn} >, { fn }> by one of the symbols 

an 00Ian a, a2 a3 
bo + K( ), bo + nKI ( b)or bo + y (1 .10) 

A continued fraction is said to converge if its sequence of approximants { fn) 
converges to a point in the complex plane. When convergent, the continued 
fraction is said to have the value given by limfn. The symbols (1.10) may be used to 
denote both the continued fraction and its value. When { a)} and { b)} are infinite 
sequences, then bo + K(an/bn) is called an infinite (or nonterminating) continued 
fraction. It is called a finite (or terminating) continued fraction if {an) and { b,} 
have only a finite number of terms a,, a2, .. ., am and bo, b1, b2, .... bm. A 
continued fraction is assumed to be nonterminating unless otherwise stated. 

Corresponding to each continued fraction bo + K(an/bn), there are sequences of 
complex numbers {An}, {Bn} defined by the second order linear difference equa- 
tions 

A-1=1, AO=bo, B-1=, *Bo=1, (I.lla) 

An =bnAn_ + anAn-2' n =1, 2, 3,..., (1. lib) 

Bn =bnBnB_ + anBn-2, n =1, 2,3, (I.llc) 

The numbers An and Bn are called the nth numerator and denominator of bo + 

K(an/bn), respectively. Some basic properties of the An and Bn are the following: 

An + Anlw A -A n = O, 1, 2, 
Bn + n-IW 

B- -B # 

(1.12) 

fn = Sn (?) = B X n = O, 1, 2, . . ., (1.13) 
Bn 

n 

AnBn- -An-,1B, = (-n n-1 1 ak, n = 1, 2, 3 (1.14) 
k=1 

Equation (1.14) is called the determinant formula. In the following sections we also 
deal with continued fractions K(an(z)/bn(z)) whose elements an(z) and bn(z) are 
polynomials in the complex variable z with complex coefficients. The definitions 
and elementary properties given above are easily extended to include this case. 

2. Existence of general T-fractions corresponding to given fbs at 0 and 00. The 
concept of correspondence of a continued fraction to a fLs plays an important role 
in the sequel. Hence it will now be defined. First we note that the set e of all 
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formal Laurent series (fLs) 
00 

L =I anz 
n r aninteger, an E C, (2.1) 

n = -r 

with increasing powers of z, forms a field with respect to addition and multiplica- 
tion defined in the manner suggested by (2.1). L = 0 is the zero element of E. If 
f(z) is a function meromorphic at the origin (i.e. in an open disk containing the 
origin), then its Laurent expansion, which is convergent in a deleted neighborhood 
of the origin, will be denoted by AO(f). A continued fraction K(an(z)/bn(z)), where 

an(z) and bn(z) are polynomials in z for all n > 1, will be said to correspond to a 
fLs, L E E, at z = 0 if there exists a sequence { kn} of positive integers, with 

limn,. kn = oo, such that 

(An(Z) k_ 
AO B,(z)) L = gnz + gn+lzk_+l + .... (2.2) 

Here An(z) and Bn(z) are the nth numerator and denominator of K(an(z)/bn(z)), 
respectively. Both An(z) and Bn(z) are polynomials in z and hence the nth 
approximant An(z)/Bn(z) is a rational function of z. 

Similarly the set of fLs 
00 

L* = a* z -n s an integer, a* E C (2.3) 
n = -s 

with decreasing powers of z, forms a field E *. We denote by A. (f) the Laurent 
expansion at z = so of a function f(z) meromorphic at z = so. Then we say that a 
continued fraction K(an(z)/bn(z)), where an(z) and bn(z) are polynomials in z, 
corresponds at z = oo to a fLs, L* E E*, if 

A0 B ) L = hnz"; + hn+lz";' + *..,(2.4) 

where { mn } is a sequence of positive integers with limn-, mo = 00. 
By the order of correspondence we mean the two sequences {kn} and {mn}, 

respectively. 
In 1948, Thron [15] introduced continued fractions (1.4) with Fn = 1, n > 1, as a 

means of expanding an arbitrary power series. Perron [12, pp. 173-175] generalized 
this to continued fractions equivalent to (1.4) with the restriction Fn # 0, n > 1, 
and observed that this continued fraction also corresponds to a fLs at z= so 
(provided Gn # 0, n > 1). This phenomenon was further studied by Waadeland 
[17] and Jefferson [3]. 

Here one starts with an arbitrary fLs, L E E, finds a continued fraction K 
corresponding to L at z = 0 and then observes that K corresponds to another fLs, 
L* Ee E*, at z = so. Schematically this can be written L -+ K -+ L*. The structur- 
ally different question, namely, given L and L* to determine conditions on their 
coefficients to insure that there exists a continued fraction (1.4) corresponding to L 
at 0 and L* at so, was first considered by Murphy and McCabe [8], [9] and 
independently somewhat later by Jones and Thron [4], [6], [16]. It is this question 
which is now answered by the following theorem. A proof is included since it has 
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not been completely proved in any of the above references. The approximants of 
(1.4) turn out to be in the two-point Pade table determined by L and L*. We 
restrict ourselves here to the case where r = -1 and s = 0. 

THEOREM 2.1. Let fLs 
00 00 

L = , anzn and L* = Z -n (2.5) 
n=l n=O 

be given. There exists a general T-fraction (1.4) which with Fn 7# 0 and Gn # O for all 
n > 1 corresponds to L at z = O and to L* at z = so iff 

/\n #0 and Dn #0 ? for all n = 0, 1, 2, .... (2.6) 

Here 

8-(n -1) 8-(n -2) so 

&-(n-2) &-(n-3) SI 

AO= 1; An= n= 1, 2, 3 ,. 

so 81 .. 
An-I 

(2.7a) 

and 

8-(n-1) &-(n-2) 
. 

