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A model which permits obtaining kinetic law for excitation decay in the presence of clusters of impurity ions
of arbitrary length in a dielectric crystal matrix is proposed. The phenomenon of electronic excitation trapping
in impurity paired centers �PCs� in doped dielectric crystals is investigated by using the theory of the Mar-
kovian processes. It is shown that the delay of excitation lifetime in PCs can exert a vital influence on the
kinetics of excitation decay in the whole impurity subsystem. The dependences of excitation lifetime on the
concentration of impurity ions and pump power are found.
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I. INTRODUCTION

Cooperative processes taking place in doped dielectric
crystals, in particular, the processes of nonradiative transfer
of the electronic excitation energy �NTEEE� between impu-
rity ions, lead to redistribution of excitation energy in the
impurity subsystem. This essentially affects the kinetics of
excitation decay, dynamics of population and depopulation
of electronic levels of impurity ions, etc.1–5 At least two
problems arise when studying the processes of excitation re-
laxation in an impurity subsystem: �i� determination of prob-
ability of elementary NTEEE acts in donor-acceptor pairs of
impurity ions induced by multipole-multipole, exchange, and
other interactions of these ions3–8 and �ii� summation of
NTEEE probability over a variety of donor and acceptor
ions, the result of which certainly depends on distribution of
impurity ions in the crystal matrix.1,3,9–11

The case of inhomogeneous distribution of impurity ions
in a crystalline matrix is of certain interest because it leads to
the origin of clusters of two or more impurity ions between
which effective NTEEE takes place.12,13 As a result, the life-
time of excitation in such formations is raised �excitation
trapping�, which obviously influences kinetics of excitation
decay in the impurity subsystem as a whole and, hence, the
spectroscopic characteristics of materials.14–21

The model proposed in the present paper allows obtaining
kinetic law for electronic decay in an impurity system taking
into consideration the NTEEE processes between impurity
ions in the presence of impurity paired centers �PCs� in a
crystal matrix. It must be noted that strongly inhomogeneous
distribution of impurity ions in a crystal matrix substantially
complicates analytical solution of kinetic equations initially
written for the whole impurity system.15–17 Consequently, in
the model proposed, the whole impurity system is split into
two subsystems, namely, a PC subsystem and a solitary im-
purity center subsystem, with a priori different excitation
decay times. In addition, we imply the following assump-
tions: �i� the impurity ions are local centers of small radius
�i.e., optical electrons of such impurity ion are localized
close to nucleus of impurity ion�; �ii� impurity ions, which
form PC, retain their identity �i.e., the interaction energy of
two impurity ions is much less than the energy of intra-
atomic interactions�; and �iii� the impurity ions are excited
by pulses of much shorter duration as compared to that of
relaxation processes in a single impurity ion.

In order to calculate excitation lifetime in a PC, the kinet-
ics of excitation decay in a PC is studied for a given value of
probability of elementary NTEEE acting between the ions
composing a PC. The excitation lifetime in a solitary center
determined by intracenter relaxation processes is considered
known. Further, the excitation decay law over the whole im-
purity system is determined taking into account NTEEE pro-
cesses between solitary and paired centers. Such an approach
allows one to significantly simplify calculations of kinetic
parameters of the whole system and, on the other hand, to
perform calculations also in the case of the presence of more
complex cluster formations consisting of three or more im-
purity ions.

II. EXCITATION DECAY IN PAIRED CENTER

Let us consider the process of excitation decay in a PC
consisting of similar impurity ions A, one of which is ini-
tially �t=0� excited, while the other is in the ground state.
Let us denote the number of such a �A-A*� PC by n10. We
suppose that the probabilities of the direct and opposite pro-
cesses of NTEEE in PC are the same, and the excitation can
be frequently transferred from one impurity ion to another
until it is lost. For the description of the excitation decay
process in the PC, we use the theory of the Markovian
processes.22 The process, in which the excitation relaxes af-
ter �n−1� jumps, can be described by the directed Markovian
chain of n length, where each site corresponds to a single
excitation state �Fig. 1�.

