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Traveling waves in twisted nematic liquid crystal cells
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Abstract

We have described a novel reorientation mechanism in the form of the traveling waves, under influence of an external electric field, directed
parallel to both glass plates, which occur in the twisted nematic cell (TNC). It is found that the slowest velocity of the traveling front is proportional
to the field strength, and, approximately, in three times higher than the front velocity corresponding to the non-traveling solution. The value of
the critical electric field Ecr which may excite the traveling waves in the TNC in π times less than the value of the threshold electric field Eth
corresponding to the untwisted geometry.
© 2007 Elsevier B.V. All rights reserved.

PACS: 61.30.Cz; 64.70.Md
One of the most useful and well understood phenomena in
the physics of liquid crystals (LCs) is the field induced distor-
tion of a LC cell [1]. This Letter describes a new mechanism of
the director n̂ reorientation in the form of the traveling waves
occurring in the nematic phase sandwiched between two paral-
lel surfaces, when the director on the upper surface is at right
angle to the director on the lower surface, both alignments be-
ing within the plane of the solid surfaces, under applying an
electric field E > Ecr parallel to an uniformly oriented twisted
nematic (TN) cell. The value of the critical electric field Ecr
which excite the traveling wave φ(z−vt) running in the twisted
cell with the minimal velocity vm, in π times less than the
value of the threshold electric field [1] Eth, corresponding to
the untwisted cell. With increase an external field E > Ecr, the
reorientation processes in a TN cell exhibit a number of relax-
ation regimes which characterized by rotation of the director
in the plane (x–y) parallel to both glass plates. The torques
acting on the director n̂ may excite the traveling wave spread-
ing along the normal to both boundaries (directed parallel to
the z-axis), whose resemblance to a kink wave increase with
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increasing of an applied electric field (directed parallel to the
y-axis). Taking into account that the TN cells are important
elements of the flat screen displays, their switching dynamics
needs to be examined in the details. The dynamic equation de-
scribing the reorientation of the director distortion in the gap
between two glass plates is maintained by elastic, electric and
viscous torques as [2] Tel + Telast + Tvis = 0. Here we local-
ize of our attention on the azimuthal anchoring, when the polar
angle θ is fixed, and the anchoring energy is a function of the
surface azimuthal angle φ only. In the case of planar geometry
n̂ = (cosφ(z), sinφ(z),0) and absence of flow, the dimension
form of the torque balance equation can be written as [2]

(1)γ1φt (t, z) = K2φzz(t, z) + � sin 2φ(t, z),

where φt (t, z) = ∂φ(t, z)/∂t , φzz(t, z) = ∂2φ(t, z)/∂z2, γ1 is
the rotational viscosity coefficient, K2 is the twist elastic con-

stant, � = ε0εaE2

2 , ε0 is the absolute dielectric permittivity of
free space, εa = ε‖ − ε⊥ is the dielectric anisotropy of the TN,
ε‖ and ε⊥ are the dielectric constants parallel and perpendicular
to the director n̂, respectively.

Note that any physical effect that reorients the director in-
duces flow v in the LC phase, which, in turn, is coupled to the
director. It is important to stress here that in the case of the pla-
nar geometry n̂ = (nx(z), ny(z),0) = (cosφ(z), sinφ(z),0),
the viscous torque reduces to Tvis = −γ1φt (t, z)k. Physically,
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this means that the induced flow v is not coupled to the direc-
tor n̂ and the orientational relaxation process of the director to
its equilibrium orientation in the twisted nematic cell can be de-
rived only from the balance of the viscous, elastic, and electric
torques without accounting for the Navier–Stokes equation for
the velocity field [3]. In the case of the strong anchoring, the
torque balance transmitted to the surface assumed that the az-
imuthal angle has to satisfy the boundary conditions

(2)φ(z)z=−d/2 = 0, φ(z)z=d/2 = π

2
,

whereas the initial orientation of the director is disturbed paral-
lel to the external field E, with φ(t = 0, z) = 1

σ
ϕ((z − z1)/σ ),

and then allowed to relax to its equilibrium value φeq(z). Here
ϕ(q/σ) is the Gaussian (normal) distribution function, σ is
the dispersion, and −d/2 � z1 � d/2. Because, in our case,
the field E is aligned parallel to the y-direction, the state
φz=d/2(z) = π