1 

8-(n-2) 8-(n-3) 82 

(o= 1; n+1 = . . (2.7b) 

a, 82 
. . . 

an+I 

The Sk are defined by 

=k =Lk - ak (2.8) 

where it is understood that ak = 0 for k < 0 and ak* = 0 for k > 1. The order of 
correspondence is {n + 1} at z = 0 and {n} at z = oo. The Fn and Gn of (1.4) are 
given by 

F1 = O1 F = n2n n = 2, 3, 4' (2.9a) 

G= n =1, 2, 3 .... (2.9b) 

PROOF. In our proof we shall use the equivalent form for the general T-fraction 
(1.4) given by 

z z z 

eI + d1z + e2 + d2z + e3 + d3z +*' (2.10) 

where the Fn, Gn, and en, dn are related by 

F1=-e; Fn= , n=2,3,4, ... , (2.a) 
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G= e, n= 1,2,3 .... (2.11b) 

The nth approximants of (1.4) and (2.10) are identical. Letting An(z) and Bn(z) 
denote the nth numerator and denominator of (2.10), respectively, we obtain from 
(1.11) that An(z) and Bn(z) can be written in the forms 

Al(z) = z, (2.12a) 

An(z) = an,IZ + an,2Z2 + *** +an,nZ, n =2, 3, 4,..., (2.12b) 

where 

an, = e2e3 en, a = dd3 * d (2.12c) 
2 3 ~~n,n -2 3 n' 

and 

Bn(z) = bn,o + bnZ+I +* +bn,nZ , n = 1,2,3,..., (2.12d) 

where 

bn,O = e,e2 ***en, bn,n = d, d2 ... dn (2.12e) 
We now assume that there exists a general T-fraction in the equivalent form 

(2.10) with en #& 0 and dn 5 0 for all n > 1 corresponding to L at z = 0 and to L* 
at z = oo. By use of the determinant formula (1.14), we have 

An+I1(z) _An(Z) (-1 )nZ n +l (2.13) 

Bn + 1(Z) Bn(Z) Bn (z) Bn+ I1(Z) 

Expanding the right side in increasing powers of z, we obtain, with the help of 
(2.12), a fLs of the form 

An +(z) An(z) (_-)nzn+l + 9n+2Z + 9n+3 
+ .... 

B 
n_____ B_z__e e2 

. .___ __en___ __ _ _ _2 _ e+n n+ 

(2.14) 

Similarly, expanding the right side of (2.13) in decreasing powers of z, we obtain 
with the help of (2.12) a fLs of the form 

An+I(z) An(z) (_1)nZ-n + h(n +I)z (n+l)+ h (n+2z-(n +2) + 

(2.15) 

It follows from (2.14) and (2.15) that the order of correspondence of (2.10) to L is 
{n + 1} and to L* is {n} as asserted. Thus we can expand the nth approximant 

An(Z)/Bn(z) in the form 

Ak( B (z) alz + a2z2 + +y +an z + Y + 1() n+2 +Z 

(2.16a) 

where 

a (0)? _ (n) = ( 1)= n 1,2 
Ia1 

1 an+I 
- 

Yn+I (12 en)2en+1 Il (ele2 16b) 

(2.16b) 
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and in the form 

A,,(z) \ n_ 1 
B(z) ) o + a-IZ + 

+a*(n-I)Z 

+(n)Z-n + X(n+)z(n+ 1) + , (2.17a) 

where 

a*-AS?) a n) (d_d2 dn)2dn+ n =1,12,3..... 

(2. 17b) 

It follows from (2.16) that LBn(z) - An(z) is a fLs of the form 

LBn(z) - An(Z) 

- (ele2. en)(an+1 - Yn )Zn + I n+2 + Zn+3 + * 

Equating coefficients of like powers of z on both sides and using (2.12), we obtain 
the equations 

aobn,O + a-Ibn,l + +a-nbn,n = anO = 0 (2.18a) 

Ialb o + a0ob 1 + * * * +ac(n)bnn = an,1, 

a2bn,O + alb*l ++ +a nbn,n = an,2 (2.18b) 

an bn,o +an b_ + obn,+n = an,n 

and 

an+ Ibn,o 
+ 

anbn,1l 
+ +aIbn,n = e e2 . . en (an - 1-n) 1). (2.18c) 

We recall that ak = 0 for k < 0. Similarly, L*Bn(z) - An(z) has a fLs of the form 

L*Bn(z) - An(z) = (djd2 . . . dn)(a -(n))Z-n + (+l)Z (n+l) + 

and equating coefficients of like powers of z gives the equations 

a* bn + a*b,,-1 + * * +a,n*+1b,O = 0 (2.19a) 

I,n +,n 2n,n- +** +an,b + = a,n,= 

b*,, +a bn,n- I +** + an* bn,O =a,,, 1 (2.19b) 

at *( - n + ?/*(nn-2)I n -1 +* = a 1 

and 

a* bb ,+ + a(,,l)b,,-, + * * +a*b ,0 = djd2. . . dn(a*, - X(n)). (2.19c) 

Again we recall that atk = 0 if k > 1. By subtracting corresponding equations in 
(2.18) from (2.19), so as to eliminate an',, an,21 . .. , an,n, we obtain (by use of (2.8)) 
the equations 

a bb ,+, + &-(,ol)bb,,, * +n,+6Ob, = d1d2. . . d (a*-X(n)) (2.20a) 
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-(n - I)bn,n + 5-(n-2)bn,n-l + + obn,l =-lbn,O 

8-(n - 2)bn,n + -(n-3)bn,n-1 + * a Ibn,l -82bn,0 
................................... .............. (2.20b) 
SObn,n + 5lbn,n - + + an-Ibn = (22-bnbn,O 

and 

albn,n + 
82bn,n- 

+ +an+ lbn,O = -ele2 . . . en(a -Y(n)1). (2.20c) 
The determinant of the system (2.20b) is An. Therefore an application of Cramer's 
rule yields the equations 

8-(n-1) 6-n I1 

Lnbn,l = -bn,o &-(n-2) 
. .. 

0 s 2 2 

so 
. . . 

an-2 Sn 

8-(n -1) 8-2 so a I 

Lnbn,2=bn,O 8-(n-2) * -1 a 1 32 (2.21) 

so an-3 'n-I 5n 
.................... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

a -(n - 2) . 
. 

.So0 a, 

\nbn,n = (-1)nbno &-(n-3) . 
. . 

1 82 
-..................... 

Now expanding the determinant ?n+ 1 by cofactors along the first row and applying 
(2.21) gives 

An+1 bn (a-nbn,n + 85(n-l)bn,nI + * +5obn,O). 

