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Microscopic theory of scattering in imperfect strained antimonide-based heterostructures
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Department of Physics, The University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom

~Received 6 October 1999!

A microscopic theory to provide quantitative predictions of scattering cross sections and carrier lifetimes in
imperfect strained layer superlattices is developed. Strain-dependent empirical pseudopotentials are formulated
to obtain the electronic wave functions with the results of scattering theory employed to extract the dynamical
information. The theory is applied to a number of imperfect GaxIn12xSb/InAs superlattices, containing isova-
lent substitutional anion defects, both isolated and in interface islands. Key factors governing the lifetime are
identified, including defect atom type, location and lattice relaxation, and the detailed size and shape of the
interface islands. Multiple scattering processes are shown to become significant for larger interface islands.
Typical elastic scattering lifetimes for isolated antimony defects of 1.6ms are predicted, dropping to 0.4 ns for
islands containing approximately 50 defect ions.
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I. INTRODUCTION

Over the past decade, enormous effort has been expe
in the development of antimonide-based heterostructu
consisting of layers containing GaSb, AlSb, and InSb,
gether with the lattice-compatible InAs. The motivation f
this effort is the potential for applications in high
performance integrated optoelectronic devices operatin
the infrared region of the spectrum,1–18 and ultrahigh speed
electronics.19–21 However, in spite of this effort these mate
rials have failed to reach levels of performance sufficien
dislodge existing, though far from ideal, technologies. O
of the principal reasons preventing the widespread appl
tion of the antimonide heterostructures is the lack of und
standing of the fundamental physical processes restric
the carrier lifetimes.

Recently, advances in microscopy have provided a c
picture of the quality of structures and interfaces that can
achieved.21–23 There is at present, however, no theoreti
link between the microscopic disorder and interface dis
tion observed and the lifetimes in the device structures
clear understanding of the role of imperfections of the latt
on a microscopic level in degrading the dynamic charac
istics of devices is essential if the performance of antimon
heterostructures is to be improved. Recent studies usinab
initio pseudopotential calculations have demonstrated
the microscopic properties of the interfaces are critical
determining the behavior of defects in these materials.24 A
theoretical model is required in which a microscopic desc
tion of defects and heterointerfaces is related to the esse
dynamical properties which determine device performanc

Although there are a number of well-established meth
for the description of the stationary-states in idealized a
monide heterostructures~e.g.,k"p, ab initio pseudopotentia
etc.!, there is, to the author’s knowledge, no existing sche
that lends itself to the description ofdynamicalproperties of
such structures in the presence of disorder on the mi
scopic level. This paper first develops an implementation
the empirical pseudopotential method applicable to strai
superlattices~such as the antimonide-based structures!, and
then describes an approach whereby the results of scatt
PRB 610163-1829/2000/61~8!/5431~11!/$15.00
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theory are used to extract dynamical information from t
stationary states of imperfect superlattices. The empir
pseudopotential provides a model that retains a microsc
atomistic description of the system, but that is sufficien
efficient to allow the perturbed states of the imperfect sup
lattice to be readily obtained by diagonalization. It is t
ability to obtain the perturbed stationary states, which is
ploited in the extraction of the dynamic properties such
scattering cross section and lifetime. The advantages of
empirical pseudopotential method over the commonly u
k"p approach are detailed in a comparison of the two me
ods by Wanget al.25

The theoretical scheme developed is applied to a typ
antimonide heterostructure, a Ga0.75In0.25Sb/InAs superlat-
tice, originally proposed as an infrared detector. A range
imperfect structures is studied incorporating isovalent sub
tutional anion defects, known to be common in the
structures,23 and the dependence of scattering upon the
croscopic details of the imperfections are analyzed. The
sults provide an essential first step towards an understan
of the role these defects play in limiting device performan
and ultimately towards an answer to the technologically i
portant question of how the lifetimes in these structures m
be improved.

II. EMPIRICAL PSEUDOPOTENTIAL CALCULATIONS
OF STRAINED SUPERLATTICES

Before one can begin to consider the case of imper
superlattices, it is first necessary to develop a reliable mo
to describe the idealized system. The basic requirement
this model are that it is at the same time atomistic in natu
as it is ultimately to be used to examine disord
imperfections on a microscopic scale, and yet sufficien
simple to enable its practical application to systems with u
cells containing a very large number of atoms. The empiri
pseudopotential method~EPM!, in which a pseudopotentia
is obtained by fitting to empirical data for the bulk constit
ents~e.g., energy gaps, effective masses! is well established
in the study of semiconductor superlattices over ma
years,26,27 and satisfies these basic demands. However,
5431 ©2000 The American Physical Society



e

u
po
t

M
he
th
th

,

or

re
ble
b

a
te
th
te
to
ca

o
ow

uc
d

al
r

t
ai

iffi-

of
tric-
he
g
nct
rac-
st,
re-
re

ong
om

in
to

ong
is

i-
in

al,
re-
te
a-
to

es
he

tion

for
ari-
is
tial
of

al
ci-
ins

i-
ua-
th

the

one

5432 PRB 61M. J. SHAW
EPM was originally developed for application to lattic
matched systems such as GaAs-AlxGa12xAs, and in its stan-
dard form is not applicable to strained superlattices such
the antimonides at the focus of this work. An EPM is form
lated below in which strain-dependent empirical pseudo
tentials are introduced allowing the extension of the EPM
a wide range of structures including the GaxIn12xSb-InAs
superlattices of particular interest.

