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We compute the reflected and refracted electromagnetic fields for an ideal semi-infinite (half-space)
plasma, as well as the reflection coefficient, by using a general procedure based on equations of motion
and electromagnetic potentials. The approach consists of representing the charge disturbances by a dis-
placement field in the positions of the moving particles (electrons). The propagation of an electromag-
netic wave in plasma is treated by means of the retarded electromagnetic potentials, and the resulting
integral equations are solved. Generalized Fresnel’s relations are thereby obtained for any incidence angle
and polarization and the angles of total polarization and total reflection are derived. Bulk and surface
plasmon–polariton modes are identified. As it is well known, the field inside the plasma is either damped
(evanescent) or propagating (transparency regime), and the reflection coefficient exhibits an abrupt
enhancement on passing from the propagating regime to the damped one (total reflection).

� 2009 Elsevier B.V. All rights reserved.
Fresnel’s theory of the propagation of the eletromagnetic waves We present here a computation of the reflected and refracted

in matter has proved to be very successful for describing reflection
and refraction [1,2]. This is the more so remarkable as the theory
has been formulated before the discovery of Maxwell’s equations.
Fresnel’s theory is based on a few assumptions, like the transver-
sality of the electromagnetic waves and general continuity condi-
tions at the boundary of two adjoining media, and makes use of
the dielectric function (and, in a more general form, by the mag-
netic permeability and electrical conductivity) for representing
the matter polarization and response. It is especially this latter
point that raises some queries in applying the theory to particular
cases, the more so as the dielectric functions are either introduced
by various ansatzen or are model dependent. In addition, there are
difficulties with a proper definition of the dielectric function in
structures with special, restricted geometries. It would be desir-
able, therefore, of having Fresnel’s theory without resorting to par-
ticular assumptions on the dielectric function, at least for
reasonably realistic models [3–21]. This is particularly relevant
for recent investigations of the electromagnetic waves in struc-
tures with special geometries, where a possible enhancement of
the electromagnetic radiation has been reported [22–24].
ll rights reserved.
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electromagnetic fields for a semi-infinite (half-space) plasma by
making use of the electromagnetic potentials and the equation of
motion for polarization. We represent the charge disturbances as
dn ¼ �ndivu, where n is the (constant, uniform) charge concentra-
tion and u is a displacement field of the mobile charges (electrons).
This representation is valid for KuðKÞ � 1, where K is the wavevec-
tor and uðKÞ is the Fourier component of the displacement field.
We assume a rigid neutralizing background of positive charge, as
in the well-known jellium model.

We assume a plane wave incident on the plasma surface under
angle a. Its frequency is given by x ¼ cK , where c is the velocity of
light and the wavevector K ¼ ðk;jÞ has the in-plane component k
and the perpendicular-to-plane component j, such as k ¼ K sin a
and j ¼ K cos a. In addition, k ¼ kðcos u; sin uÞ. The electric field
is taken as E0 ¼ E0ðcos b; 0;� sin bÞ � eikreijze�ixt , and we impose
the condition cos b sin a cos u� sin b cos a ¼ 0 (transversality con-
dition KE0 ¼ 0). The angle b defines the direction of the polariza-
tion of the incident field.

In the presence of an electromagnetic field E0 we use the equa-
tion of motion

€u ¼ � e
m

E� e
m

E0; ð1Þ
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for the displacement field u, where �e is the electron charge, m is
the electron mass and E is the polarizing field. We leave aside the
dissipation effects (which can easily be included in Eq. (1)). We con-
sider an ideal semi-infinite plasma extending over the half-space
z > 0 (and bounded by the vacuum for z < 0). The displacement
field u is then represented as ðv;u3ÞhðzÞ, where v is the displace-
ment component in the ðx; yÞ-plane, u3 is the displacement compo-
nent along the z-direction and hðzÞ ¼ 1 for z > 0 and hðzÞ ¼ 0 for
z < 0 is the step function. We denote by u the couple ðv; u3Þ and
use Fourier transforms of the type

uðr; z; tÞ ¼
X

k

Z
dxuðk; z;xÞeikre�ixt ; ð2Þ

where r is the (x; y)-in-plane position vector. Eq. (1) becomes

x2u ¼ e
m

Eþ e
m

E0eijz; ð3Þ

for z > 0. In Eq. (3) we have preseved explicitly only the z-depen-
dence (i.e. we leave aside the factors eikre�ixt). We find it convenient
to employ the vector potential

Aðr; z; tÞ ¼ 1
c

Z
dr0
Z

dz0
jðr0; z0; t � R=cÞ

R
; ð4Þ

and the scalar potential

Uðr; z; tÞ ¼
Z

dr0
Z

dz0
qðr0; z0; t � R=cÞ

R
; ð5Þ

where j ¼ �ne _uhðzÞeikre�ixt is the current density,
q ¼ nedivu ¼ neðikvþ @u3

@z ÞhðzÞeikre�ixt þ neu3ð0ÞdðzÞeikre�ixt is the

charge density and R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr� r0Þ2 þ ðz� z0Þ2

q
. The integrals in Eqs.