2 is now stable, and front φ(z−vt) starts to move
away from the one edge (z = d/2) of the cell to their second
edge (z = −d/2). However, this raises a number of questions.
How fast will such a front move and how much influence have
both the external electric field and the boundary conditions on
the resemblance of a traveling wave to a kink wave? The an-
swer to these questions will be given based on the analysis of
the torque balance equation together with the appropriate initial
and the boundary conditions. The front minimal velocity vm can

be determined by substituting φ(t, z) ∼ exp[−E
√

ε0εa

K2
(z−vt)],

into linearized form of Eq. (1), and one sees that the slowest

velocity has a value [4] vm = 2
√

ε0εaK2
γ 2

1
E, and a wave narrow-

est thickness κ is inversely proportional to the electric field

strength κ =
√

K2
ε0εa

1
E

. Hence, if we have E � Ecr = 1
d

√
K2
ε0εa

,
only then the traveling wave, with the minimal velocity vm, is
short enough to fit in the cell length. To be able to observe the
evolution of the traveling disturbance in time with velocity v,
we consider the dimensionless analog of Eq. (1)

(3)φτ (τ, z) = φzz(τ, z) + 1

2
sin 2φ(τ, z),

where τ = ε0εaE2

γ1
t is the dimensionless time, z̄ =

√
ε0εaE2

K2
z =

z/κ is the dimensionless direction through the cell thickness,
and the overbar in the last equation has been eliminated.

It should be pointed out that the different problems may de-
scribed in terms of the reaction–diffusion equation ψτ = ψzz +
f (ψ), where f (ψ) is a nonlinear term with at least two equilib-
rium points [5,6]. It has been established rigorously [4] that suf-
ficiently localized initial conditions evolve asymptotically into
traveling wave front ψ(z − vτ) joining two equilibrium states,
and for a wide class reaction terms f (ψ), with f (0) = 0 and
f ′(0) = 1, has a traveling wave solution propagating at speed
v̄, where 2[( ∂f (ψ)

∂ψ
)ψ=0]1/2 � v̄ � 2[supψ∈[0,1](

f (ψ)
ψ

)]1/2. Both
limits are equal to 2 and the traveling wave solution ψ(z − vτ)

is defined in an infinitely large interval (−∞,+∞), whereas
in our case, Eq. (1) with the twisted (I ) boundary conditions
φ(z)z=−d/2 = 0, φ(z)z=d/2 = π

2 is defined in the limited in-
terval [−d/2, d/2], and the traveling front φ(z − vτ) starts to
Fig. 1. Wave shape evolution of the azimuthal angle φ(q) (q = z/κ − vτ is a
dimensionless direction through the cell thickness) from the one edge (q = q2)
of the cell to their second edge (q = q1), calculated using Eq. (4), with the
planar boundary conditions (5), at E/Ecr = 10.0, and with the initial condition
φ(q, τ = 0) = 1

σ ϕ((q − q3)/σ ), where q3 = 4.75 and σ = 0.25, close to the
upper restricted surface. Here q2 = 5 and q1 = 5 − vτ (a); (b) Same as (a), but
E/Ecr = 2.2. Here q2 = 1.1, q1 = 1.1 − vτ , q3 = 0.7 and σ = 0.02. (c) Same
as (a), but with the initial condition φ(q, τ = 0) = 1

σ ϕ((q − q4)/σ ), where
q4 = −3.7 and σ = 0.25, close to the lower restricted surface.

move away from the one edge (z = d/2) of the cell to their
second edge (z = −d/2) and the wave speed v � vm. So, the
our aim is investigate numerically, by means of a standard re-
laxation method [6], the relaxation process which assume an
exciting the traveling wave in the TN cell, and answer on the
questions, how fast will such front move and how much influ-
ence both the external electric field E and the boundary condi-
tions on the velocity uR of the relaxation process. We assume
here that the relaxation process is composed of the process be-
fore forming of the traveling wave and after forming, with the
further propagation of the traveling front in the TN cell until
getting of the equilibrium orientation. To be able to observe the
evolution of the traveling wave in time we transform to a co-
ordinate system (moving at the dimensionless wave speed v)
q = z/κ − vτ , and obtain

(4)vφq(q) + φqq(q) + 1

2
sin 2φ(q) = φτ (q).