In the first instance, for clarity, the strain-dependent EP
will be derived in the absence of spin-orbit coupling. T
inclusion of spin to this method may then be achieved in
same manner as for the conventional EPM approach in
literature. The Hamiltonian of the system is written,

H52
\2

2m
¹21Vp~r !, ~1!

where the empirical pseudopotentialVp(r ) is assumed to be
a local pseudopotential, dependent only uponr . Defining a
unit cell corresponding to reciprocal lattice vectorsG, the
pseudopotential may be written in reciprocal space form

Vp~r !5(
G

(
i

Si~G!Vi~G!eiG•r. ~2!

Here, the structure factorsSi(G) for each atomic speciesi
contains the atomic positions,

Si~G!5
1

Ni
(

j
e2 iG•Rj

i
, ~3!

andRj
i is the position of thej th atom of speciesi, andNi is

the number of of atoms of speciesi. The termsVi(G) are the
Fourier components of the atomic pseudopotentials, the f
factors,

Vi~G!5
1

Va
E e2 iG•rVi

a~r !d3r , ~4!

whereVi
a(r ) is the local atomic pseudopotential andVa is

the atomic volume. The EPM bandstructure calculation
quires the evaluation of the Hamiltonian matrix for a suita
set of basis functions, usually planes waves, followed
direct diagonalization.

The equations written above, common to the stand
EPM approach, are applicable to a general periodic sys
strained or unstrained. Now, in the standard derivation of
EPM, the assumption is made that the atomic pseudopo
tials are spherical with the consequence that form fac
Vi(G) depend only upon the magnitude of the recipro
lattice vectors, i.e.,Vi(G)5Vi(G) whereG5uGu. Invoking
this approximation leads to a considerable simplification
the problem. Since the pseudopotential need only be kn
at the reciprocal lattice vector magnitudes,G, and the mag-
nitudes of the Fourier components are found to red
sharply withG, the number of form factors that are require
to provide a good description of unstrained bulk materi
can be kept very small. Indeed only six form factors a
generally used in most bulk calculations, and these can
easily fitted to available experimental data.28 However, for
strained systems, the spherical approximation restricts
degree to which the symmetry breaking effect of the str
as
-
-

o

e
e

m

-

y

rd
m,
e
n-
rs
l

f
n

e

s
e
be

he
n

may be described, and eventually leads to conceptual d
culties in the meaning of the form factors.

An effective description of the reduced symmetry
strained systems may be achieved by removing the res
tion to spherical symmetry. However, simply replacing t
Vi(G) by theVi(G) presents a significant problem in fixin
the values of the form factors. Clearly, the number of disti
form factors has increased considerably, to a number imp
tical for fitting to empirical data. Further, these values mu
in principle, be specified for each strain configuration
quired. A direct implementation of this approach is therefo
inappropriate. What is required is a functionVi(G), which
incorporates the differences in the Fourier components al
different directions, but which may easily be generated fr
the empirical information.

A practical solution to this problem, and that invoked
the EPM calculations in the present work, is to attempt
separate the form factor variations in to components al
the crystal axes. In this approach, the form factor function
defined by,

V~G!5
gx

2

uGu2
Vax

~Gx!1
gy

2

uGu2
Vay

~Gy!1
gz

2

uGu2
Vaz

~Gz!,

~5!

whereG5(gx ,gy ,gz) andax , ay andaz are the lattice con-
stants along the cubic crystal axes. The functionsVai

are
empirical potentials independently fitted for the bulk sem
conductor hydrostatically strained to the lattice constant
the i th direction,ai . These functions are evaluated atGi , the
magnitude of the reciprocal lattice vector corresponding toG
under hydrostatic strain to lattice constantai . For the calcu-
lation of the band structure for a strained bulk materi
evaluation of the necessary Hamiltonian matrix elements
quires only that bulk form factors are fitted to appropria
empirical data pertaining to hydrostatically strained bulk m
terials~i.e., strained to the lattice constants corresponding
the strained lattice constants along each of the crystal ax!.
At this point, it should be noted that the separation of t
form factors in this way cannot be justifieda priori, and the
discrepancy introduced by this represents an approxima
inherent to the method.

Direct implementation of Eq.~5! by refitting the poten-
tials for each strain condition encountered is cumbersome
studies in which the same material may be studied in a v
ety of situations, e.g., grown on different substrates. It
convenient, therefore, to construct a generalized poten
through interpolation between the form factors of a series
hydrostatic strains~lattice constants!. For each hydrostatic
strain condition, a set of six form factors are obtained~using
typical cutoffs!, corresponding to particular bulk reciproc
lattice vectors. Interpolating between the form factor asso
ated with equivalent reciprocal lattice vectors at these stra
enables the functionsVai

to be generated for any intermed
ate strain required. In practice, it is found that a simple q
dratic fit describes well the variation of the form factors wi
strain ~see Fig. 1!.