Combining this with (2.12e), (2.20a) and (2.17b) gives 

1 An 
~1\ = d; (ele2. . . en)(d1d2 . dn dn +1 = n2,,3. 

(2.22) 

It follows by induction from (2.22) that 

A?n #O , n = 1, 2, 3 ..... (2.23) 

Similarly, if JDn+l is expanded by cofactors along the last column, and (2.21) is 
applied, we obtain 

Dn+1 =I (6lbn,n + 82bn,n-I + +an+lbn,O) 
bn,0 

Combining this with (2.20c), (2.12e) and (2.16b) gives 

D '(1D n = 1, 2, 3 ..... (2.24) 
el (e e **e e.. 
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It follows from this and (2.23) that 

Dn,#O, n=1,2,3 .... (2.25) 

Using (2.11), (2.22) and (2.24), one can easily derive (2.9). 
Conversely, we assume now that conditions (2.6) are satisfied. Then a general 

T-fraction (1.4) is defined by (2.9) and its coefficients satisfy Fn # 0, Gn # 0 for all 
n = 1, 2, 3..... It follows from (2.14) and (2.15) that the continued fraction 
corresponds to a fLs 

00 

L = n 
n= 1 

at z = and to a fLs 
00 

L* = E ci z -n 
n=O 

at z = oo. Now the procedure used in the first part of the proof to define the 
coefficients Fn and Gn in terms of the an and a * can be applied to the a' and a',* 
and this will yield the same Fn and Gn. It is readily shown that sequences { Fn), 
{Gn} uniquely determine sequences {tan), {tan*} by means of the relations (2.9). 
Thus we conclude that a,n = a^n and a* = 6'n* for all n. This completes the proof. 

It follows from (2.12) that, for the general T-fraction considered in Theorem 2.1, 
the nth numerator An(z) and denominator Bn(z) are polynomials in z of degree n. 
Thus the nth approximant An(z)/Bn(z) is the (n, n) two-point Pade approximant 
determined by the pair of fLs L, L*. 

3. Positive T-fractions and their integral representations. General T-fractions (1.4) 
for which all Fn and Gn are positive are of particular interest because they have 
integral representations. We begin by characterizing double sequences C for which 
there exists a positive T-fraction corresponding to Lo(C) at z = 0 and to La:(C) at 
z = 00. 

THEOREM 3.1. Let C = {cn}rO be a double sequence of real numbers and let Lo(C) 
and L. (C) be defined by (1.1). There exists a positive T-fraction 

F1z F2z F > ?, Gn > ?, n ,, 

(3.1) 

corresponding to LO(C) at z = 0 and to L>,(C) at z = oo iff 

Hn7-n)(C) > 0, n = O, 1, 2,.. ., (3.2a) 

H2-2n)(C) > 0, H-(-2n-1))(C) < 0, n = 1, 2, 3..... (3.2b) 

PROOF. We apply Theorem 2.1 with a,n = -C-n for n > 1, a*n = cn for n < 0. 
Then 

= {-(-C_n), n:=j1, 2,3,.. 
an = ?tn ?n -n 

- -0 n = 0, -1. -2... 
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Thus an = c-n for all n. Hence by (2.7), 

Cn-1 Cn -2 Co 

Cn-2 Cn - 3 C 

\n= . . . , n= 1,2,3,... 

co C-1 C-(n 1) 

and 

Cn-1 Cn - 2 C1 

Cn-2 Cn - 3 C-2 

(Dn+l= .I. . ? ...... n=0,1,2. 

C-1 C-2 . . . C-(n+ 1) 

Elementary operations on these determinants then leads to 

n = Hn-(n -1))(C), n > 1, and Dn+I = H -(ln +))(C) n > 0. (3.3) 

From (2.9) we have that Fn > 0 and Gn > 0 holds for all n iff 

An > ?, n = 1, 2, 3, . .., (3.4a) 
and 

'2n-1 < 0, 2n > 0, n = 1, 2, 3, .(3.4b) 

Substituting (3.3) into (3.4) completes the proof of the theorem. 
Existence of integral representations for continued fractions was proved for the 

case of K(anzz/l), an > 0, by Stieltjes [13]. For K(z/(1 + dnz)), dn > 0, it was done 
by Jones and Thron [5]. Both proofs depend on an analysis of the zeros of the 
denominators Bn(z) of the approximants An(z)/Bn(z) of the continued fraction. 
For K(z/(1 + dnz)), dn > 0, this analysis was carried out in [15]. The results for 
positive T-fractions parallel those in [5]. We shall now sketch the steps involved in 
the proof. 

Let An(z) and Bn(z) denote the nth numerator and denominator, respectively, of 
the positive T-fraction (3.1). Then by the difference equations (1.11), one can see 
that An(z) and Bn(z) are polynomials in z of degree n of the forms 

An(Z) = Flz + + F(llk)zn n > 2 A 1(z) = FIz, 

Bn (Z) = 1+ .+(llGk)Z n n =1, 2, 3... 

One now shows that the zeros r,n), m = 1, 2, ... , n, of Bn(z) are distinct and 
negative. This is proved by the difference equations (1.11), observing that the zeros 
of Bn(z) are separated by those of Bn,-(z). Further, the zeros of Pn(z) = An(z)/z 
separate the zeros of Bn(z). This together with the fact that Pn(O)/Bn(O) = F1 > 0 
insures that Pn(z)/Bn(z) has a partial fraction expansion of the form 

P,(z) m=l Z-n(n) 

Bn,(Z) m=j z - r,7) 
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where allp() m = 1, . . , n, are positive. Finally, 

E n) 1 ZPn(z) 1 An(Z) Fl 
-() liM - lim " 0 

Now arrange the zeros r(n) of Bn(z) as follows, 

0 < -r(n) < _rsn) < . < -r(n) 

and define the step function 4An(t) by 

0, for 0 < t < -rln), 
k 

AE p(n, for -rif) < t < -rl') 1, I < k < n, 

Fl,t fo-r" (3t .5) 
m=1 

F1 GI-- for -rn~<<o 

Then 4An(t) E ' for all n > 1 and the nth approximant of (1.3) can be written as a 
Stieltjes integral 

An(z) r Jdn(t) __ _ = I 

Bn(z) J z + t 

These results can be summarized as follows. 

THEOREM 3.2. Let An(z) and Bn(z) denote the nth numerator and denominator of a 
positive T-fraction (3.1). Then A"(z) and Bn(z) are polynomials in z of degree n and 
the zeros r(n) of Bn(z) are all distinct and negative and can be arranged in order such 
that 

0 < -r < -n) < * ... < -r(n) 

The nth approximant An(z)/Bn(z) has the partial fraction decomposition 

Anz n p(n) 
Bn(z) m=1z-l -rm"7) *** 

where p(n) > O for m > 1 and En (n) = F1/GI. If 4n(t), 0 < t < so, is defined by 
(3.5), then 4i(t) e I, n > 1, and 

An(z) 0?? Z d4l;n( t) 1 ~3 
B (z) z+t n= 1,2,3. 

