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1. INTRODUCTION

The formation of a “plasmon condensate” in a
weakly turbulent plasma is a well-known paradoxical
phenomenon [1] in which the main nonlinear process—
the decay of a Langmuir wave 
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 [2]—gives
rise to a wave energy flux toward the long-wavelength
region, where there is no efficient mechanism for wave
absorption. As the energy is pumped into Langmuir tur-
bulence, it is stored in the long-wavelength region.
Vedenov and Rudakov [3] showed that, because of the
development of modulational instability, a uniformly
distributed plasmon background can break into plas-
mon bunches. Zakharov [4] studied the modulational
instability in its nonlinear stage, which is characterized
by Langmuir wave collapse. The collapse leads the for-
mation of cavities—regions with depressed ion density
and elevated field (i.e., with elevated plasmon density).
Galeev et al. [5] supposed that the modulational insta-
bility can eliminate the problem of plasmon condensate
because of the reduction in the spatial scales of the
waves.

In [6–8], a theory of Langmuir turbulence was
developed that takes into account the wave energy flux
to smaller scales due to Langmuir wave collapse and
the subsequent onset of a linear mechanism for plas-
mon absorption.

All the papers cited above were aimed at studying
turbulence in an unmagnetized plasma. In this case, the
weak turbulence parameter 
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 is the wave energy density, 
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is the electric field amplitude, 
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 is the electron Langmuir frequency, 

 

n

 

 is
the electron density, 

 

m

 

 is the mass of an electron, 
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 is
the electron temperature, 

 

k

 

0

 

 is the characteristic wave-
number in the turbulence spectrum, and 
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 is the electron Debye radius. This condi-
tion, however, substantially limits the applicability of
the results obtained in solving relevant problems.
Zakharov [9] proposed a theory of plasma collapse that
takes into account the effect of an external magnetic

field such that 

 

W

 

/

 

nT

 

 

 

�

 

  

 

�

 

 1

 

. He showed that
the wave energy is accumulated in the lowest frequency
slow extraordinary wave. Krasnosel’skikh and Sotni-
kov [10] developed a theory of Langmuir wave collapse

in a weak magnetic field such that 
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. Even such a weak magnetic field changes the
dispersion properties of Langmuir waves and, conse-
quently, the nature of the modulational instability. In
particular, the cavities in this situation occur in the form
of pancakes flattened in the direction of the external
magnetic field, along which the pump wave propagates:
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, where 
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 are the longitudinal and trans-
verse sizes of the cavity, respectively. The collapse of
wave structures continues and their spatial scales
(wavelengths) become progressively smaller until Lan-
dau damping by resonant particles comes into play.

In [10], as well as in the numerical experiments of
[11], a study was made of the case in which the wave
electric field 

 

E

 

 is directed along the external magnetic
field 
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. Asaulov and Zakharov [12] investi-
gated the case in which the wave electric field is trans-
verse to the external magnetic field, 

 

E

 

 

 

⊥

 

 

 

B

 

0

 

; this case
can occur when a magnetized plasma is irradiated by an
electromagnetic wave. It was shown that, for 
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(a longitudinal collapse), only a small fraction of the
plasmon condensate energy is dissipated in the cavity,
whereas for 

 

E
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B

 

0

 

 (a transverse collapse), the cavity
tends to absorb all the energy that has been carried into
it (the case of a strong collapse).

Of particular interest is the problem of plasma tur-
bulence in a fairly strong external magnetic field,

 

 

 

≥

 

 

 

1

 

. In such a plasma, experimental observa-
tions revealed filaments stretched out along the mag-
netic field 

 

B

 

0

 

 [13, 14]. It was supposed that these fila-
ments are cavities stretched out in the direction of the
external magnetic field. The case 

 

ω

 

Be

 

 ~ 

 

ω

 

pe

 

 is not only
of general physical interest but is also important for lab-
oratory applications, as well as for studying iono-
spheric, magnetospheric, and interplanetary plasmas.