How can the method described above be extended to
study of superlattice structures? Equation~2! can be applied
directly to the case of heterostructure systems, provided
takes care to note that the reciprocal lattice vectorsG are
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then those of the unit cell of the heterostructure not the b
As a result, the reciprocal lattice vector lengthsG at which
the form-factor functions,Vai

, must be evaluated, becom
less widely separated and take on a large number of va
between those required for the case of bulk. In order t
these functions may be evaluated at any intermediate va
it is common practice to introduce an interpolation. The p
ticular choice of interpolating function varies throughout t
literature. In this paper, the method of Gellet al.,27 using a
quintic polynomial fit, is used. Note that this interpolation
intermediate values of reciprocal lattice vector length is p
formed between the individual strained form factors, wh
are themselves obtained by interpolation between the em
cally fitted form factors of the hydrostatically straine
bulk—this is illustrated in Fig. 1. The dimension of th
Hamiltonian matrix, for a basis set of planes waves w
given energy cutoff, increases linearly with the number
atoms in the unit cell, and soon limits the size of cell that c
be practically studied. However, it is possible to exploit
knowledge of the nature of the system being studied to eli
nate many of the basis functions that are not expecte
contribute to the superlattice states of interest. In the ca
lations presented in this paper, only those basis functi
with wavevectors lying within a given distance of bulk r
ciprocal lattice vectors are included in the basis set. T

FIG. 1. The solid lines show the fit to the variation of the ind
vidual form factors with hydrostatic strain for InAs. The variation
shown in the symmetric and antisymmetric form factors over
range for which the change in lattice constant is24% to 14%
from the unstrained value. Also shown are the quintic polynom
fits used to describe the symmetric and antisymmetric pseudopo
tial at wave vectors intermediate to the bulk reciprocal lattice v
tors, as required in calculating, for example, the superlat
pseudopotential.
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process effectively restricts the superlattice states to co
butions from bulklike states of near-zone-center charac
Such a restriction is well established in EPM superlatt
calculations adopting a linear combination of bulk ban
approach.26,27 This approach enables the calculation of t
superlattice states to be dramatically sped up, without los
significant physics.

Finally, it is possible to extend the method further to a
dress the problem of extremely large unit cells, contain
several million atoms, in order to study the case of imperf
superlattice structures. To achieve this, a perturbation the
approach is adopted, whereby the wave functions of the
perfect superlattice, defined upon a large supercell, are
panded as a linear combination of strained~perfect! superlat-
tice states. That is,

Ck
i 5(

nk8
An,k8

i fk8
n , ~6!

whereCk
i is the wave function of thei th state of the imper-

fect superlattice,fk8
n are the wave functions of the perfe

superlattice at wave vectorsk85k1g, andg are the recip-
rocal lattice vectors of the supercell describing the imperf
superlattice. DefiningU to be the perturbation potential fo
the imperfect superlattice, the Hamiltonian to be solved
H5H01U. This leads to the secular equation,

An8k8
i

~En8k8
0

2Ei !1(
nk

Ank
i ^fn8k8uUufnk&50, ~7!

whereEn8k8
0 is the unperturbed eigenvalue staten8k8, Ei is

the energy of thei th perturbed level. Again, the size of th
problem may be significantly reduced by consideration of
physical nature of the problem, allowing only certain ban
and wave vectors to be retained in the wave-function exp
sion. Since the disorder represents only a relatively sm
deviation from the perfect superlattice states, only a re
tively small number of such states are required to desc
well the perturbed state, and a large reduction in the prob
size is achieved.

It is instructive to briefly contrast the method present
here with other approaches to the description of strained
tems by empirical pseudopotentials that have been prese
in the literature. In a recent paper,31 an attempt was made t
describe strained superlattices without redefining the recip
cal lattice, accounting for the effects of strain throu
changes in the atomic positions and an adjustment to
form factors. One of the most common approaches is to
tempt to derive a single interpolated curve to represent b
the change in form factors due to strain, and the intermed
form factor values required for heterostructu
calculations,12,29,30,32retaining the spherical potential form
Although careful choice of the fitting functions can ensu
that such methods are successful in particular materials,
widespread application of the technique is difficult. This d
ficulty arises because one is essentially attempting to
scribe with a single function two effects that have a distin
physical origin. The method presented in this paper critica
makes the distinction between these two processes, and
counts for each one independently. An alternative method
which the wave function of the supercell is described by
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basis set consisting of strained bulk bands, has recently b
presented by Wang and Zunger.33

III. SCATTERING THEORY

The strain-dependent empirical pseudopotential met
introduced in the preceding section provides us with an
curate description of the stationary states in perfect and
perfect superlattice structures. However, as indicated pr
ously, there is currently a demand for a theory that c
describe the dynamical properties of realistic~i.e., imperfect!
structures. The primary objective of this study is to develo
theoretical scheme whereby the stationary states of the
perfect superlattice may be linked to its dynamical prop
ties, namely scattering cross sections and lifetimes. To
end, we invoke the quantum theory of scattering which
ables us to extract the relevant dynamical information fr
the stationary state solutions to the full~perturbed! Hamil-
tonian of the imperfect superlattices.

In conventional studies of dynamic properties of hete
structures scattering theory is used to obtain transition r
to provide a description of the perturbed, imperfect syst
for which the stationary states cannot practically be obtai
by diagonalization of the full Hamiltonian.34 This approach
has restricted the study of dynamics in complex systems s
as semiconductor heterostructures either to the Born app
mation ~i.e., first-order perturbation theory!, or to simplified
models of the system in which the microscopic detail h
been neglected. To the author’s knowledge, no pract
scheme exists in which the full microscopic features of
system can be included in a scattering model tonth order. In
the theoretical approach that we outline below, a stand
result of scattering theory, namely the transition matrixT
matrix!, is applied in an unorthodox manner to exploit o
ability to diagonalize the full Hamiltonian. The microscop
nature of the empirical pseudopotential method ensures
the full atomistic picture of structural imperfection is implic
itly accounted for in our dynamical calculations.