To proceed we shall make use of the following result, sometimes referred to as 
"Grommer's selection theorem." 

Let {4v/(t)} be a sequence of real-valued nondecreasing functions defined on 
-oo <t< oo,suchthatc <ipn(t)<Cforall-oo <t< 0o,n= 1,2,3,.... Then 
there exists a real-valued nondecreasing function 4'(t) defined on - o < t < oo such 
that c < A(t) < C for all - oo < t < ox, and there exists a subsequence { nkj of 
positive integers such that limk,00 lPnk(t) = Ap(t) for - < t < oo. Moreover, if g(t) 
is a continuous complex-valued function of the real variable t such that limt, ?00 g(t) 
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= 0, then 

lim f g(t) d%4nk(t) = f g(t) d4'(t). 
k--oo _oo k 0 

The preceding result is based on a lemma due to Helly and Bray. Proofs of the 
result can be found in [11, p. 240, Theorem 6], [12, pp. 207-211] and [18, p. 
246, Theorem 64.2]. Before applying this result we study the convergence behavior 
of positive T-fractions. 

THEOREM 3.3. Let fg(z) denote the nth approximant of a positive T-fraction (3.1). 
Then: (A) The sequences {f2,_ 1(z)} and {f2j(z)} converge uniformly on every 
compact subset of R = [z: larg zI < 7T]. 

(B) Let { e,n} and { d,} be sequences ofpositive numbers defined by 

1 n-I n 
e= F; e2n-1 = I F2k/ I F2k-l, n > 2; 

k=1 k=1 
n n 

e2k R F2k-11 r F2k' n > 1; (3.6a) 
k=1 k=1 

n=Gne, n = 1, 29 39 ... ., (3.6b) 

(note that (3.6) is equivalent to (2.11)) so that the positive T-fraction (3.1) is 
equivalent to 

z z z e 0? d (3.7) 

The continued fraction (3.1) converges uniformly on every compact subset of R iff 

en = oo or i dn = oo. (3.8) 
n=1 n=1 

PROOF. It is readily shown that (3.1) is equivalent to (3.7) which in turn is 
equivalent to 

d,w + ellw + d2w + e2/W + d3w + e31W + , 

where w2 = z. We choose w so that larg wl < 7T/2 and hence z E R. Since dn > 0 
and en > 0, we have larg(dnw + en/w)l < larg wl < 7T/2. By Van Vleck's criterion 
(see, for example, [12, p. 73]) we obtain the uniform convergence of {f2n_ I(z)} and 

{ff2n(z)} on compact subsets of R. The continued fraction converges iff 

00e 
d dw +- = oo. (3.9) 

n=1 

Clearly (3.9) holds iff (3.8) is satisfied. This completes the proof. 
A continued fraction whose nth approximant is the (2n - I)th (or 2nth) ap- 

proximant f2n-1(Z) (or f2n(Z)) is called the odd (or even) part of the positive 
T-fraction (3.1). Theorem 3.3(A) shows that both the odd and even parts of (3.1) 
converge uniformly on compact subsets of R. Combining Theorem 3.3 with the 
Grommer selection theorem (with g(t) = z/(z + t)), yields: 
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THEOREM 3.4. Let a positive T-fraction (3.1) be given and let fn(z) denote its nth 
approximant. Then there exist two functions (?) E \I, a = 0, 1, such that, for z E R, 

Ilm f2n+a(Z) = l z d =t - G(a)(z), a = 0, 1. (3.10) 

Since the sequences { f2n+o(z)) converge uniformly on compact subsets of R, it follows 
that the functions G(G)(z) are holomorphic for z E R, a = 0, 1. Iff En Ien = 0o or 
En= Idn = x, then 4/()(t) = +P(l)(t) = 41(t). Here the en and dn are defined by (3.6). 

We note that a in +(?)(t) and G(G)(z) denotes merely an index, not a derivative. In 
?5 we shall show that the P(?) are actually in *I . 

4. Asymptotic expansions of positive T-fractions. In ?2 it was shown that a 
positive T-fraction (3.1) corresponds to a fLs Lo(C) at z = 0 and to a fLs L,(C) at 
z = oc. We shall now show (in several steps) that the functions G(o)(z), to which 
the odd and even parts of (3.1) converge in R, have Lo(C) and LO>(C) as 
asymptotic expansions. 

THEOREM 4.1. Let a double sequence C = {c,}%O satisfying (3.2) be given. Let (3.1) 
be the positive T-fraction that corresponds to Lo(C) at z = 0 and to L.(C) at 
z = ox. Let fn(z) denote the nth approximant of (3.1) and let 4(?)(t) and +(')(t) denote 
functions in I (whose existence is asserted by Theorem 3.4) such that 

lim f2n+,(z) lo z dg)(t) z E R, a =0, 1. 

Then 

Ck = (-t)k d4J,g)(t), k= +1, +2, ?2 . 

PROOF. The fact that the positive T-fraction (1.3) corresponds to Lo(C) at z = 0 
implies that, for n = 1, 2, 3, . . .. 

n 

fn(z) = - cmzm + z"+ 1hn(z), (4.1) 
m=1 

where hn(z) is holomorphic in some circular disk about the origin. Next in terms of 
the step functions 4An(t) of (3.5) (see Theorem 3.2), we have, for all z E R, 

00Z 4/n(t) 
fn(Z) =| z + t 

(t t2 tk tk(Z + t)) 

k E m r d4n(t) 
z 

4k+1f dn(t) 

m= J (-t)m + (_t)k(z + t) 

All integrals occurring above exist, since A"n(t) = 0 for 0 < t < -r(n) and A"n(t) = 

F1/ GI for -rnn) < t < ox, so that they are all proper Stieltjes integrals. 
Subtracting the two expressions (4.1) and (4.2) with k = n obtained for fn(z) and 
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dividing by z, we arrive at 

Jo d4l ( t)n coo di(t)\ 
n(t) - Cl = Z( 2k C_m JO(t)m ) 

- hn(Z - 
"O 

d%Pn(t) _ nI (4.3) 
(-t)n(Z + t) j / 

By letting z ->0, one arrives at 

c= f(-t)-' d4jn(t). (4.4) 

Using (4.4) in (4.3) and repeating the process n times, one obtains 
00 

C-m = f(-t)m d4/(t), 1 ? m , n. (4.5) 

By expanding the nth approximant fS(z) and the integral in the last term in (4.2) 
about xo, one gets in a similar manner 

cm = f0(-t)m d4jn(t), 0 < m < n - 1. (4.6) 

We next consider the integrals f 't-m d(4)(t). Let 0 < ( < u < o. Then 

8f gm d+(?)(t) exists for a = 0, 1 and m a positive integer. Moreover, for an 
arbitrary E > 0, one can find n? such that 

ft d4 (tm < d m + c for n > n(). 