The case of strong magnetic fields (

 

 

 

�

 

 

 

) is
of special interest for studying astrophysical plasmas,
e.g., pulsar magnetospheres. In this case, the problem
of Langmuir plasmon condensate also presents consid-
erable interest, especially in view of the specific prop-
erties of an electron–positron plasma. The reason is
that, in such plasmas, the energy is accumulated in
long-wavelength Langmuir waves with phase velocities

 

V

 

ph

 

 exceeding the speed of light, 

 

V

 

ph

 

 > 

 

c. Another rea-
son is that an electron–positron plasma does not contain
heavy particles and, consequently, there is no low-fre-
quency (LF) ion sound—a necessary component for the
development of conventional Langmuir turbulence. In
[15], it was assumed that the role of the LF wave com-
ponent can be played by the beatings of two high-fre-
quency (HF) electromagnetic waves. In that paper, con-
sideration was given to the modulational instability in
the electron–positron plasma of a pulsar magneto-
sphere, in which HF Langmuir waves with superlumi-
nal phase velocities, Vph > c (plasmon condensate), are
modulated by the beatings of two HF electromagnetic
waves, t and t '. The interaction of waves t and t ' with a
strongly magnetized plasma can trigger a modulational
instability—a process that is accompanied by aperiodic
generation of both longitudinal and transverse small-
scale perturbations.

We think that, in this context, it is important to
investigate the modulational instability of Langmuir
waves that is caused by the beatings of two HF electro-
magnetic waves, t and t ', in a conventional magnetized

(  ≥ ) electron–ion plasma. In what follows, we
will show that, when the amplitudes of the waves t and
t ' participating in the modulational instability are suffi-
ciently large, the beating process can turn out to be
more efficient than the main nonlinear interaction pro-
cess (l  l ' + s).

As was mentioned above, Asaulov and Zakharov
[12] showed that, for E ⊥ B0, the collapse is more effi-
cient. In this case, the main nonlinear process is redis-
tribution of the wave energy in k space and its accumu-
lation in the narrow region around the direction of the
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magnetic field, followed by a two-dimensional longitu-
dinal collapse.

The process of accumulation of the wave energy
around the direction of the external magnetic field is
more pronounced when the external magnetic field is

sufficiently strong,  ≥ , and when the role of the
initial electric field E⊥ is played by the field induced by
the beatings of two electromagnetic waves t and t ' prop-
agating along the external magnetic field. The electric
and magnetic fields of the waves t and t ' are equal to E t

and Bt and to E t ' and Bt ', respectively, and are directed
perpendicular to the external magnetic field B0.

For a weakly turbulent plasma in which all possible
electromagnetic and electrostatic modes are excited, it
is easy to choose two waves with mutually orthogonal
fields E t ⊥ E t ' and Bt ⊥ Bt ' such that E t || Bt ' and E t ' || Bt.
In this case, the plasma will drift in crossed fields,
namely, a periodically varying electric field E t and an
external magnetic field B0, with the velocity

(1)

The drift velocity Udr is perpendicular to both B0 and
E t and, accordingly, to Bt '.

As charged plasma particles drift with velocity (1)
in the magnetic field Bt ' of the second wave, they gen-
erate a nonlinear electric field directed along the exter-
nal magnetic field B0,

(2)

in the interaction of two transverse electromagnetic
waves such that

(3)

where vz, T is the longitudinal component of the elec-
tron (or ion) thermal velocity, ω is the frequency, and k
is the wave vector of the perturbations. In this case, all
plasma particles will participate in the nonlinear collec-
tive process, which can thus be described in the hydro-
dynamic approach.

Our paper is organized as follows. In Section 2, we
study the motion of charged plasma particles in their
interaction with the fields of two electromagnetic waves
t and t ' and with the external magnetic field B0 || z. In
Section 3, we analyze the nonlinear dynamics of the
modulational instability. To do this, we do not restrict
ourselves to considering a certain branch of the disper-
sion relation but use a general wave equation. In Sec-
tion 4, we discuss the results of our work, compare
them with the results obtained for the classical modula-
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tional instability (l  l ' + s), and also examine the
limitations on the wave and plasma parameters.

2. MOTION OF CHARGED PARTICLES
IN A MAGNETIZED PLASMA 

WITH TWO ELECTROMAGNETIC WAVES

Under the condition ∂/∂t � (v · —) (or ω � k · v,
where v is the hydrodynamic particle velocity), we can
retain only the first term in the substantial derivative. In
this case, the equation for the flux of charged plasma
particles (electrons and ions) in an external equilibrium
magnetic field B0 and in the electromagnetic fields of an
incident wave t and the wave t ' reflected from the parti-
cles has the form

(4)

Here, the subscripts α = e, i refer to the electrons and
ions, respectively, and eα and mα are the charge and
mass of the corresponding particle species. In what fol-
lows, we will primarily consider the electrons, also
keeping in mind the ions.