(4) and (5) imply the known integral [25]Z 1

zj j
dxJ0 k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 � z2
p� �

eixx=c ¼ i
j

eij zj j; ð6Þ

where J0 is the zeroth-order Bessel function of the first kind (and
j2 ¼ x2=c2 � k2). It is convenient to use the projections of the in-
plane displacement field v on the vector k and on the vector
k? ¼ kð� sin u; cosuÞ;k?k ¼ 0. We denote these components by
v1 ¼ kv=k and v2 ¼ k?v=k, and use also the components
E1 ¼ kE=k, E2 ¼ k?E=k and similar ones for the external field E0.
We give here the components of the external field

E01 ¼ E0 cos b cos u; E02 ¼ �E0 cos b sin u; E03 ¼ �E0 sin b: ð7Þ

One can check immediately the transversality condition
E01kþ E03j ¼ 0. Making use of E ¼ � 1

c
@A
@t � gradU, Eqs. (4) and (5)

give the electric field

E1 ¼ �2pinej
Z

0
dz0v1ðz0Þeij z�z0j j � 2pne

k
j

Z
0

dz0u3ðz0Þ
@

@z0
eij z�z0j j;

E2 ¼ �2pine
x2

c2j

Z
0

dz0v2ðz0Þeij z�z0j j;

E3 ¼ 2pne
k
j

Z
0

dz0v1ðz0Þ
@

@z
eij z�z0j j � 2pine

k2

j

Z
0

dz0u3ðz0Þeij z�z0j j

þ 4pneu3;

ð8Þ

for z > 0. It is worth observing in deriving these equations the non-
invertibility of the derivatives and the integrals, according to the
identity

@

@z

Z
0

dz0f ðz0Þ @
@z0

eij z�z0j j ¼ j2
Z

0
dz0f ðz0Þeij z�z0j j � 2ijf ðzÞ ð9Þ

for any function f ðzÞ; z > 0; it is due to the discontinuity in the
derivative of the function eijjz�z0 j for z ¼ z0. Now, we employ equa-
tion of motion (3) in Eq. (8) and get the integral equations
x2v1 ¼ �
ix2

pj
2

Z
0

dz0v1ðz0Þeij z�z0j j �
x2

pk
2j

Z
0

dz0u3ðz0Þ
@

@z0
eij z�z0j j

þ e
m

E01eijz;

x2v2 ¼ �
ix2

px2

2c2j

Z
0

dz0v2ðz0Þeij z�z0j j þ e
m

E02eijz;

x2u3 ¼
x2

pk
2j

Z
0

dz0v1ðz0Þ
@

@z
eij z�z0j j �

ix2
pk2

2j

Z
0

dz0u3ðz0Þeij z�z0j j

þx2
pu3 þ

e
m

E03eijz;

ð10Þ

for the coordinates v1;2 and u3 in the region z > 0, where
xp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4pne2=m

p
is the plasma frequency.

The second Eq. (10) can be solved straightforwardly by noticing
that

@2

@z2

Z
0

dz0v2ðz0Þeij z�z0j j ¼ �j2
Z

0
dz0v2ðz0Þeij z�z0j j þ 2ijv2: ð11Þ

We get

@2v2

@z2 þ ðj
2 �x2

p=c2Þv2 ¼ 0: ð12Þ

The solution of this equation is

v2 ¼
2eE02

mx2
p
� j j� j0ð Þ

K2 eij0z; ð13Þ

where

j0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2 �x2

p=c2
q

¼ 1
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 cos2 a�x2

p

q
: ð14Þ

The wavevector j0 can also be written in a more familiar form

j0 ¼ ðx=cÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� sin2 a

p
, where e ¼ 1�x2

p=x2 is the dielectric func-
tion. The corresponding component of the (total) electric field (the
refracted field) can be obtained from Eq. (3); it is given by
ðmx2=eÞv2. For j2 < x2

p=c2 (x cosa < xp) this field does not prop-

agate. For j2 > x2
p=c2ðx greater than the transparency edge

xp= cos a) it represents a refracted wave (transparency regime)
with the refraction angle a0 .given by Snell’s law

sina0

sina
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�x2
p=x2

q ¼ 1=
ffiffiffi
e
p

: ð15Þ

The first and the third Eq. (10) can be solved by using an equa-
tion similar with Eq. (11) and by noticing that they imply

j02u3 ¼ ik
@v1

@z
: ð16Þ

We get

v1 ¼
2eE01

mx2
p
� j
0 j� j0ð Þ
jj0 þ k2 eij0z; ð17Þ

and

u3 ¼
2eE03

mx2
p
� j j� j0ð Þ
jj0 þ k2 eij0z: ð18Þ

Similarly, the corresponding components of the refracted field
are given by Eq. (3). It is easy to check the transversality condition
v1kþ u3j0 ¼ 0 of the refracted wave.