Hence 

d#(m(t) < d#2+(t) + e I + e, forn > n. 

Since E is an arbitrary positive number in the inequality above we conclude that 

ftd4/GO)(t) ~ m, m> 1 
ts tm < I c _m , m 1 

From this both the existence of the integral as well as the inequality 

d4{t() I Cml, m > 1, (4.7) 

follow. An analogous argument, where however we need not worry about the 
integral near t = 0, allows us to conclude that 

co ftm d4,(G)(t) < lcml, m ) 0, (4.8) 

also holds. 
Combining (4.2) with (4.5) and fn(z) = fJO?(z/(z + t)) d4Xn(t), we have, for 1 < k 

< 2n + a, 

J Z d4i2n+c,(t) = E -C Zm -z I t JO (t) 
-C z - k+1f(t)d 

(4.9) 
z +t M =1Iz+t(-) 
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Define 

91W= - n(+) t)d~t 
c(k + ) J z + t )(t()k+1 

Then, at least for real positive z, I g9n (z)I < 1. In (4.9) take the limit as n .-> 0. 

Since all of the other limits exist, limnoo g2n+ak(z) = gka)(z) also exists and 

I&) (z) I < 1 forO <z < oo,k > 1. (4.10) 

Here the a in gk?)(z) denotes an index and not a derivative. Thus on the one hand 
we have, for 0 < z < x, 

z d () - 

t-EI 
Cp ,Zm - 

C (k+l)g )(z)zk+I (4.11) z t m=1 

On the other hand, 

z d4$,a)(t) 
k 4 o d4l(a)(t) + zk+1( d4/(t) (4.12) 

z + t m= 
I + ( J (_t)k(z + t) 

where all of the integrals exist since we know that 

to z d+$( t) and (. d4$)(t) m > 

exist. Now set 

o, dp(at) c(a) 
JO (-t)m -m 

and 

1 0? t d4(?)(t) h-)(z) 
C-(k + 1) 0 (t)k+ (z + t) 

Here, as before, the a in h k)(z) denotes an index and not a derivative. Then, by 

(4.7), 

Ih)(z)I < c (>k+) < 1, (4.13) 
C-(k + 1) 

at least for positive z. From (4.12) we can write 

J?? z d4$ )(t) - - - c-(k+l)hk?)(z)z * (4.14) 
o z + t m=1 

Subtracting (4.14) from (4.11), transposing and dividing by z, one obtains 
k 

C(a) - C= Z( (Cm - C(a))Zm-2 + C(k+l)Zk (gI)(z) - hk)(Z)) 
m =2 

Letting z tend to 0 (through positive values) one obtains c = c(). Repeating the 
process yields 

cm = f d4 )(t) for all m = 1, 2, 3 .(4.15) 
-M -O 
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Expanding f '(z/(z + t)) d4($)(t) about z = xo and using a similar argument to the 
one described above, one arrives at 

00 
cm = f(-t)m dx4/)(t), m = 0, 1, 2,. (4.16) 

This completes the proof. 
Our next theorem is 

THEOREM 4.2. Let a double sequence C = {cn,,})r be given and let , E \I' be such 
that cm = f "(-t)m d4,(t), m = 0, + 1 + 2, .... Then 

00? z d{l( t) G(z) = 
~zd,t 

zJ Z+ t 

is a holomorphic function of z, for z E R = [z: larg zl < 77], and Lo(C) and L.(C) 
are the asymptotic expansions of G(z) with respect to Ra = [z: larg zl < a], 0 < a < 
ir, at z = 0 and z = xo, respectively. 

PROOF. That G(z) exists and is holomorphic for z E R is well known (see, for 
example, [12, p. 186]). Next we have 

C* Z Z2 
n-I, 'Zn (-Z/t)n+l dpt 

G(z) = to ( t t2 + (_I) tn l+z/t 

n ~ ~ (jn(f d4'(t) 
m ( c_ zm + n(+t) )Z. (4.17) 
m= 

Set 

hn(Z)= (I)n 
00 

dip(t) 

I 
~)n r 

0 
t \ 4(t) 

C-(n+1) tn(Z + t) C-(n +l) Jo( Z + t tn+l (4.18) 

Note that, for d > 0 and 0 < lal < 77/2, 11 + deIal > 1, and that, for vr/2 < lal < 

7r, 11 + deiaI > Isin(7r - a)I = Isin a1. Using this we have 

t 1 1 

z+ t 11 +z/tI isin al' 

for0<t < x,z E Ra 0K<a <7T.Itfollowsthat 

Ihn(Z)I < 1 

sin a 

for z E Ra, 0 < a < 7, n = 1, 2, 3, .... This establishes that Lo(C) is the asymp- 
totic expansion of G(z) with respect to Rn at z = 0. A very similar argument 
establishes that L,J(C) is the asymptotic expansion of G(z) with respect to Rn at 
z = so. This completes the proof. 

An immediate consequence of the two preceding theorems is the following. 

THEOREM 4.3. Let a double sequence C = {cn}r', satisfying (3.2), be given. Let 
(3.1) be the positive T-fraction that corresponds to Lo(C) at z = 0 and to Lo(C) at 
z = so. Finally, let GI(z) and Go(z) be the limits of the odd and even parts of (3.1), 
respectively. Then Lo(C) and L,(C) are asymptotic expansions with respect to R", 
0 < a < r, at z = 0 and z = oo, respectively, of both Go(z) and GI(z). 
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5. Terminating positive T-fractions. Our main result is as follows. 