The problem has two small parameters:
(i) the amplitude of the wave perturbations, which is

much smaller than the amplitude of the external mag-
netic field, (|E |, |E' |, |B |, |B' | � |B0 |), and

(ii) the energy of the wave perturbations, which is
much smaller than the energy of the plasma particles,

|E |2, |E ' |2 � mn , where n is the electron (ion) density
and vT = (T/m)1/2 is the electron thermal velocity.

Therefore, the particle velocity v can be represented
as the sum of the relevant small velocity components:

(5)

where v0⊥ is the unperturbed particle velocity in the
external magnetic field B0 || z, |v1| � |v0⊥| is the linear
perturbation of the velocity v0⊥ under the action of the
waves t and t ', and | |v2 | � |v1| is the nonlinear velocity
perturbation under the action of the waves t and t '.

Substituting expression (5) into Eq. (4), we obtain
three coupled equations for v0⊥, v1, and v2.

In the zeroth approximation, we have

(6)

For electrons, the solution to Eq. (6) has the form

(7)

where ωBe = eB0/m is the electron gyrofrequency and
v0⊥ is an arbitrary constant velocity. For ions, solution (7)
has the same form but with the replacement ωBe 
−ωBi = –eB0/mi, where mi is the mass of an ion.
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In the first approximation, we have the equation

(8)

We represent the wave electric fields as

(9)

where ωt and ωt ' are the frequencies of the electromag-
netic waves t and t ', respectively. The field components
E⊥(r, t) and E'(r, t) are slowly varying functions of the

coordinate and time: |∂E⊥/∂r | � |E⊥|, |∂E⊥/∂t | �

|ωt ||E⊥|, |∂ /∂r | � |E⊥|, and |∂E'/∂t | � |ωt ' | ,

where  and  are the transverse wave vectors of the
waves t and t ', respectively. In this case, the solution to
Eq. (8) can be represented as

(10)

(11)

As was mentioned above, for ions, it is necessary to
make the replacement ωBe  –ωBi and m  mi.

In the second approximation, we take into account
the relationship (v2 × B0)z ≡ 0 to obtain from Eq. (4) the
equation

(12)

From the corresponding Maxwell’s equation, we get

(13)

where we have used the dispersion relation ωt ≅ |kt |c for
electromagnetic waves and have introduced the angle θ
between the magnetic field B0 and the wave vector kt

through the relationship cosθ = . Substituting
expressions (10) and (11), as well as expressions (13)
and (9), into Eq. (12) yields the following equation for
the perturbed nonlinear longitudinal electron velocity:
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where ∆ω = ωt – ωt '. Note that the velocity component
v2z and, accordingly, the electric field component E2z

arise in the nonlinear interaction of the electromagnetic
waves t and t ' with charged plasma particles. We
assume that, in the frame of reference in which the bulk
plasma is at rest, charged particles do not move in the
longitudinal direction, v1z = 0, so we have v2⊥ ≡ 0.
Hence, in the second approximation, the electric cur-
rent density j2 has only the longitudinal component,
j2z ≠ 0. For cosθ ≈ cosθ' and |E⊥| ≈ , Eq. (14) gives

(15)

where

(16)

With the corresponding initial condition (v2z  0
at t  0), the solution to Eq. (15) can be rewritten as

(17)

For the ion plasma component, we should make the
replacement e  –e and ωBe  –ωBi. Using expres-
sion (17) for the electrons and the corresponding
expression for the ions, we can determine the density

jz = en(  – ) of the longitudinal current generated
in the nonlinear interaction of the t and t ' waves with the
particles of a magnetized plasma.

Such a motion of the charged particles in a magne-
tized plasma can induce a relatively LF quasineutral
perturbation of the plasma density, δn/n0, due to the
beatings of two HF waves t and t ' (here, n0 is the equi-
librium plasma density). The expression for δn/n0 can
be derived from the continuity equation for the charged
plasma particles by averaging it over the high fre-
quency. As a result, we have

(18)

Note that the physical quantities in Eq. (18), namely,
the longitudinal velocity v2z and LF density perturba-
tion δn, are averaged over the high frequency; they
result from the influence of the external sources (waves
t and t ') on the plasma. Consequently, by analogy with
formulas (9) (see also expression (22) below), their
coordinate dependence can be represented as (v2z, δn) ~
(v2z(r, t), δn(r, t))exp(–ikt · r), where the amplitudes
v2z(r, t) and δn(r, t) are slowly varying functions of the
coordinate and time. The first of these amplitudes is
given by formula (17). The final formula for the second
amplitude, i.e., the amplitude of the LF plasma density
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∂
∂t
----- δn
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⎛ ⎞ ∂
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-----v 2z.–=

perturbations, can be obtained by inserting expres-
sion (17) for v2z(r, t) into Eq. (18):

(19)

Here, we assume that the energy of the waves t and
t ' is maintained by external sources. Such a state is typ-
ical of ionospheric, magnetospheric, and astrophysical
plasmas, as well as of plasmas in laboratory devices in
regimes with auxiliary heating.