We can see that the polarization field E in Eq. (1) cancels out the
original, incident field E0 and gives the total, refracted field
mx2u=e inside the plasma. This is an illustration of the so-called
Ewald–Oseen extinction theorem [8,26]. We note that a possible
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Fig. 1. Reflection coefficient for a semi-infinite plasma for b ¼ p=6 and various
incidence angles a. One can see the shoulder occurring at the transparency edge
xp= cos a and the zero occurring at x2 ¼ x2

p=ð1� tan2 aÞ for
a ¼ b ¼ p=6 ðR2 ¼ 0;u ¼ 0).
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treatment of the propagation of the electromagnetic waves in mat-
ter by means of integral equations was suggested previously [26].

In order to get the reflected wave (region z < 0) we turn to Eq.
(8) and use therein the solutions given above for v1;2 and u3. It is
worth noting here that the discontinuity term x2

pu3 does not ap-
pear anymore in these equations (because z0 > 0 and z < 0 and
we cannot have z ¼ z0). The integrations in Eqs. (8) are straightfor-
ward and we get the field

E1 ¼ E01
j� j0

jþ j0
� jj0 � k2

jj0 þ k2 e�ijz; ð19Þ

E2 ¼ E02
j� j0

jþ j0
e�ijz; ð20Þ

and

E3 ¼ �E03
j� j0

jþ j0
� jj0 � k2

jj0 þ k2 e�ijz: ð21Þ

We can see that this field represents the reflected wave
(j! �j), and we can check its transversality to the propagation
wavevector. Making use of the reflected field Erefl given by Eqs.
(19)–(21) and the refracted field Erefr obtained from Eqs. (3) and
(8) (Erefr ¼ Eþ E0 ¼ mx2u=e) one can check the continuity of the
electric field and electric displacement at the surface (z ¼ 0) in
the form E1;2refl þ E01;2 ¼ E1;2refr , E3refl þ E03 ¼ eE3refr , where
e ¼ 1�x2

p=x2. The angle of total polarization (Brewster’s angle)

is given by jj0 � k2 ¼ 0, or tan2 a ¼ 1�x2
p=x2 ¼ e (for a < p=4).

The above equations provide generalized Fresnel’s relations be-
tween the amplitudes of the reflected, refracted and incident
waves at the surface for any incidence angle and polarization. They
can also be written by using x2 ¼ x2

p=ð1� eÞ, where e is the dielec-
tric function.

The reflection coefficient R ¼ jEreflj2=jE0j2 can be obtained
straightforwardly from the reflected fields given by Eqs. (19)–
(21). It can be written as

R ¼ R1 cos2 b sin2 uþ R2 cos2 b cos2 uþ sin2 b
� �h i

; ð22Þ

where

R1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 cos2 a�x2

p

q
�x cos affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 cos2 a�x2
p

q
þx cos a

�������

�������

2

; ð23Þ

and

R2 ¼
cos a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 cos2 a�x2

p

q
�x sin2 a

cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 cos2 a�x2

p

q
þx sin2 a

�������

�������

2

: ð24Þ

The first term in the rhs of Eq. (22) corresponds to
b ¼ 0ðu ¼ p=2; s-wave, electric field perpendicular to the plane
of incidence), while the second term corresponds to b ¼ aðu ¼ 0;
p-wave, electric field in the plane of incidence). It is easy to see that
there exists a cusp (shoulder) in the behaviour of the function
RðxÞ, occurring at the transparency edge x ¼ xp= cos a, where
the reflection coefficient exhibits a sudden enhancement on pass-
ing from the propagating regime to the damped one, as expected
(total reflection). The condition for total reflection can also be writ-
ten as sin a ¼

ffiffiffi
e
p

, where R ¼ 1 ðR1;2 ¼ 1), as it is well known. For
illustration, the reflection coefficient is shown in Fig. 1 for
b ¼ p=6 and various incidence angles. The reflection coefficient is
vanishing for x2 ¼ x2

p=ð1� tan2 aÞ for a ¼ b < p=4 ðR2 ¼ 0;u ¼ 0).
Making use of the reflected field given by Eqs. (19)–(21) and the

refracted field (Erefr ¼ mx2u=e) given by Eqs. (13), (17) and (18) we
can check the continuity of the energy flow across the surface. In-
deed, we can compute the Poynting vector S ¼ ðc=4pÞE�H ¼
ðc2=4pxÞKjEj2, where H ¼ ðc=xÞK� E is the magnetic field, for
the reflected and refracted plane waves. The component normal
to the surface is continuous, i.e. S3refl þ S03 ¼ S3refr , while the in-
plane components are discontinuous, they being related by
S1;2refl þ ðj0=jÞS1;2refr ¼ S1;20. One can see that, along the surface,
the energy flows at different rates in the vacuum and in the
plasma.