THEOREM 5.1. Let C = { c, } be a given double sequence. A terminating positive 
T-fraction 

1 ( mZ) (5.1) 

corresponds to Lo(C) at z = 0 and to L,(C) at z = xo iff there exists a rational 
function 

N m 
F(z) =1E Z+tm Pm > 0, m = 1, 2, ..., N, (5.2a) 

0 < tl < *.*.* < tN' (5.2b) 

such that 

Lo(C) = AO(F(z)), Loo(C) = AO,(F(z)) (5.3) 
(A is defined in ?2). Conditions (5.3) are equivalent to 

N 

C = E (-tm~)',n n = 0 + 1, +2,. . . (5.4a) 
m=1 

Pm >O 9 M = 1,29 ........ , Ng 0< tl < t2< ***.......... < tN' (5.4b) 
PROOF. Clearly (5.3) is equivalent to (5.4a), where F(z) is of the form (5.2). In ?3 

it was shown that a terminating positive T-fraction (the Nth approximant of a 
nonterminating positive T-fraction) can be written in the form (5.2). It remains to 
prove that, if F(z) is a rational function of the form (5.2) such that (5.3) holds, then 
there exists a terminating positive T-fraction (5.1) corresponding to Lo(C) at z = 0 
andto L,(C) atz = x0. 

We begin with the assertion that if there exist two sequences of fLs, 
00 00 

Ln) = y(n)Z m and L (n) = (n)Z-m 
m=1 m=O 

and two sequences of positive numbers {F}, { Gn} such that Lo(C) = L')' L,(C) 
L(l) and 

L(n) = Fn z -(n Fn z 
n=1 93 . 

I+ Gnz + L&n+ 1) 
9 0 

I + Gnz + L(n+,) 
9 

,2 , 

(5.5) 

then the positive T-fraction 

K Fn,z (5.6) 

corresponds to Lo(C) at z = 0 and to L,(C) at z = x0. The continued fraction 
(5.6) may be terminating. A proof of the correspondence to Lo(C) can be made 
from the fact that 

FL( =n F ^z LSn+ )) 1 + G1z + + 1 + GnZ n i4"1)= 
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where Sn denotes the linear fractional transformation (1.9) for the continued 
fraction (5.6). Letting An and Bn denote the nth numerator and denominator, 
respectively, of (5.6), we obtain from (1.12) and (1.14) the relation 

An An + An-ILtn+l) An I(-)nF1F2* Fn z Y. 
+ ) 

n Bn + Bn- L%n+l) Bn 
Bn (Bn 

+ BniLn +1)) 
. 57 

Expanding the right side of (5.7) in increasing powers of z, we see that the first 
nonzero term is of degree at least (n + 1). It follows that (5.6) corresponds to 

Lo(C) at z = 0. A similar argument applies to L,,,(C). 
In view of the preceding result it will suffice to determine a sequence { Hn(z)} of 

functions holomorphic both at z = 0 and at z = oo and satisfying Hj(z) = F(z) 
and Hn(O) = 0, and to determine sequences of positive numbers { Fn,} { Gnj such 
that 

H ~~~Fn zn=1 23 .. 58 
Hn(Z) = I + Gnz +Hn+(Z) n=,2,3 (5.8) 

For then (5.5) will be satisfied with L(n) = AO(Hn) and L(n) = A (Hn) ' = 

1, 2, 3. The process, if at all possible, is unique. If Hn +I = 0 for some n, then 
the positive T-fraction (5.6) terminates. 

We now show that every rational function F(z) of the form (5.2) can be 
expressed by 

PN(Z) (5.9a) 

where 
n 

PO(z) = a, P = n (Z + ;,(n)) n = 1, 2, 3 ... . (5.9b) Pn 
(Z)~ 

= 
1n m=1 

an > 0 for n = 0 1, 2, ..., (5.9c) 

0 < n) < n-l) < (n3,4(5.9d) 

In particular aN = 1 and Dm(N) = tm for 1 < m < N. In fact, it is clear that F(z) can 
be written in the form F(z) = zQ(z)/ PN(z), where 

N N 

Q(Z) =EPm l (z + t(N)). 
m=1 P=1 

v #m 

Hence Q(z) is a polynomial in z of degree N - 1. Moreover, 

N N N 

Q( t_N)) =Pm II (_(N) + N) P 
N 

(D(N) (N)) 
m=l P=1 ==1 

#m v#r 

It follows that Q(_r(fN)) = (_)r+ 'Dr, where Dr > 0, r = 1, 2, ... , N. From this we 
conclude that Q(z) has at least N - 1 distinct zeros on the negative real axis 
separating the zeros of PN(z). This accounts for all of the zeros of Q(z). Finally 
Q(z) > 0 for all z _ (N) and hence Q(z) is of the form PN-I(z) as defined by 

(5.9). 
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We shall complete the proof of the theorem by showing that a sequence { Hnj 
can be found such that H,(z) = F(z) and each Hn(z) has the form 

PN+l-n(z) 

where the Pn(z) are polynomials of the form (5.9b, c, d) and where the Hn(z) satisfy 
equations (5.8). For if this is so, then 

F(z) = HI (z) = F1z ..FN_Iz 

I + Glz + + 1 + GN-Iz + zPO(z)/PI (z) 

Now Po(z) = ao > 0 and P,(z) = a,z + a,1('), where a, > 0, t') > 0. Hence if 
we set FN = aO/a1t() and GN = I/ l) we have 

F(Z)- FIz FNz 

I + Gz + + I + GNZ' 

where all Fn, Gn, n = 1, 2, . . ., N, are positive. 
From (5.8) and (5.10) we have, for 0 < n N - 1, 

ZPN-l-n(Z) = Fn 
z 

(I + Gnz) = FfPN+l-n(Z) 
- (1 + 

Gnz)PNfn(z) 
PN-n(Z) Hn(Z) PN-n(Z) 

and hence 

ZPN-1-n(Z) = FnPN+l-n(Z) - (1 + GnZ)PN-n(Z), O <n < N - 1. (5.11) 

The requirement that PN --n(z) be a polynomial in z of degree N - 1 - n 

determines Fn and Gn completely 
N-n N+ 1-n 

Fn = aNn N- t(N-n))/ aN+lN 1 d(N+1-n)) 
P=1 P-1 

/N-n N+1-n 

Gn = fl t(N-n) 
H 
ll (N+ 1-n) .(5.12a) 

P=1 V=1 

Clearly all Fn and Gn are positive. Next from (5.11) we have 

_g(N-m)pN (Nn)) = Ffp (_(N-n)) 
m N-~1-n( m n N+1-n m 

= (Il)mE(Nn I), m = 1, 2, ... , N- 

where EmNn > 0. This is the case since the zeros of PN-n(z) separate those of 

PN+Iln(z) and all zeros are simple. It follows that, for n < N - 1, the N - n -1 

zeros of PN-n- 1(z) are all distinct, negative and separate those of PN-(z). 
Finally we shall show that aN-lI- > 0 for 1 < n < N - n. Clearly aN = 1 > 0. 