The relaxation of the director n̂ to its equilibrium orientation,
which is described by the angle φ(q), being initially disturbed
parallel to the external field E, with φ(q, τ = 0) = 1

σ
ϕ((q −

q3)/σ ) ((q1 + q2)/2 < q3 � q2) close to the upper restricted
surface, have been investigated by a standard numerical relax-
ation method [7], with the boundary conditions

(5)φ(q)q=q1 = 0, φ(q)q=q2 = π

2
.

Here q1 = d/(2κ) − vτ and q2 = d/(2κ) are the dimensionless
positions for lower and upper boundaries. Result of calcula-
tions for number of dynamical regimes is shown in Figs. 1(a)
and (b). In all these cases the angle φ(q) has been initially dis-
turbed parallel to the external field E = 10.0Ecr (Fig. 1(a)) and
E = 2.2Ecr (Fig. 1(b)), with φ(q, τ = 0) = 1

σ
ϕ((q − q3)/σ )

close to the upper restricted surface. It is found that the torque
exerted on the director excite the traveling wave, directed to be
normal to these boundaries, with the dimensionless front ve-
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Fig. 2. Wave shape evolution of the azimuthal angle φ(q) from the one edge
(q = q2) of the cell to their second edge (q = q1), calculated using Eq. (4),
with the boundary conditions (6), at Aκ

2K2
sin 2�φ = 1.0 and under action of the

electric field E/Ecr = 2.2. Here q2 = 1.1 and q1 = 1.1 − vτ ; (b) Same as (a),
but E/Ecr = 10.0. Here q2 = 5 and q1 = 5 − vτ . In both these cases the initial
condition φ(τ = 0, q) = 1

σ ϕ((q − q3)/σ ) ((q1 + q2)/2 < q3 � q2) close to the
upper restricted surface.

locity value v = 2.0. Notes that the resemblance of a traveling
wave to a kink wave increase with increasing of the electric
field. The calculations show that the initial state (φ(q, τ = 0) =
1
σ
ϕ((q − q3)/σ )) in an applied field E can be reoriented by

the propagation of a kink like wave with the constant shape
and speed to the equilibrium state φeq(q), at the value of the
external electric field E � 10.0Ecr. It is also found that the re-
laxation regime, under the influence of the electric, elastic, and
viscous torques, may excite the traveling wave spreading along
z-axis only under applying an electric field E > Ecr (see Fig. 1).
Consider now the TN cell under applying an external electric
field, when the director n̂ is strongly anchored to upper bound-
ary plate and weakly anchored to lower boundary plate, and the
anchoring energy takes the form [1] Waz = 1

2A sin2(φs − φ0),
where A is the anchoring strength, φs and φ0 are the azimuthal
angles corresponding to the director orientation on the bound-
ary plate and easy axis ê, respectively. The torque balance trans-
mitted to the surface assumed that the director angle has to
satisfy the boundary conditions

(
∂φ(q)/∂q

)
q=q1

= Aκ

2K2
sin 2�φ,

(6)φ(q)q=q2 = π/2,

where �φ = φs − φ0. For the case of 4-n-octyl-4′-cyanobi-
phenyl (8CB), at T = 307 K, K2 ∼ 8 pN [8], and the experi-
mental data for A, obtained using different experimental tech-
niques, are varied between 10−4 and 10−6 J/m2. In the case
of �φ � 10◦ [2], for narrow TN cell up to d ∼ 10.0 µm, the
combination of Aκ

2K2
sin 2�φ varied between 0.1 and 1.0. The

relaxation of the director n̂ to its equilibrium orientation, which
is described by the angle φ(q), being initially disturbed paral-
lel to the external field E, with φ(q, τ = 0) = 1

σ
ϕ((q − q3)/σ )

((q1 +q2)/2 < q3 � q2) close to the upper restricted surface, for
a number of E/Ecr values 2.2 (Fig. 2(a)), 10.0 (Fig. 2(b)), and
at Aκ

2K2
sin 2�φ = 1.0, are shown in Fig. 2. It is found that the in-

fluence of the anchoring strength A on the dimensionless relax-
Fig. 3. Plot of three stages of the director evolution in the TN cell, calcu-
lated using Eq. (4), with the boundary conditions (6), at Aκ

2K2
sin 2�φ = 0.1

and E/Ecr = 10.0. In the final stage (c) the dimensionless front velocity has a
value 2.