Excitation evolution described by the chain of n length is
determined by the system of the Kolmogorov equations,

Ṗ1
�n��t� = − WP1

�n��t� ,

FIG. 1. Markovian chain of n length; W and W0 are the prob-
abilities of a jump and intercenter transitions and Pk

�n��t� is the prob-
ability that the excitation is on the kth point of the chain of n length.
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Ṗ2
�n��t� = − WP2

�n��t� + WP1
�n��t� ,

Ṗn
�n��t� = − W0Pn

�n��t� + WPn−1
�n� �t� , �1�

where Pk
�n��t� is the probability to find an excitation at time t

in the kth site of the chain of n length, W0 is the probability
of intracentral �radiative or nonradiative� relaxation of exci-
tation, and W is the probability of a jump from one site to
another. In particular, Pn

�n��t� is the probability of excitation
loss in the nth site of the chain of n length after �n−1� jumps.
Solving the equation system �Eq. �1�� with the initial condi-
tion Pk

�n��0�=�k,1, we obtain

Pn
�n��W,t� = � W

W − W0
�n−1

�e−W0t�1 −
��n − 1,�W − W0�t�

��n − 1�
�1 − �n,1�� ,

�2�

where ��n , t� is the incomplete gamma function and ��n� is
the gamma function. In particular, n=1 corresponds to the
case of excitation decay without jumps; for n=2, the excita-
tion decays after a single jump, etc.

Obviously, the realization of a certain length chain de-
pends on the magnitude of the ratio a=W /W0: the higher a is
the higher the probability of realization of a longer chain is.
Let us denote the probability distribution of realizations of a
chain with the n length by Qn�a�. It is evident that the func-
tion Qn�a� should have the following properties: �1� Qn�0�
=�n,1, i.e., at a=0 �absence of jumps� the chain with a single
site is surely realized; �2� limn→� Qn�a�=0 for all finite posi-
tive values of parameter a, i.e., at finite values of the jump
probability, the excitation lifetime in the PC is finite; and �3�
	n=1

� Qn�a�=1 is a condition of completeness for a set of
probable chains. The simplest model function satisfying the
above-stated conditions reads �see Appendix�

Qn�a� = �1 − exp�−
�

a
��exp�−

��n − 1�
a

� . �3�

The numerical value of the positive parameter � can be de-
termined by comparing the calculated and experimental val-
ues of kinetic characteristics of excitation decay. Thus, for a
given value of parameter a, the probability of excitation de-
cay at the instant t is equal to

P�a,t� = 	
n=1

�

Qn�a�Pn
n�t� . �4�

Using Eqs. �2�–�4�, we obtain, for the average excitation life-
time in the PC,

�a

�0
= W0

2

0

�

tP�a,t�dt = 1 +
1

a�e�/a − 1�
. �5�

It is easy to see that for the absence of jumps, lima→0 �a
=�0 �the lifetime of excitation coincides with the lifetime of
the excited electronic level of an impurity ion, �0=W0

−1�. The
dependence of �a /�0 on the jump probability is given in Fig.
2. It is seen that the excitation jumps lead to prolongation of

excitation lifetime, and at W=W0 �for �=1�, when the pro-
cess rate in PC equals the rate of intracentral relaxation, the
excitation lifetime increases by �1.6 times. In the limit of
fast NTEEE �a�1�, from Eq. �5� we have lima→� �a= �1
+1 /���0.

The process of excitation decay in the PC consisting of
two different ions �A and B� undergoing effective resonant
energy exchange �i.e., electronic excitation can be transferred
from one ion to another without energy losses� can be de-
scribed in a similar way. It is presumed that at the initial
instant t=0, ion A is excited and ion B is in the ground
electronic state. Therefore, at the initial moment the PC is of
�A*-B� type, the quantity of which we denote by n0. It
should be noted that in the general case, the rates of direct
�from ion A* to ion B� and inverse �from ion B* to ion A�
transitions are different. However, assuming the presence of
resonant NTEEE channels, we can suppose that the rates of
direct and inverse NTEEE are equal. The Markovian chains
shown in Fig. 1 can also describe the evolution of excitation
in a PC of �A-B� type. However, now the odd sites of the
chain correspond to the excited state of ion A with an intra-
center relaxation time �01=W01

−1, and the even sites corre-
spond to the excited state of ion B with intracenter relaxation
time �02=W02

−1 �for certainty, we suppose that �01��02�. Dif-
ferential equations describing the excitation decay occurring
in accordance with the chain of n length coincide with Eq.
�1�, where W0 should be replaced by W01 for odd values of n
and by W02 for even values. The solutions of the obtained
system of differential equations with initial condition
Pk