The present approach can be extended to a plasma slab of finite
thickness d;0 < z < d, where the displacement field u can be repre-
sented as ðv; u3Þ½hðzÞ � hðz� dÞ�. We have computed the electro-
magnetic field inside the slab, the reflected and transmitted
fields and the reflection and transmission coefficients. The field in-
side the slab consists of a superposition of two plane waves e�ij0z,
where j0 is given by the same Eq. (14). The transparency edge is gi-
ven by the same equation x cosa ¼ xp as for a semi-infinite plas-
ma. Generalized Fresnel’s relations have thereby been obtained, for
both surfaces of the slab, any incidence angle and polarization.
Apart from characteristic oscillations, the reflection and transmis-
sion coefficients exhibit an appreciable enhancement on passing
from the propagating regime to the damped regime. The method
can also be applied to other structures with more particular
geometries.

The same method can be used for treating the plasmons in
structures with special geometries. Indeed, the electric force in
equation of motion (1) must then be replaced by the Coulomb
(non-retarded) force. By using this procedure we have obtained
for a semi-infinite plasma the well-known bulk plasmons with fre-
quency xp and surface plasmons with frequency xp=

ffiffiffi
2
p

. Similarly,
for a plasma slab we have derived the plasmon frequencies given
by x2

pð1� e�kdÞ=2 [27–34]. We have also computed the energy loss
for these plasmas and the dielectric response. It is shown that the
surface terms do not change the bulk dielectric function as usually
defined (i.e. for a plane wave), since the surface contributions to
the dielectric response are localized. The surface contribution to
the energy loss exhibits characteristic oscillations in the transient
regime near the surfaces.

It is worth investigating the eigenvalues of the homogeneous
system of integral Eq. (10), for parameter j given by

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2=c2 � k2

q
. Such eigenvalues are given by the roots of the

vanishing denominator in Eqs. (17) and (18), i.e. by equation
jj0 þ k2 ¼ 0. This equation has real roots for x only for the
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damped regime, i.e. for j ¼ ijjj and j0 ¼ ijj0j. Providing these con-
ditions are satisfied, there is only one acceptable branch of excita-
tions, given by

x2 ¼
2x2

pc2k2

x2
p þ 2c2k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x4

p þ 4c4k4
q : ð25Þ

We can see that x � ck in the long wavelength limit and it ap-
proaches the surface-plasmon frequency x � xp=

ffiffiffi
2
p

in the non-
retarded limit (ck!1). These excitations are surface plasmon–
polariton modes. They imply v2 ¼ 0 and v1;u3 � e�jj

0 jz. In addition,
a careful analysis of the homogeneous system of Eq. (10) reveals
another branch of excitations, given by x ¼ xp, which, occurring
in this context, may be termed the bulk plasmon–polariton modes.
They are characterized by v2 ¼ 0 and v1ðk; z ¼ 0Þ ¼ 0. For all these
modes we have u3 ¼ ½ic2k=ðx2 � c2k2 �x2

pÞ�ð@v1=@zÞ.
Finally, we comment here upon two points. First, we can see

that Eqs. (13), (17) and (18) relate the total field mx2u=e to the
amplitude of the external field E0. However, while the former goes
like eij0z, the latter goes like eijz, so we cannot define a dielectric
function in usual terms (plane waves) for this semi-infinite plasma
(the dielectric function e ¼ 1�x2

p=x2 corresponds to the bulk
plasma). The same is true for the non-retarded dielectric response,
which contains a surface term � e�kz. This particular feature is re-
lated to the non-locality of the dielectric response and it holds for
any structure with restricted geometry.

Second, it is worth noting that we do not use in our approach
boundary conditions at the surface; instead, the usual continuity
conditions follow from our approach, for the transverse compo-
nents of the electric field and the normal component of the electric
induction. There is no need for additional boundary conditions be-
cause the problem is completely determined by our equations and
the external field.

Other effects related to the dynamics of plasmons and polari-
tons for a semi-infinite electron plasma, or, in general, various
plasmas with rectangular geometries, as well as structures with
more particular geometries, can be computed similarly by using
the method presented here. The dissipation can be included in this
treatment (as for metals) and a model can be formulated for dielec-
trics, amenable to the method presented above. This will allow the
treatment of more realistic cases as well as various interfaces, in
particular plasmas (or metals) bounded by dielectrics. These inves-
tigations are left for forthcoming publications.
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