Consider the case of an electron in a particular supe
tice state,ck

n , with wave vectork and miniband indexn. In
a standard result of scattering theory, the transition rate f

ck
n to another statefk8

n8 , due to interaction with perturbatio
U may be written

Q~k,k8!5
2p

\
z^fk8

n8uTuck
n& z2d~Ek2Ek8!, ~8!

where the transition-matrix elements^fk8
n8uTuck

n& are defined
by

^fk8
n8uTuck

n&5^fk8
n8uUuCk

n&, ~9!

and the stateCk
n is the~perturbed! evolution state ofck

n. The
energy delta function in Eq.~8! restricts the transition rate t
that of elastic scattering processes, where the scatterer h
internal degrees of freedom. The lifetime of the initial sta
may be obtained by considering transitions to all availa
states, and is given by

tnk
215

2p

\ (
n8K

z^fK
n8uUuCk

n& z2rn8K~En8K!, ~10!
en
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whereVk is the volume of the Brillouin zone. In writing this
expression it has been assumed that the transition-matri
ements remain virtually constant over small volumes of
ciprocal space so that the integral over destination states
be separated into a summation of such volumes, thus:

rn8K~En8K!5Vk
21E

VK

dk8d~Enk2En8k8! ~11!

wherern8K(En8K) is the partial density of states in volum
VK around wave vectorK .

In practical implementation of this scheme, using t
wave functions obtained from the empirical pseudopoten
method, it is necessary to deal carefully with the periodic
implicit in the pseudopotential model employed. The pe
odic nature of the supercell potential as modeled pres
difficulties in the evaluation of Eq.~10!. Nonzero matrix
elements can only arise between wave vectorsK and k8
where they are separated by a reciprocal lattice vector of
system — as a result the probability of exact elastic scat
ing between states becomes negligible, and the lifetime te
to infinity. However, since the period of the supercell
much larger than the extent of the scattering potential,
can move conceptually to a continuum picture by taking
discretek points to represent a sampling of a continuo
reciprocal space. Practically, this involves evaluation of
matrix elements by interpolation between the transit
strengths at the discrete grid of points of the periodic syst
Physically, this is equivalent to approximating to a unit c
of infinite extent. For such a system, involving scatteri
from a single localized potential, the lifetime no longer re
resents a well defined quantity; rather, one wishes to co
pute the scattering cross section associated with that impu
potential. The scattering cross sectionsn(k) is defined,

sn~k!5
V

v0
nk

1

tnk
, ~12!

wherev0 is the initial electron velocity andV is the normal-
ization box volume. A convergent expression forsn(k) is
obtained upon substitution of Eq.~10! for the lifetime:

sn~k!5
2p

\

V

v0
nk (

n8K
U(

n,k9
An,k9

i ^fK
n8uUufk9

n &U2

rn8K~En8K!.

~13!

Here, the perturbed wave function has been written in
form of Eq. ~6! — this form lends itself to the computatio
of the cross section, since the wave vectorsk9 are precisely
those wave vectors that are involved in the supercell per
bation calculation, so the matrix elements ofU required to
calculatesn(k) have already been evaluated in obtaining t
solution to the perturbed Hamiltonian.

Having thus obtained an expression for the cross sec
of a single scattering center, we can proceed to the case
random arrangement of such scatterers, sufficiently far a
as to be effectively isolated. In this instance it is the over
cross section, proportional to the total number of cente
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which diverges. On the other hand, the lifetime of such
system is well defined, and applying Eq.~12! once more, for
a total ofNSC scattering centers, the microscopic express
for the lifetime may be written,

~tnk!215
2p

\
NSC(

n8K
U(

n,k9
An,k9

i ^fK
n8uUufk9

n &U2

rn8K~En8K!.

~14!

This expression converges for a given density of scatte
centers, since the dependence on crystal volume of the n
ber of scattering centers and partial density of states is
actly cancelled by the normalization of the wave function

Finally, we note that Eqs.~13! and~14!, derived from the
T matrix using the perturbed wave functions, include allnth-
order scattering processes. First-order expressions, eq
lent to the results of Fermi’s Golden Rule, may be obtain
by repeating the above derivation with the perturbed evo
tion state,Ck

n , approximated by the leading term in its e
pansion, simplyck

n . This leads to first-order expressions f
the cross section and lifetime,

sn~k!5
2p

\

V

v0
nk (

n8K
z^fK

n8uUufk
n& z2rn8K~En8K!, ~15!

~tnk!215
2p

\
NSC(

n8K
z^fK

n8uUufk
n& z2rn8K~En8K!, ~16!

which include only single scattering processes.