We assume that aN__ > 0 and proceed by induction. By considering the coeffi- 
cients of z N+-n in (5.11), we obtain 

NV+1-n N-n 

aN-1-n = aN+F-nfn ( mN(N+ -n) - aNlGfl(2 ,.(N-n A 

(5. 12b) 
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From (5.12a) we obtain aN+lf , Ff = aN-, Gfl and hence (5.12b) becomes 
N+1-n N-n 

aN 1 a= aN-n Gn mi g(N+1-n) - E g(N-n) - 1). 
m=l m=l 

Thus aN-1-n > 0, provided the second factor on the right side of the preceding 
equation is positive. In view of (5.12a) this is equivalent to the inequality 

N+1-n N-n N+1-n N-n fi (N+1-n) < fi (N-n) ~ (N+l-n) - (N-n)~ (5.13) 
m=l m=1 m=1 m=1 

For this purpose we define 

= g_N+1 n) (Nn) j = 1 2, . .. , N + 1 - n, 

a2 = (N-n) _ (Nj+ 1-n) j = 1, 2, .. ., N - n. 

It follows from (5.9d) that each a, is positive. Since 'N+ 1n)= am, j = 

1, 2, ... , N + 1 - n, and UjN-n) = 2j am, j = 1, 2,... , N - n, (5.13) can be 
written in the equivalent form 

N+ 1-n 2k-1 N -n 2k N+ 1-n 

N (I am < ( 2k am N: a2j-1). (5.14) 
k =1 m =1 k =1 m =1 j = 

Thus it will suffice to prove the inequality 

q 2k-1 q-1 2k q 

1( ,1 am < 11 I: am )( a2-1) (5.15) 
k =1 m =1 k =1 m =1 j= 1 

for arbitrary positive numbers a, and for all q = 2, 3, 4 .... Our proof is by 
induction on q. For q = 2, (5.15) reduces to a,(a, + a2 + a3) < (a, + a2)(a1 + a3), 

which is easily verified. Now assume that (5.15) holds for a given value of q. It 
remains to show that it also holds for q replaced by q + 1, that is, 

q +1 2k-1 q 2k q +1 

4K I 
am < 11 2 am )j a2j-1). (5.16) 

k =1 m =1 k =1 m =1 j= 1 

This can be written as 

2k-1 2q q 2k-1 

I~1(m=I: am E am + II 1 am a2q+ 1 
k =1 m =1 m =1 k =1 m= 1 

q l2k \q /2k \ 

< (: a2j- I)I: am) + a2q+ II( E am) 
j=l k=l m=l k=1 m=l 

or, equivalently, 

2q \lq \q-1 /2k \ q /2k-1 I 

0 <1 am : a2j1I | ( am)- II | am) 
2m= I \j=l k=1 m=1 k=1 m=l1 

k m=1 / km2k q 2k-1=\ 

+ a2q+1 (ii( am - k I:|m= am)). (5.17) 
\k=l \=l I k=1 m=l1 J 

That the first term on the right side of (5.17) is positive follows from the induction 
hypothesis (5.15). That the second term on the right side of (5.17) is positive can be 
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verified directly. This completes the induction and our proof of Theorem 5.1. 
For the modified moment problem we have established the following. 

THEOREM 5.2. For a given double sequence C= {fc,}r)', there exists a unique 
solution 41 of the modified moment problem c,, = f (-t)' d+'(t), 41 E ''. n = 

0, + 1, +2, . . ., iff there exists a rational function F(z) of the form 

N iPmZ 
F(Z) =E Pz+m < tl < ... < tN p > ? mt= 1,2 N 

m=1 m 

such that Lo(C) = AO(F(z)) and L.(C) = A.(F(z)). 

We conclude this section by observing that if a nonterminating positive T-frac- 
tion is such that its odd (even) part converges to a function 

F(z)= foozdiP(t) A EI' 

then F(z) has the form 

N z-- 

F(z) = E + 0 0<tl < .. < tN' Pm > 0 m = 12 . N 
= z + tm m=l1 m 

and hence the positive T-fraction corresponds to AO(F(z)) at z = 0 and to 

A.(F(z)) at z = x. This is impossible by Theorem 5.1. Therefore the 4(?) in 
Theorem 3.4 satisfy 4A(?) e *I'. 

6. The strong Stieljtes moment problem. We begin with a result giving a necessary 
condition for the strong Stieltjes moment problem to have a solution. The proof is 
modelled on the corresponding proof for the ordinary moment problem. 

THEOREM 6.1. A function 41 E 'I' will generate a given double sequence C = 

{c,, ) r of moments, by means of the relations 
00 

Cn =|(_t)n 4(t), n = O, ?- 1, ?-2, ...'(6.1) 

only if the double sequence C satisfies the condition (3.2), that is, 

Hnj-n(C) > 0, n = 0, 1, 2,..., (6.2a) 

H -2n) (C) > 0, H-(27n-1))(C) < 0, n = 1, 2, 3 (6.2b) 

PROOF. We consider the quadratic forms 
n n 

Q(s, n) = E E (-j)Sci+j+,uiuj. 
i=-n j=-n 

If the strong Stieltjes moment problem has a solution 4 E "'c, then 

Q(s, n) = (ts E _ (t)'ui( tyui) d4(t), 

since, for finite sums, the order of summation and integration can be exchanged 
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even though the integration is improper. Thus 

Q(s, n) = f ts( (-t)'ui) da(t)- 

Since 4 is assumed to have infinitely many points of increase, it then follows that 
all Q(s, n) are positive definite quadratic forms. That all Q(s, n) are positive 
definite quadratic forms is equivalent to the condition that all determinants, 

(1)sC2n (-1)sC-2n+I+s ... (-1)SC-2n+k+s 

()sC-2 (n)S (j)sC-2n+2+s 
. 

(-S)C-2n+k+l+s 

(1)s C-2n+k+s (-1) C-2n+k+l+s 
. . . 

(-1)sC-2n+2k+s 

where k = 0, 1, . . . , 2n, be positive (see, for example, [18, p. 88]). For s = 0 we get 
H(- n(C) > 0 and, for s = 1, (l)k+lH(72nl))(C) > 0. By choosing k = 2n-1 
and k = 2n for s = 0 and k = 2n - 1 and k = 2n - 2 for s = 1, one obtains the 
inequalities (6.2). This completes the proof. 