3. NONLINEAR DYNAMICS OF LANGMUIR 
WAVES IN A MAGNETIZED PLASMA

We investigate the dynamics of the wave fields by
using the set of Maxwell’s equations, which can be
reduced to the wave equation

(20)

where µ0 and ε0 are the permeability and permittivity of
free space (ε0µ0 = 1/c2), respectively, and j = en(vi – ve) =
j2 is the second-order electric current density.

We consider a wave packet propagating at a small
angle to the equilibrium magnetic field B0. We repre-
sent the LF (relative to the frequency ωt) component E l

and the HF transverse component E t of the generated
electric field as

E = E l + E t, (21)

where  = 0 and it is assumed that ωt ≈ ktc � ωl. We
also represent the fields in the form

(22)

where the subscript i stands for a Cartesian component

(i = x, y, z) and (ri t) is the slowly varying (in both
space and time) electric field amplitude.

In the linear approximation, the current density j can

be determined from the equation /∂t ≅ .
With allowance for the fact that the beatings of two
electromagnetic waves t and t ' give rise to an LF
quasineutral perturbation δn of the plasma density n
(see Section 2), we arrive at the following expression
for the current density in a weakly nonlinear plasma
state:

(23)

where the relative perturbation amplitude δn/n0 is
determined by expression (19) and by the relationship
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ωp0 = [e2n0/(ε0m)]1/2 and n0 is the equilibrium electron
(ion) density.

It should be noted that the form of wave equation (20)
to be investigated depends substantially on the choice
of the time and spatial scales of the problem. This is
why, for definiteness, we assume that ωl > ωp0 and ωl �
klc for the longitudinal mode; ωt ≅ k tc � ωl for the
transverse mode; and ∂/∂t ~ ω � ∆ω, ktc � ∆ω, and

ωtω �  for the perturbations generated. Accord-
ingly, the spatial scales of the perturbations are

assumed to satisfy the inequalities  � ∂/∂(x, y, z) and

 � , .

With allowance for these inequalities and also the
inequality ωt � ωl, we insert expressions (21)–(23) into
Eq. (20) to obtain the following set of coupled equa-
tions:

(24)

(25)

(26)

The set of Eqs. (25) and (26) has been derived in the
zero-order approximation in the small parameter
ωl/ωt � 1. This reflects the fact that, the process of
modulation of the longitudinal waves does not influ-
ence the evolution of the amplitudes of the transverse
waves,

(27)

At the same time, the nonlinear terms on the right-hand
sides of Eqs. (25) and (26), which are proportional to
δn/n0 and describe the nonlinear dynamics of the mod-
ulational instability, are determined by the amplitude

 of the HF transverse waves (see formula (19)).

Without its nonlinear right-hand side, Eq. (25) coin-
cides with the corresponding equation obtained in [16].
But the main difference between Eqs. (25) and (26) and
those in [16] is in the nonlinear term on the right-hand
side of Eq. (26): in [16], it was assumed that δn/n0 ~

, whereas in our study, the LF quasineutral plasma
density perturbation is attributed to the beatings of two
HF transverse waves and it is assumed that δn/n0 ~

.

In order to construct an equation for the longitudinal

field component , we find the mixed derivative
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/∂t∂(x, y) from Eq. (25). We then integrate
Eq. (26) over time and substitute the mixed derivative
so determined into the resulting equation to obtain the
following equation:
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where ∆⊥ = ∂2/∂x2 + ∂2/∂y2 is the transverse Laplacian
operator. We further assume that the LF electric field El

satisfies the condition —⊥ ·  ≡ 0, under which
Eq. (28) can be substantially simplified to the form

(29)

We substitute expression (19) for δn/n0 into Eq. (29)

and represent the LF electric field amplitude as  ~
exp(–iωt + kr) to obtain the following dispersion rela-
tion for the frequency of the perturbation generated:

(30)

where  = ( /(2ωl))2.