IV. RESULTS

A. Perfect Ga0.75In0.25SbÕInAs superlattice

The superlattice structure chosen for the present stud
the 11Ga0.75In0.25Sb/9InAs structure~where 9InAs represent
9 monolayers, 4.5 lattice constants, of InAs! pseudomorphi-
cally grown on GaSb, studied experimentally by Jacket al.35

This structure is typical of recently proposed detector str
tures, and the methods applied here would also be applic
across a wide range of heterostructure configurations.
deed, the present work forms part of an on-going projec
which the dynamical properties of a large number
antimonide-based heterostructures are to be characteriz

Before proceeding to the results of calculations relating
structural imperfections, it is instructive to examine the fu
damental properties of the ideal heterostructure spec
above. The band-edge alignment for this structure, calcul
using the model solid approach of Van de Walle,36 is illus-
trated schematically in Fig. 2. This shows that the structur
a type-II broken-gap~sometimes referred to as type III! su-
perlattice, in which the top of the alloy valence band li
above the InAs conduction minimum. For such an alignm
the superlattice will have a nonzero energy gap only for s
ficiently narrow layers, in which case the energies due
quantum confinement in the valence and conduction w
are sufficient to lower the alloy valence-band edge below
InAs conduction-band edge. This is the case for
11Ga0.75In0.25Sb/9InAs structure studied.

The electronic band structure of th
11Ga0.75In0.25Sb/9InAs superlattice was calculated using t
strain-dependent empirical pseudopotential method
a
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scribed in Sec. II. The strain-dependent pseudopoten
were fitted to the experimental data,37 and the alloy was de-
scribed using the virtual crystal approximation~VCA!,38 in
which the alloy layer is described by a potential with fu
zinc-blende symmetry and properties interpolated betw
those of the constituent materials. In a very recent pape39

the empirical pseudopotential method described in this pa
was used to study the effect of the VCA on the optical
sponse of heterostructures. For the purposes of the pre
study, the VCA shall be assumed, though inclusion of al
disorder effects will form a natural extension to the work
the present paper. Figure 3 shows the computed charge
sities associated with the states at the zone center, plo
down the center of the spiral in the superlattice growth
rection. The general confinement of the valence and cond
tion minibands to different layers is clearly seen, though i

FIG. 2. The broken-gap band alignment in th
InAs/Ga0.75In0.25Sb superlattice grown on GaSb, including the e
fects of strain, with numerical values~meV! calculated using the
method of Van de Walle~Ref. 36!. The conduction~CB!, heavy-
hole ~HH!, and light-hole~LH! band line-ups are shown. The pos
tions of the conduction- and valence-band edges for the typ
11InAs/9Ga0.75In0.25Sb structure are indicated.

FIG. 3. The charge densities~arbitrary units! associated with the
zone-center states close to the fundamental gap of
11InAs/9Ga0.75In0.25Sb superlattice are plotted against distance
the growth direction, averaged over spin-degenerate pairs.
charge densities are plotted along the center of the atomic sp
lying along the direction of superlattice growth, for the highest fo
valence minibands, and lowest three conduction minibands.
valence minibands have been identified as ground heavy-
~HH1!, ground light-hole ~LH1!, and first- and second-excite
heavy-hole minibands~HH2, and HH3, respectively!. The two dif-
ferent interface bonding types are indicated.
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also apparent that there is a relatively large degree of wa
function leakage in the conduction band. This leakage res
in an enhanced wave-function overlap, necessary to obta
reasonably strong interband transition close to the fundam
tal gap, in turn needed for improved infrared detection. T
microscopic nature of the EPM description is indicated
the clear distinction in Fig. 3 between the two different i
terface types, present in the superlattice, Ga0.75In0.25As-like
and InSb-like.

The optical absorption spectra for this structure w
computed by sampling the superlattice band structure
evaluate the microscopic expression for the absorption c
ficient obtained from density matrix theory:40

xma
(1)~2vs ;v1!52

e2N

Vme0vsv1
dma

1
e2

Vm2e0\vsv1
(

k
(

a
f 0~a!

3(
b

F pab
m pba

a

~Vba2 ig2v1!

1
pab

a pba
m

~Vba1 ig1v1!
G . ~17!

A tetrahedral interpolation procedure was used to obtai
convergent expression, and the sampling was restricted to
active region of the Brillouin zone as detailed in th
literature.41 Figure 4 shows the computed spectrum for n
mal incidence (xx polarization! absorption and parallel inci
dence (zzpolarization! absorption. Also shown is the exper
mental normal incidence absorption (xx polarization!
spectrum measured by Jacket al.35 The excellent agreemen
between the theoretical and experimental absorption s
trum provide evidence that the EPM calculations provid
good description of both the electronic energies~determining
the cutoff energies! and the transition probabilities~dictating
the magnitude of the response!.

FIG. 4. The variation of the calculated normal incidence abso
tion coefficient (cm21, solid lines! with photon energy~eV! for the
11InAs/9Ga0.75In0.25Sb superlattice is compared with the expe
mental result of Jacket al. ~Ref. 35! ~dashed lines! for a nominally
identical structure. Also shown for comparison is the calcula
parallel incidence (zz polarization! absorption.
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Having thus examined the behavior of the idealized
perlattice, it remains to apply the theoretical framework d
veloped in Sec. III to investigate the properties of imperfe
superlattice structures.

B. Interface islands of isovalent anion defects

Let us consider now the case of a superlattice as defi
in the previous section, but with substitutional isovalent a
ion defects in the form of interface islands. In particular, t
case of cylindrical islands adjacent to the Ga0.75In0.25As-like
interfaces is considered, with a fractionx of all anions inside
the island swapped from As to Sb~denoted SbAs defects!.