Our second result concerns the uniqueness of solutions to the strong Stieltjes 
moment problem. We shall call two elements of ' essentially equal if they differ in 
at most their points of discontinuity. 

THEOREM 6.2. Let C = {cn})O?o be a double sequence satisfying conditions (6.2) and 
let the positive T-fraction 

K (6.3) n-=1 I + G,z)(63 

corresponding to Lo(C) at z = 0 and to L.(C) at z = oo be convergent on compact 
subsets of R = [z: larg zl < 7T] (see Theorem 3.3). Then the strong Stieltues moment 
problem for the double sequence C has exactly one solution 4' and it is contained in 
'I . Here, essentially equal solutions are considered as equal. 

PROOF. That the moment problem has at least one solution followed from 
Theorem 4.1. Let 4, be a solution. Let An(z), Bn(z) denote the nth numerator and 
denominator of (6.3), respectively. Then, from Theorem 3.1 and Theorem 4.2, 

An(Z) 
n I' 

= 1: Cm, Z m + Cn Z cp (Z) 
Bn(Z) m=O 

and 

00 ~~n-I 
zd'(t) = , Cmz-m + CnZnX"(Z) 

where pn(z) and Xjz) are bounded functions of z at least for 0 < M < z < x. 
Hence, 

jX zBn(z) d4,(t) - An(z) = B()(f z d( t) An(Z)) 

= Bn(Z)cnz-n ((z)- Z Pn(Z)) = f3(z), (6.4) 
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where 83n(z) is bounded as z x-> through positive values. Next consider 

p0 z(Bn(z) - Bn(-t)) d4(t) -An(Z) = f3n(Z) - z(-t) 
d(t)- 

The left-hand side of this equation is a polynomial in z of degree at most n with a 
zero constant term. This follows from the fact that (Bn(z) - Bn(-t))/(z + t) is a 
polynomial in z of degree n - 1. The right-hand side is a function which is 
bounded as z x-> through positive values. It follows that 

An(z) = Z(Bn(z) - Bn(-t)) d,p(t) (6.5) 

By considering the expansions of An(z)/Bn(z) and fJ(z/(z + t)) d4(t) at z = 0, 
one obtains 

IxzBn(z)d(t) -_ An (z) = yn (z) z n + 1, (6.6) 

where yn(z) is a bounded function of z for positive values of z near z = 0. Hence 

I z(Bn(z) 
- 

Bn(-t)) d-l(t)-An(z) =-zJ B(z ) + yn(Z)Zntl. (6.7) 
z + d{t - ,tz - Bz(t + y,()"' 67 

Using (6.5) and (6.6), one gets 
0 zB,,(-t) 

n - m BJ B(-t) dp,(t) + nz+If Bn(-t) da(t) 

z +t 
d 

=1 o (-)m (_t)n(Z + t) 

= y (z)Z n+ . (6.8) 

From this one concludes that f '(Bn(-t)/tm) d+p(t) = 0 for m = 1, 2, . .. , n. 

Hence, f 'P(t)(Bn(-t)/tn) d+(t) = 0 for all polynomials P(t) in t of degree less 
than or equal to n - 1. Hence, in particular, 

00o Bn,(-t) - B,,(z)) Bn,(-t) di()=0. (6.9) 
Jo0( z + t (_,)n 

It also follows from (6.7) that 

0? Bn(-t) d+p(t) = Z-n Bn(-t) d(t) (6.10) 
( t)n(Z + t) z + t 

Using (6.4) one arrives at 

Jx (ZBnZ)/z )d+(t) nn = ln(z (6.11) 

Thus we obtain, from (6.10) and (6.11), 

00? z((B(z)zn) _(B(_t)/ (_t)n))di 
A (z) 

z z z + ( 

-n gn (Z) Bn (-t) 
=Z nfnZ)fdip (t)) 

The left-hand side of the above equation is a polynomial in z-1 of degree at most 
(n - 1). The right-hand side is of order z-n as z x-> through positive values. It 
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follows that 

A (z) =l Z((Bn(z)/z) -(Bn(-t) t)n)) (t). (6.12) 
Zn JOz + t 

From (6.9) and (6.12) we have 

(B,,(z)) 
2 

X0 z d4(t) _A,,(z)Bn(Z) =z ) Bn(-t) d+p(t) 
z z +t z =z_() 0(t)n(Z + t) 

= Z (Bn(_t))2 d({t). 
O (-t)n(z + t) 

Dividing both the left side and the right side of the above equation by (Bn(z))2/z n, 

one arrives at 

00 ? z d+p(t) _An(Z) z n + I oo (Bn (-t))2 d0 t) 
z + t Bn(z) (Bn(z))2 ? (-t)n(z + t) 

For z > 0 one then concludes that 

A 2n(z) r0 z d4 ( t)< A2n-l(z) n= ,23 
B2n (z) J z + t B2n, (z) n 

Since 4' here is an arbitrary solution of the moment problem, it is essentially equal 
to the solution obtained from the convergent positive definite T-fraction (see, for 
example, [12, pp. 184-190] and [19, Chapter 8, ?7]). From Theorem 5.2 we know 
that the solution obtained from a nonterminating positive T-fraction is in *'I. This 
completes the proof of Theorem 6.2. 

If the positive T-fraction (3.1) does not converge, then 4(0)(t) and A(')(t) are 
distinct functions (see Theorem 3.4) and thus for every choice of a > 0, /8 > 0 the 
function 

4'aji(t) 
- 

?ta4(t) + f4')(t) 

is also a solution of the strong Stieltjes moment problem. Hence in this case there 
are infinitely many solutions. We do not know whether the 4,afi exhaust the 
possible solutions. The following result has now been proved. 

THEOREM 6.3. The strong Stielties moment problem for a double sequence C= 

{cn)}? has a solution iff H(-?n)(C) > 0, n = 0, 1, 2,..., and H2(-2n)(C) > 0, 
H(42n -'))(C) < 0, n = 1, 2, 3 .... The solution is unique iff the positive T-fraction 
(3.1), corresponding to Lo(C) at z = 0 and to L.(C) at z = oo, converges (or 
equivalently iff E en = x or E dn = oo, where en and dn are defined as in Theorem 
3.3). 
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