ation time τR has a weak effect. With increasing of Aκ
2K2

sin 2�φ

from 0.1 up to 1.0, the value of the relaxation time τR increase
small from 5.87 to 5.88, with the following increasing, in the
case of the strong anchoring, up to 5.94. The relaxation cri-
terion ε = |(φ(τR) − φeq)/φeq| for calculating procedure was
chosen equal to be 10−4, and the numerical procedure was then
carried out until a prescribed accuracy was achieved. It should
be pointed out that the full reorientation process can be subdi-
vided, at least, in two stages. First one, correspond to evolution
of the initial disturbance (φ(q, τ = 0) = 1

σ
ϕ((q − q3)/σ )) to

a kink like wave during the larger time term (τ1 + τ2 ∼ 3.56)
(see Figs. 3(a) and (b)), whereas the second stage is charac-
terized by the running kink like wave, with the constant shape
and dimensionless speed v = 2.0, under action of the exter-
nal electric field (E/Ecr = 10.0), with the shorter time term
(τk = τR − τ2 − τ1 ∼ 2.31), until getting of the equilibrium
orientation (see Fig. 3(c)). The dimension average velocity
uR = d/tR = (ε0εaE

2d)/(γ1τR) corresponding to evolution of
the disturbance state to the equilibrium orientation, under act-
ing of the external electric field E/Ecr, are shown in Fig. 4.
Here tR = t1,2 + tk is the dimension time which the director
n̂ spend for the full reorientation process from the initial state
to the equilibrium orientation, t1,2 is the part of the relaxation
time which the director spend for reorientation process before
forming of the traveling wave, and tk is the time which the
kink like wave spend for spreading along z-axis until getting
of the equilibrium orientation. Calculations show a weak effect
of the anchoring strength A (see curves (4) (weak anchoring)
and (5) (strong anchoring) in Fig. 4) on the average velocity uR

of the director n̂ relaxation to its equilibrium orientation in the
twisted TN cell. It should be mentioned here that the dimen-
sionless analog of Eq. (1) with the boundary conditions (2) has
also non-traveling solution φ(τ, z). In that case, the relaxation
of the n̂ to its equilibrium orientation n̂eq, has also been inves-
tigated by a standard relaxation method and result was shown
in Fig. 3 of Ref. [2]. It was found that the effect of the external
field E on the relaxation time τR decreases as the magnitude of
E increases and saturates at E/Ecr ∼ 20.0 [2]. Having obtained
the orientational relaxation time τR , which was calculated using
Eq. (3), for the case of non-traveling solution φ(τ, z) [2], both
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Fig. 4. The velocity of the director relaxation to its equilibrium orientation as a
function of the electric field E/Ecr. Different curves from the top to the bottom
correspond to vm (curve (1)), vI curve (2) for the twisted boundary conditions,
vII curve (3) for the untwisted boundary conditions, uR (curve (4)) for the weak
anchoring conditions (Aκ/2K2) sin 2�φ = 1.0, and (curve (5)) for the strong
anchoring conditions, respectively. All calculations are done for the 10 µm 8CB
TN cell.

for the boundary conditions (I) (φ(− d
2 ) = 0, φ(d

2 ) = π
2 ) and

(II) (φ(± d
2 ) = 0), one can calculate the average velocity vI,II =

d/tR of the front φ(τ, z) which start to move from the one edge
of the cell to their second edge. Result of calculations vI,II for
the 10 µm TN 8CB cell is also shown in Fig. 4 (curves (2), for
the twisted boundary conditions (I), and (3), for the untwisted
boundary conditions (II), respectively). It is found that the slow-
est velocity vm of the traveling front, approximately, in 3 times
higher than the average velocity front vI (vII) corresponding
to the non-traveling solution, and in 1.5 times higher than the
average velocity uR of the director reorientation from the ini-
tial state to the equilibrium orientation with including of the
kink like running contribution. It is important to stress here that
the position of the initial disturbance φ(q, τ = 0) = 1

σ
ϕ(q/σ)