Initially, the variation of scattering cross section with in
cident carrier wave vector was studied in detail for an isla
sufficiently deep to contain two layers of As atoms, and w
a radius of two lattice constants. A fraction of 50% of the A
anions are replaced randomly by Sb anions resulting in
island containing 49SbAs defects. The calculated wave
vector dependence of the cross section is shown in Fig. 5
initial states in the highest valence miniband, and in Fig.
for the lowest conduction miniband. The cross section w
calculated using both thenth order T-matrix theory @Eq.
~13!#, and in the first-order~golden rule! approximation@Eq.
~15!#, and the results of these two approaches may be c
pared in Figs. 5 and 6. It is clear that there is a considera
contribution to the wave-vector dependence of the cro
section due to higher-order~multiple scattering event! pro-
cesses, though it is also apparent that the characteristic m
nitude of the cross section is rather well described by
simpler golden rule calculations in which only singl
scattering events are included. The higher-order contribu
appears as a resonance structure superimposed upon the
order scattering response.

The calculations were repeated for a large number of
lindrical island defect configurations of the type describ
above. As the intention here is to investigate the broad
pendence of the cross section upon the specifications o
defect island, it is sufficient to compare the cross sect
calculated according to the golden rule, which while not a

-

d

FIG. 5. The wave-vector dependence of the hole scattering c
section (10214 cm2) of a 49 SbAs defect island, radius two lattice
constants, height of two anion layers and 50% swapping fract
The cross section is shown for the uppermost hole miniband.
dashed lines show the result of the full calculation including m
tiple scattering events~the crosses indicate the wave vectors
which the cross section was calculated!, while the solid lines show
the first-order, Born approximation, contribution.
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to reproduce the fine wave-vector-dependent variation, d
reflect the overall scattering strength of the defect. The va
tion of this cross section, at a particular wave vector
'0.005X, is shown in Fig. 7 as the radius of islands
changed. The cross section is plotted on a logarithmic s
against the number of defect anions in the island. Po
representing islands with a given height have been conne
by solid lines to indicate the variation of the cross sect
with radius. The straight lines obtained indicate that the cr
section obeys a simple power-law variation with the num
of defect atoms. Analysis of the gradients of the lines giv
values of 1.83 for height of one atom, and 1.98 for height
three. The form of Eq.~15! suggests that, in the zeroth ord
approximation, one might expect that the cross section
assume ann2 dependence. From the above discussion,
results of the full calculation indicate that as the radius
increased the actual variation is rather close to this na
expectation. However, in contrast, the solid lines in Fig
connect points representing islands of given radius, illust
ing the dependence on island height. It is clear that in

FIG. 6. The wave-vector dependence of the electron scatte
cross section (10214 cm2) of a 49 SbAs defect island, radius two
lattice constants, height of two anion layers and 50% swapp
fraction. The cross section is shown for the lowest conduction m
band. The dashed lines show the result of the full calculation
cluding multiple scattering events~the crosses indicate the wav
vectors at which the cross section was calculated!, while the solid
lines show the first-order, Born approximation, contribution.

FIG. 7. The scattering cross section (10214 cm2) of cylindrical
islands of varying height and radius~all with 50% anions swapped!,
plotted against the number of SbAs defects in the island. Lines ar
drawn through points representing islands of heights sufficien
contain 1 anion layer,h51, and 2 anion layers,h52, as the island
radius is varied.
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case the variation goes beyond a simple power law. It can
concluded that the effectiveness of the islands as scattere
enhanced in the case of islands that protrude the grea
distance into the layer.

Of course, the true variations in the cross section m
include the effect of higher-order contributions, themselv
dependent on the detailed composition of the defects. A
clear from the dispersion relations in Figs. 5 and 6, the na
of the higher-order contribution is highly sensitive to th
wave vector. It is interesting to consider how the relati
contribution of the higher-order terms in theT matrix formal-
ism, reflecting the multiple scattering events, depends u
the size and shape of the defects. As might be expected
relative influence of the higher-orders increases as
strength of the first-order scattering itself increases. A
wave vector of 0.003X, for example, the multiple scatterin
terms alter the cross-section by 40% for islands with fir
order cross section of'1310214 cm2, while for a single
anion defect, with first-order strength'1310218 cm2 the
relative change is less than 0.1%. This suggests that the
of Fermi’s golden rule introduces considerable inaccurac
as the islands become larger—the precise magnitude of
relative error due to this approximation is sensitive to t
wave vector at which the cross section is evaluated.

C. Single-anion defects

It is now interesting to consider the case of isolated s
stitutional anion defects, i.e., to take the limiting case
islands containing just a single defect. Figure 9 shows
wave-vector dependence of the cross section for a sin
SbAs defect adjacent to the interface, for initial states in t
highest two valence and lowest two conduction miniban
For these defects the golden rule andT matrix give indistin-
guishable results. Comparison with the dispersion relati
for the 49 atom island in Figs. 5 and 6 indicates that the fo
of the wave-vector dependence for the single defect is s
lar to the first-order contribution to the larger island, thou
the scattering strength is three orders of magnitude sma

In a very recent paper42 the scattering from isolated sub
stitutional anion defects adjacent to the interfaces was sh
to be highly sensitive to the nature of the defect: i.e.,

g

g
i-
-

to

FIG. 8. The scattering cross section (10214 cm2) of cylindrical
islands of varying height and radius~all with 50% anions swapped!,
plotted against the number of SbAs defects in the island. Lines ar
drawn through points representing islands of radii,r ~lattice con-
stants! as the island height is varied.
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magnitude of the cross section depended upon whetherAs
or AsSb defects were present. What is the microscopic ori
of the difference between these defects, and to what ex
does the scattering depend upon the proximity to the het
structure interfaces? To address these questions a syste
study of the changes in scattering properties with the posi
of these defects, and of the effect of the relaxation of
lattice around the defects, is presented.