�n��0�=�k,1 �1	k
n� coincide with Eq. �2� after replace-
ment of parameter W0, as stated above. For probability dis-
tribution of realizations of chains with n length, we take the
following function:

�n�a� = �0
−1 exp�−

��n − 1�
a

� , �6�

�0 =
1

2
� 1

sinh��/a2�
+

exp��/a1�
sinh��/a1��,

a =
a1 + a2

2
+ �− 1�na2 − a1

2
, �7�

where a1=W /W01 and a2=W /W02. From Eq. �7�, it follows

FIG. 2. Dependence of excitation lifetime in a PC on the prob-
ability of a jump at �=1.
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that a=a2 for even n and a=a1 for odd n. It is also seen that
expression �6� represents a generalization of formula �3� be-
cause for a1=a2=a �ions A and B are identical�, it transforms
to Eq. �3�. Thus, the probability of excitation decay in a PC
of type �A-B� at the instant t is

P�a,t� = 	
n=1

�

�n�a�Pn
n�t� . �8�

The average lifetime of excitation in a PC of �A-B� type is
obtained by expression �8�,

�a�W� =
1

2W�0
�1 + a1 exp��/a1�sinh��/a1�

sinh2��/a1�

+
a2 sinh��/a2� + cosh��/a2�

sinh2��/a2� � . �9�

It is easy to show that at a1=a2=a, expression �9� converts
into Eq. �5�. As a rule, in real crystal systems, the case of
rapid energy transfer is realized: the probability of NTEEE
between ions in a PC is much higher as compared to intrac-
entral relaxation �W�W01,W02�. In this limiting case, sup-
posing that the relaxation times �01�0 and �02�0 have fi-
nite values and a1→� and a2→�, we obtain

�a��� = �1 +
1

�
� ��01

2 + �02
2 �

�01 + �02
. �10�

It is seen that the delay of excitation decay in a PC takes
place for all finite values of �02 /�01 and �. The minimum
value of excitation lifetime �a

�min�����0.828�1+1 /���01 is
reached at �02= �2−1��01.

III. EXCITATION DECAY IN IMPURITY SUBSYSTEM OF
SIMILAR IONS

For description of excitation decay kinetics in the impu-
rity system, let us divide it into two subsystems: subsystem
of a PC and subsystem of a single impurity center. It is
assumed that the concentration of impurity ions is small
��1 at. % �, so that the rate W of NTEEE inside a PC is
much higher than the rate of NTEEE W1 between the ions
which did not form a PC. Consequently, the NTEEE pro-
cesses between PCs, as well as the energy transfer from PC
to single centers, can be neglected. Thus, it is believed that
the excitation confined in a PC does not leave it before re-
laxation. This allows considering the PC as an “acceptor”
with excitation relaxation lifetime �a determined by formulas
�5� and �9� for PCs of �A-A� and �A-B� types, respectively,
and single impurity ions as “donors” with relaxation lifetime
�d=�0.

We now consider the case when the impurity system con-
sists of ions A, and the processes of excitation migration
between single centers are neglected. The kinetic equation
for the number of excited donors nd and acceptors na is

ṅd = −
1

�d
nd − W1nd, ṅa = −

1

�a
na + W1nd, �11�

with initial conditions nd�0�=n20 and na�0�=n10. Solving
system �11� for the simplest case when W1 does not depend

on time, we obtain the excitation decay law, n�t�=nd�t�
+na�t�,

n�t� = n0� �a

�0
+ W1�a − 1�−1�y�W1�a exp�−

t

�a
�

+ � �a

�0
− 1�exp�−

t

�a
− W1t��

+ x� �a

�0
+ W1�a − 1�exp�−

t

�a
�� , �12�

and for excitation lifetime in the impurity subsystem,

�

�0
=

�a

�0
+

1 − �a/�0

1 + W1�0

y�0

x�a�1 + W1�0� + y�0�1 + W1�a�
,

�13�

where x=n10 /n0 and y=n20 /n0 �here n0 is the initial concen-
tration of all excited impurity ions�. In particular, in the lim-
iting case of �a= �1+1 /���0, we get

�

�0
= 1 +

1

�
−

y

�1 + W1�0��x + ��x + y� + �1 + ���x + y�W1�0�
.