We can see that the instability develops under the
condition

(31)

and grows at the rate

(32)

The aperiodic growth of the longitudinal electric field

 has a threshold in terms of the amplitude of the
external HF transverse wave

(33)

Hence, the modulational instability that is caused by
the beatings of two electromagnetic waves t and t'
reduces the spatial scales of turbulence in a plasmon
condensate (i.e., Langmuir turbulence with the fre-
quency ωp0 and with the characteristic wavenumber
k0  0), thereby giving rise to perturbations with
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k0 ≠ 0. This indicates that the energy is transferred from
plasmons to longitudinal wave fields with frequencies

ωl ≈ ωp0(1 + /2).

Let us now investigate the possibility of generating
an LF transverse vortex electric field. Using Eq. (25),
we find

(34)

Integrating this equation over time yields the expres-
sion

(35)

where C is an integration constant. Expression (35)
describes the time evolution of the LF vortex electric
field. Inserting formula (19) for δn/n0 into expression (35)
reduces the latter to the following final form:

(36)

From expressions (35) and (36) we see that the LF
modulation of the perturbed plasma density δn (caused
by the beatings of two external HF electromagnetic
waves) leads to the generation of an LF electromagnetic
field.

Note that, in the drift approximation (see formulas (1),
(2)), the plasma density is modulated along the external
magnetic field B0 || z. In this case, however, not only the
spatial scales of Langmuir waves (plasmon condensate)
change but also the plasmon energy is transferred to
electromagnetic waves (see formula (36)).

4. DISCUSSION OF THE RESULTS
AND CONCLUSIONS

We have shown that HF electromagnetic waves gen-
erated by external or internal sources in a magnetized
plasma can give rise to an LF modulation of the plasma
density along an external equilibrium magnetic field as
a result of the beatings of two electromagnetic waves
such that ∆ω = ωt – ωt ' (here, the inverse effect of the
modulational instability on HF fields is ignored).

We have found that the  component of the poten-
tial electric field generated during the modulational
instability grows aperiodically and that this growth pro-
cess is threshold in character. The LF density modu-
lation, in turn, generates a vortex electromagnetic field
(— × El)z.
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The results obtained may be of interest for the the-
ory of wave–wave or wave–particle nonlinear interac-
tions in a magnetized plasma. The processes under
investigation can occur in actual laboratory plasmas as
well as in ionospheric, magnetospheric, and astrophys-
ical plasmas. According to the theory developed here,
the modulational instability can lead to an increase in
the longitudinal and transverse momenta of charged
particles [17].

The charged particles so accelerated, e.g., conjugate
photoelectrons in the upper ionosphere and magneto-
sphere of the Earth, can cause the observed increase in
the intensity of red emission from the ionospheric F
region [18]. In laboratory plasmas, this effect can lead
to the generation of accelerated particles.

In order to determine the efficiency of the modula-
tional instability mechanism considered above, we
compare the growth rate (32) of the aperiodic instabil-

ity with the growth rate  of the classical modula-
tional instability (l  l ' + s) [10],

(37)

where E0 is the amplitude of the pump Langmuir wave,
M is the mass of an ion, and Te is the electron tempera-
ture. If the amplitude of the external HF transverse elec-

tric field  and the amplitude of the pump Langmuir
wave |E0 | satisfy the inequality

(38)

then the modulational instability considered in the
present paper is more efficient than the conventional
modulational instability of Langmuir waves.

Of course, this comparison of growth rates (32) and
(37) is somewhat incorrect because, in [10], the mag-

netic field was assumed to be weak, 1 �  ≥

, whereas our study was done for strong magnetic

fields,  � 1. In addition, in [12], it was men-
tioned that, if the electric field in the nonlinear stage of
the modulational instability is purely longitudinal (E ||
B0), then the wave energy is only partially absorbed by
plasma particles. However, in the case of a purely trans-
verse electric field (E ⊥ B0), the particles absorb the
wave energy more efficiently.

In our case (i.e., when the external magnetic field is
strong and the plasma density is modulated by the beat-
ings of two HF electromagnetic waves propagating
along the external magnetic field), the absorption of the
wave energy by plasma particles in a plasmon conden-
sate plays an important role.
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It should be emphasized that the particle drift in
crossed alternating electric and constant magnetic
fields plays a governing role in the development of the
modulational instability of a strongly magnetized
plasma.

With the problem as formulated, we can state that
the developing modulational instability not only
changes the spatial scales of Langmuir turbulence in a
plasmon condensate but also leads to the transfer of
plasmon energy to electromagnetic perturbations.

In our study, the beatings of two waves t and t ' is
chosen in such a way that the modulational instability
develops at the Langmuir branch of turbulence. How-
ever, the approach developed here also allows one to
investigate the modulational instability of a LF ion
acoustic mode; this problem is to be considered in sub-
sequent papers.
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