First, consider the scattering of electrons occupying sta
in the lowest conduction miniband, and for clarity consid
only those electrons with a particular wave vector
'0.005X. The cross section was computed for single an
defects at each of the anion sites available in the unit ce
an ideal 11Ga0.75In0.25Sb/9InAs superlattice. The results a
shown in Fig. 10, where the results of calculations involvi
full lattice relaxation are compared to those obtained w

FIG. 10. The cross section (10218 cm2) for electrons in the
lowest conduction miniband is plotted against the position of sin
isovalent substitutional anion defects. For positions labeled 1 to
these correspond to SbAs defects, while for labels greater than 2
they represent AsSb defects. The solid lines show the cross sect
calculated with full relaxation of the lattice around the defect, wh
the dashed lines show the variation when the lattice is frozen.

FIG. 9. The wave-vector dependence of the electron scatte
cross section (10218 cm2) of an isolated SbAs defect at the
Ga0.75In0.25As-like interface The cross section is shown for the lo
est conduction miniband~C1! and next lowest~C2!, and for the
uppermost~V1! and next highest~V2! valence minibands.
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fixed atom positions. In Fig. 10, the anion sites in the In
layers~corresponding to SbAs defects! are shown on the left-
hand side of the diagram, while the sites in the Ga0.75In0.25Sb
layers ~corresponding to AsSb defects! are shown on the
right-hand side. The scale on the position axis refers to lab
of the atoms in the unit cell, starting at 1 for the As ani
forming part of the GaInAs-like interface, to 40 for the Ga
cation at the other end of the unit cell. The SbAs defects
occupy odd-numbered sites up to 21, while the AsSb defects
occupy odd sites from 23. The form of these results is c
sistent with the expectations of a simple envelope funct
picture: the peak in electron scattering occurs at the cente
the InAs layer, reflecting the greater overlap of the electro
wave function with the defect perturbation. The AsSb defects
scatter the electrons only weakly since the electrons are
fined to the other layers of the superlattice. Further, note
the relaxation of the atoms around the defect has only a v
small effect on the peak of the electron cross section.

However, in the case of the scattering from the high
hole miniband, a rather surprising result is obtained. Fig

e
1

FIG. 11. The cross section (10218 cm2) for holes in the upper-
most valence miniband is plotted against the position of single
ovalent substitutional anion defects. For positions labeled 1 to
these correspond to SbAs defects, while for labels greater than 2
they represent AsSb defects. The solid lines show the cross-secti
calculated with full relaxation of the lattice around the defect, wh
the dashed lines show the variation when the lattice is frozen.

FIG. 12. The lifetime (ms), calculated for 1016 cm23 isolated
SbAs impurities, plotted as a function of the carrier energy relat
to the band edge~meV! for electrons in the lowest two conductio
minibands, C1 and C2, and highest two valence minibands.
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11 shows the cross section for scattering from initial h
states, and again compares for relaxed and unrelaxed
positions. For the calculations with no relaxation of the
oms, the variation of the cross section is once again con
tent with the envelope-function description of the wave fun
tions. This time the maximum scattering occurs at the ce
of the valence well since that is where the hole wave fu
tion has greatest overlap with the defect potential. Howe
upon relaxation of the atoms there is a quite radical cha
to the cross section of the AsSb defects. The relaxation re
sults in the whole central peak of cross section being eli
nated, leaving maxima directly adjacent to the interfa
~where in fact relaxation enhances the scattering!. Further
analysis, by computing the effective cross section due to
defect atom itself due to the surrounding atoms separa
indicates that the relaxation of the alloy atoms around
defect gives rise to a large out-of-phase contribution to
cross section, which nearly cancels the scattering from
defect itself. Clearly this deviation from the envelop
function picture can only be described by a full microsco
model of the defect and the scattering process, such as
presented here.

Why is the effect of the relaxation so different betwe
the two types of defect? The peak in electron cross sec
remains strong under relaxation of the surrounding InAs,
the peak of the hole cross section is virtually eliminated
the relaxation of the alloy atoms. One possible explana
would be that the nature of the relaxation is different
examination of the change in atom positions shows t
while the magnitude of the atomic movement is similar
each case, the direction of movement is different. Around
SbAs defect the InSb bonds formed are very much lon
than the InAs bonds and the lattice breathes out, while
AsSb defect in the alloy results in shorter GaAs and In
bonds giving rise to an inward movement of atoms. In fa

FIG. 13. The average lifetime (ms) calculated for an ensembl
of electrons and holes in a structure with 1016 cm23 isolated SbAs

impurities, plotted as a function of temperature~K!. The lifetimes
are shown for carrier concentrations of 1021 m23, 1022 m23, and
1023 m23.
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by modeling the physically unrealistic structures obtained
forcing the atoms around the SbAs defect to relax inwards~as
though around the AsSb), andvice versait was found that the
direction of relaxation wasnot the origin of the discrepancy
Rather, it was found that the difference in the effect of
laxation around the particular defect atoms arose princip
from the difference in the host materials in which they ex
— in other words, it is simply a property of th
Ga0.75In0.25Sb alloy that it gives a large contribution to th
cross section when its atoms are moved.