�14�

Note that since the parameters �a, �0, and W1 depend on the
temperature, formulas �13� and �14� determine the tempera-
ture dependence of excitation lifetime �. Figure 3 shows the
dependence of excitation lifetime on the concentration of the
initially excited paired and single centers at �=1 for the case
where W1=0 �energy migration from single centers to PCs is
absent� and W1�0. It is seen that the energy migration plays
an essential role at small concentrations of the initially ex-
cited PC, and even at n10=0 the excitation lifetime increases
by more than 30%. It is seen also that the maximum value of
excitation lifetime is reached at n0=n10, where all excited
doping ions initially form a “regular” PC.

For obtaining the more detailed pattern for the case of
small concentrations of impurity ions by solving Eq. �6�, it is
necessary to take into account the time dependence of migra-
tion rate W1 �depletion effect�, which is determined by the
mechanism of NTEEE.5,10 In the case of a dipole-dipole
mechanism of NTEEE, WDD�R−6 �R is the distance between
the interacting ions�, we have1

FIG. 3. Dependence of excitation lifetime on concentration of
excited PCs at T=300 K and �=1 in the case when �a� W1=0, and
��b�, �c�, and �d�� W1=200 s−1.
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W1�t� = ��0t�−1/2q , �15�

where q= 2
3�3/2Rc

3CA �CA is the concentration of PCs and Rc
is the critical distance of NTEEE in the “donor-acceptor”
pair determined from the condition WDD�Rc��0=1�. Solving
Eq. �11� and taking into account Eq. �14�, we obtain

n�t� = n10 exp�− t/�a� + n20�exp�− t/�0 − 2qt/�0� + F�t�� ,

�16�

where

F�t� = �q1 exp�− q1
2 −

t

�a
���q1 + �t� − �q1�� ,

q1=q�1−�0 /�a�−1/2, �=1 /�0−1 /�a, and �z�
=2 /��0

z exp�−x2�dx is the error integral.
Using Eq. �15�, we obtain, for excitation lifetime in the

impurity system,

� =
n10

n10

�a
2 + n20�0

2A

�a + n20�0B
, �17�

where

A =
1

2
�2�1 + q2� − �qeq2

�3 + 2q2��1 − �q��� −
�a

2

�0
2�q1�

+
1

�0
2


0

�

t exp�− t/�a��q1 + �t�dt , �18�

B = 1 − �qeq2
�1 − �q�� −

�a

�0
�q1�

+
1

�0



0

�

exp�− t/�a��q1 + �t�dt . �19�

In the case when only PCs are initially excited �nd=0, na
�0�, we have �=�a. If only single centers are excited �nd
�0, na=0�, �= �A /B��0.

Analytical calculation of coefficients A and B yields com-
plicated expressions. However, in each specific case, it is not
difficult to perform numerical estimation of the values of A
and B. Thus, for the LiNbO3:Yb3+ system, the numerical
evaluation performed by using the values of parameters at
room temperature,21 �0=728.2 �s, �a=2�0, CA=0.2
�1020 cm−3 �CYb=1 at. % =1.6�1020 cm−3�, Rc=15 Å, q
=0.2506, q1=0.4092, and �=22.6929, leads to magnitudes
A=2.8132 and B=1.6184. Figure 4 shows the dependence of
excitation lifetime in the impurity subsystem on the number
of paired and single centers initially excited. Comparison of
Figs. 3 and 4 shows that the dependence of excitation life-
time on number n10 of regular PCs initially excited has simi-
lar characteristics for both constant and time dependent mi-
gration rates. However, quantitatively, they differ. In
particular, when n10=0, the time dependent migration rate
leads to a larger increase in excitation lifetime ��75% �.

It is obvious that the number n10 of regular PCs and the
number of initially excited single centers n20 depend on the
intensity and conditions of pumping. Assuming that the
pumping is performed by short pulses with duration �p and

that the processes of radiation absorption by impurity ions
are independent, the values of n10 and n20 can be approxi-
mated by the following expressions:

n10 = 2N10 exp�− �pF�p��1 − exp�− �pF�p�� , �20�

n20 = N0�1 − exp�− �pF�p���1 −
2N10

N0
exp�− �pF�p�� ,

�21�

where �p is the transverse cross section of absorption by
impurity ions, F is the photon flux density in the incident
wave pulse, and N10 and N20 are concentrations of impurity
ions. In Eq. �21�, we take into account also PCs, in which
both ytterbium ions are excited. The relaxation characteris-
tics of such “nonregular” PCs, the number of which evi-
dently depends on the pump intensity, do not differ from
relaxation characteristics of single centers. Expressions �20�
and �21�, together with Eqs. �16� and �17�, specify analytical
dependences of the decay law and excitation lifetime on the
pump power F�p and concentration of PCs.