has influence on the mechanism of the traveling wave forma-
tion. Indeed, when the angle φ(q) has initially disturbed in the
point q1 � q4 < (q1 +q2)/2 close to the lower restricted surface
(unstable) (see Fig. 1(c)), for instance, by a focused Gaussian
laser light [9], the traveling wave regime, after getting by the
front φ(q) to the second edge of the cell, will changed into the
non-traveling regime with the boundary conditions (2), whereas
in the case when the point of the initial disturbance close to
the upper (stable) surface, the traveling wave regime, after fast
formation, can cover the full interval [−d/2, d/2]. In the first
case, under action of the electric field E/Ecr = 10.0 and the
boundary condition (Aκ/2K2) sin 2�φ = 1.0, the dimension-
less relaxation time is equal to be 5.91, whereas in the second
case, is equal to be 5.88. Notes that the relaxation behavior of
φ(z − vt) in the form of the traveling wave probably can be
observed in polarized white light. Taking into account that the
director reorientation takes place in the narrow area of the LC
sample (the width of the traveling wave) under influence of the
electric field E, for instance, E > 10.0Ecr or 2 × 10−4 [C/m2]
for the 10 µm nematic 8CB cell, the traveling wave can be visu-
alized in polarized white light as a dark strip running along the
normal to both glass plates, with the velocity v ∼ 10−4 m/s.
Fig. 5. Pressure P(q) shape evolution from the one edge (q = q2) of the
cell to their second edge (q = q1), calculated using Eq. (7), with the bound-
ary conditions (5), and under action of the electric field E/Ecr = 10.0. Here
q2 = 5.0 and q1 = 5.0 − vτ ; (b) Same as (a), but with the boundary condi-
tions (6), where Aκ

2K2
sin 2�φ = 1.0. In both these cases the initial condition

φ(q, τ = 0) = 1
σ ϕ((q − q3)/σ ) ((q1 + q2)/2 < q3 � q2) close to the upper

restricted surface.

Taking into account that there is no hydrodynamical flow
because the director, representing the average molecular align-
ment, can rotate only within x–y plane without any translational
motion, the dimensionless dissipation function D in the pure
twist geometry, is given by [3] D = φ2

τ (q), whereas the arbi-
trary dimensionless pressure P is given by [3]

P(q) = Pel(q) − Pelast(q) −
∫

(∂D/∂φτ )φq(q) dq

(7)= −φ2
q(q),

where Pel(q) = 1
2 sin2 φ(q) and Pelast(q) = − 1

2φ2
q(q) are both

dimensionless contributions to the total arbitrary pressure P

due to the electric and elastic forces, respectively. The dimen-
sionless values of P(q), in the case of strong (see Eq. (5)) and
weak (see Eq. (6)) boundary conditions, under influence of the
external electric field E/Ecr = 10.0, as function of the dimen-
sionless size q = z/κ − vτ , on the final stage of evolution, is
given in Fig. 5. Calculations show that the effect of the ex-
ternal electric field on the pressure P(q), on the first stage of
evolution, is characterized by the sharp decreasing of absolute
magnitude of the pressure, up to, practically, zero value, with
following monotonic increasing of the absolute value, on the
final stage of evolution, up to ∼ 8, in the case of the strong an-
choring (Fig. 5(a)), and ∼ 6.5, in the case of the weak anchoring
(Fig. 5(b)), respectively. It is corresponds to dimension values
of absolute pressure P(q) = (K2/κ

2)P (q) in ∼64 pN/µm2,
and ∼52 pN/µm2, respectively. Calculations also show that the
pressure profile P(q) will be determined by the balance of the
rate of change in the elastic and electric energy with the vis-
cous dissipation, and the front P(q) start to move from the one
edge of the cell to their second edge, and, finally, the pressure
profile can get the lower plate after the time τR . According to
our calculations, the relaxation time τR is the time which the
director n̂ spend for the full reorientation process from the ini-
tial state (φ(q, τ = 0)) to their equilibrium orientation φeq(q).
Physically, this means that on the lower plate will be acted an



166 A.V. Zakharov, A.A. Vakulenko / Physics Letters A 370 (2007) 162–166
extra pressure in ∼64 pN/µm2, in the case of the strong anchor-
ing, and in ∼52 pN/µm2, in the case of the weak anchoring,
respectively, during a very short period. Notes, that the anchor-
ing effect decrease the magnitude of the absolute pressure up
to 17%. So, by fixing of the extra pressure, which will be acted
on the lower plate, one can measured, by using of an appropri-
ate set up, the relaxation time τR , corresponding to evolution of
the disturbance state to the equilibrium orientation in the form
of the traveling wave.

It should be pointed out that in the present study we are
primarily focused on the temperature range far from the sec-
ond order phase transition temperature, because in the vicinity
of a nematic–smectic A phase transition temperature both co-
efficients γ1 and K2 give rise to singularities. As results, the
velocity vm = 0 and the relaxation time tR give rise to infin-
ity [3], what in good agreement with the recent experimental
data [10].
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