D. Carrier lifetimes

For semiconductor heterostructures a more relevant i
cator than the cross section is the scattering lifetime, wh
may be calculated from Eq.~14!. In order to evaluate the
lifetime it is necessary to specify some concentration of
scattering centers concerned. In the present calculatio
concentration of scattering centers of 1016 cm23 is assumed.
For isolated SbAs defects adjacent to the Ga0.75In0.25As inter-
face, at this concentration the carrier scattering lifetime
shown as a function of incident energy~relative to the band
edges! in Fig. 12. The lifetimes corresponding to initial ele
tron and hole states are shown. It can be seen that there
strong energy dependence to the variation of lifetime. C
sequently, in order to compute a characteristic lifetime fo
given ensemble of carriers, it is necessary to consider
distribution throughout the bands: that is, to account for
different occupations of states of particular energies. S
consideration results in a lifetime dependent upon both
concentration of carriers for which the lifetime is to be d
termined, and their temperature.

By considering a particular concentration of electron-
hole-carriers in the band, and imparting a Fermi-Dirac dis
bution for a given temperature, the effective ensemble l
times were calculated for a number of defects. Figure
shows the variation of the lifetime against temperature
several different carrier populations. At higher temperatu
the average lifetimes decrease as the carriers are excite
higher energies, moving away from the Brillouin zone ce
ter, and occupy states with shorter lifetimes~see Fig. 12!. As
might be expected, the sensitivity of the lifetime to su
redistribution of carriers is greater for small overall carr
concentrations. At higher temperatures the effective lifeti
is essentially determined by the lifetimes of higher ene
states, and the lifetime becomes insensitive to change
population.

For the single-SbAs defects at the Ga0.75In0.25As inter-
faces, the lifetime at 77 K of a population of 1016 cm23

electrons is 1.6ms. However, for the same defects located
the center of the well, the lifetime reduces to just 0.35ms. It
is clear, then, that the scattering lifetime is determined
only by the size and chemical species of the defects but
by the precise location of the defects relative to the int
faces. A more dramatic change in lifetime may be seen if o
considers the effect of defects forming into clusters. For
49SbAs island considered previously, the lifetime drops
just 0.4 ns—the factor of 49 increase in density of defect
reflected by a 4000 times reduction in the lifetime. This
duction in the lifetime is still not sufficient to make the ela
tic scattering from these defects comparable to the lifetim
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from processes such as interface roughness scattering,
ized impurity scattering, and phonon scattering. Howeve
should be noted that the concentrations of defects consid
are not as large as those observed experimentally.22,23 For
larger islands or higher island densities the lifetime might
reduced to compete with other processes. In these case
effect of islanding observed may be significant in determ
ing the device characteristics. The calculations presen
here provide a benchmark for the strength of these ela
scattering processes at the given defect concentrations.

It is interesting to compare the lifetimes associated w
the AsSb defects, at the interfaces and at the center of
alloy layer. In this case, the lifetime drops from 4.9ms at the
interface to 3.1ms at the center of the well. Thus it can b
seen that the shortest lifetimes due to SbAs defects are an
order of magnitude less than that of the AsSb defect. The
origin of this difference was analyzed in comparison of t
scattering cross sections in the previous section. The im
cation of this result for optimization of device structures
clear, namely that the elimination of excess antimony sho
be a priority for improvement of lifetimes in these structure

V. CONCLUSION

The theoretical scheme developed in this paper addre
first the requirement for a microscopic description of t
states in imperfect strained antimonide-based superlatt
and second the need for a microscopic account of the
namical properties governing the performance of devi
made from these heterostructures. An empirical pseudo
tential scheme with strain-dependent potentials satisfies
demand for microscopic wave functions while scatter
theory provides the link to the device indicators such as c
rier lifetimes.

In this paper, the theory has been applied to the partic
case of a Ga0.75In0.25Sb/InAs superlattice in the presence o
range of isovalent anion defects. It has been shown that
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scattering cross section and carrier lifetime are sensitive
the detailed nature of the imperfections: the chemical spe
of the defect~s!, the location of the defects relative to th
interfaces, the formation of defects into interface islan
Further, the role of lattice relaxation has been identified, a
leads to a variation of cross section with defect locat
qualitatively different to the expectations of a simp
envelope-function model. The contribution of multiple sca
tering processes is shown to exhibit a strong wave-ve
dependence, and to become significant for larger interf
islands. Only a full microscopic theory is able to descri
even the qualitative details of the factors governing the li
time. For typical concentrations of defects and electrons,
at a temperature of 77 K, the lifetime of isolated substi
tional antimony defects is calculated to be 1.6ms for defects
adjacent to the interfaces, and 0.35ms at the center of the
InAs layer. The minimum lifetime associated with arsen
defects in the alloy layers is 3.1ms, implying that the elimi-
nation of excess antimony is more important with regard
device performance. For antimony interface islands of
proximately 50 atoms the lifetime reduces to the subnano
ond regime.

In establishing a link between the microscopic defect c
figuration the dynamical macroscopic properties relevan
practical applications, the theory developed in this study
provide vital information on the factors limiting device pe
formance. While the theory has been demonstrated for a
ticular superlattice in this paper, it is a generic tool app
cable to a wide range of heterostructures and defect typ
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