IV. CONCLUSIONS

The presence of PCs in a crystal matrix, even for small
concentrations of impurity ions, essentially influences the ki-
netics of electronic excitation in the impurity subsystem. The
correlation between kinetic characteristics and concentration
of PCs can be established by analysis of excitation decay
kinetics at different pump intensities. In particular, it is pos-
sible to determine the concentration of PCs by using the set
of theoretical curves of electronic excitation decay �Figs. 3
and 4� and measured values of excitation lifetimes at given
pump intensities.

Obviously, analytical expressions for the excitation decay
law in the case when the impurity subsystem consists of two
different ions A and B can also be derived in the same way.
Here, of course, one needs to solve equations of Eq. �11�
type written for a wider class of impurity formations: solitary
centers consisting of A and B ions, as well as PCs of �A-A�,
�B-B�, and �A-B� types.

It must be noted that as distinct from the well-known
technique of rate equations15–17 �which are initially written
for the whole impurity system�, the mathematical apparatus

FIG. 4. Dependence of excitation lifetime on concentration of
excited PCs at temporal variation of energy migration rate.
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of the Markovian processes �which is successfully used,
along with density matrix method, for solution of problems
of statistical physics� allows describing of the excitation de-
cay process in a separate PC. Furthermore, by using the rate
equation method in the frame of a chosen distribution model
of impurity ions, one can determine kinetic characteristics of
the whole impurity system.

We believe that the developed theoretical constructions,
which are based on the theory of the Markovian processes,
can be naturally generalized for more complicated forma-
tions including three and more impurity ions. However, the
theoretical investigation of kinetics of electronic excitation
decay in such formations requires the use of topological ob-
jects with more complicated structures. Thus, for description
of excitation states in triple centers, two-dimensional grat-
ings should be used instead of linear chains.

APPENDIX

The process of excitation decay following n-time jumps
in the PC described by a chain of length n �Fig. 1� can be
represented as an alternating implementation of processes of
n-time excitation jumps �with probability of realization Gn�
and subsequent excitation decay �with probability of realiza-
tion Q1� �Fig. 5�.

Considering these two processes as independent from
each other, one can write

Qn = GnQ1. �A1�

Because of the Markovian nature of excitation jump pro-
cesses and independence of each jump, we have19 Gn+m

=GnGm. As a result, an exponential dependence law follows
for probability of appearing the chain of n length without
excitation decay on the number of jumps, which can be pre-
sented as

Gn = const · e−��n−1�, �A2�

where � is a positive quantity. The minus sign in the expo-
nent means decrease in Gn probability under unlimited in-
crease in n. Substituting Eq. �A2� in Eq. �A1� and introduc-
ing an exponent normalization constant in Q1, we get from
the completeness condition 	n=1

� Qn=1,

Q1 = �1 − e−�� . �A3�

So, we get a Poisson-type distribution for the probability of
realization of a chain of n length,

Qn = �1 − e−��e−��n−1�. �A4�

The excitation lifetime can be found by formulas �2� and �4�,

�a

�0
= 1 +

1

a�e� − 1�
. �A5�

One should assume from physical reasoning that �a, as a
function of the a parameter, is limited and monotonically
increasing. From the finiteness requirement for �a, it follows
that under unlimited increase in the a parameter, the ��a�
function decreases not faster than 1 /a �one can prove it by
developing the exponent in Eq. �A5� to power series on ��.
Hence, one can set ��a�=� /as, where 0	s�1 and ��0.
However, one can see from Eq. �A5� that at 0	s	1, the
��a� function has a local maximum and therefore does not
monotonically increase over the whole region of its defini-
tion. Consequently, s=1, and

Qn = �1 − e−�/a�e−��n−1�/a. �A6�

It is seen that for n�1, the function Qn�a� reaches its
maxima �Qn�max= �n−1�n−1n−n at the points determined by
an=��ln�n /n−1��−1. It is important to note that the increase
in n shifts the point of maximum to the right. It means that
with the increase in probability of the elementary act of
jump, the probability of realization of the Markovian chain
of longer length increases.
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