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Magnetoexcitons in planar type-II quantum dots in a perpendicular magnetic field
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We study an exciton in a type-II quantum dot, where the electron is confined in the dot, but the hole is
located in the barrier material. The exciton properties are studied as a function of a perpendicular magnetic
field using a Hartree-Fock mesh calculation. Our model system consists of a planar quantum disk. Angular
momentum~l! transitions are predicted with increasing magnetic field. We also study the transition from a
type-I to a type-II quantum dot which is induced by changing the confinement potential of the hole. For
sufficiently large magnetic fields a reentrant behavior is found froml h50 to l hÞ0 and back tol h50, which
results in a transition from type II to type I.
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I. INTRODUCTION

Self-assembled quantum dots1 have become the subject o
intensive research, both theoretically and experimenta
since their first realization in the early 1990s.2–5 The reason
for this large interest is, e.g., due to their possible appli
tions in optoelectronic devices, such as quantum dot las
The formation of this type of dots by the Stranski-Krastan
growth mode requires two semiconductor materials with
considerable lattice mismatch of typically 5%. Man
experimental6–10 and theoretical11–15 works are devoted to
type-I structures, e.g., InAs/GaAs or InAlAs/AlGaAs, whe
both electrons and holes are located inside the quantum

Also very interesting, though yet less studied, are
type-II quantum dots, where the quantum dot forms an a
dot for one of the types of carriers, e.g., for the holes
typically the InP/GaInP system or the electrons in, e
GaSb/GaAs. Landau level formation in strongly optica
populated type-II dots was observed by Nomuraet al.16 in
the photoluminescence spectra at high magnetic fields. O
magnetophotoluminescence experiments on vertic
stacked InP quantum dots were performed by Hayneet al.17

Sugisakiet al.18 studied the magnetic field effects in a sing
InP dot. The optical recombination spectrum and the car
dynamics of the GaSb/GaAs system have been studied
perimentally by Hatamiet al.19

Whereas the type-I system has been the subject of m
theoretical works, only few theoretical studies have paid
tention to the type-II system. Pryoret al.20 studied the elec-
tronic structure of InP/GaInP, using a strain-dependentk•p
Hamiltonian. Also for InP/GaInP dots, Nomuraet al.21 per-
formed a theoretical calculation of the Landau levels in
high magnetic field by solving the Hartree equations s
consistently. Using the Hartree-Fock approximation,
binding energy of excitons, charged excitons, and biexcit
was studied by Lelonget al.22 in GaSb/GaAs dots at zer
magnetic field. The magnetoexciton in a GaSb/GaAs dot
investigated by Kalameitsevet al.23 They found transitions
of the angular momentum with increasing magnetic field

In the present paper, we focus our attention on the pr
erties of a single exciton which is bound by the Coulom
interaction in amodel type-II quantum dot. We will take
material parameters of the InP/GaInP system. Furtherm
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we apply an external magnetic field in the growth directio
i.e., B5Bez . Including a magnetic field allows us to inves
tigate the transition region from exciton confinement due
the Coulomb potential to a confinement which is due to
magnetic field. As a model system we take a planar quan
disk and assume that the particles are confined in a plan
the z direction. Strain effects are neglected in this mod
system.

In our model type-II quantum dot the electron is confin
in the dot and the hole sits outside. The corresponding
ometry is shown in Fig. 1. The reverse confinement situat
will lead to the same physics. As we do not take the confi
ment effects due to strain into account, the hole is only c
fined because of the Coulomb attraction to the electron.
we have noa priori knowledge about the width of the hol
wave function it is difficult to choose good basis functio
for the expansion of the hole wave function. Therefore,
solved the Hartree-Fock~HF! equations on a grid, which
allows very flexible solutions, in principle, of arbitrar
shape. With the same motivation, similar Hartree-Fock m
calculations were recently used in atomic physics.24

As confinement potential, we take hard walls of fini
height. By varying the hole confinement potential, we c

FIG. 1. The geometry of the system under consideration, w
side and top views.
©2001 The American Physical Society24-1
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study the transition from a type-I structure~i.e., the hole is
confined in the dot! to a type-II structure~i.e., the dot is a
barrier for the hole!. We show that for small antidots th
attraction of the hole to the electron is stronger than
barrier energy and the system is still type I. Increasing
barrier height and/or the size of the dot induces a transi
to a type-II system. Furthermore, we found angular mom
tum transitions with increasing magnetic field. For lar
enough magnetic fields~depending on the height of the po
tential barrier!, we find a new reentrant behavior to the ze
angular momentum state.

The paper is organized as follows. In Sec. II, we descr
briefly our theoretical model. The numerical results are p
sented in Sec. III. In Sec. III A, we discuss the effect o
varying magnetic field and explain the origin of the angu
momentum transitions. Section III B deals with the transiti
from a type-I to a type-II system. Section III C is dedicat
to the reentrant behavior. In Sec III D, we present the res
for the excitation spectrum. Our results are summarized
Sec. IV. In the Appendix, we discuss in more detail t
method we used for the calculation of the Hartree integr

II. THEORETICAL MODEL

The energies and wave functions are obtained by solv
the following HF single-particle equations in the effecti
mass approximation~with me and mh the effective electron
and hole masses, respectively,r e,h5Axe,h

2 1ye,h
2 , vc,e

5eB/me , andvc,h5eB/mh):

F2
\2

2me

1

r e

]

]r e
S r e

]

]r e
D1

\2

2me

l e
2

r e
2

1
l e

2
\vc,e1

1

8
mevc,e

2 r e
2

1Ve~r e!2
e2

4peE rh~r 8!

ur2r 8u
dr 8Gce~r e!5eece~r e!, ~1a!

F2
\2

2mh

1

r h

]

]r h
S r h

]

]r h
D1

\2

2mh

l h
2

r h
2

2
l h

2
\vc,h1

1

8
mhvc,h

2 r h
2

1Vh~r h!2
e2

4peE re~r 8!

ur2r 8u
dr 8Gch~r h!5ehch~r h!, ~1b!

where we made use of the axial symmetry by tak
Ce(r e ,we)5eil ewece(r e) and Ch(r h ,wh)5eil hwhch(r h),
and where the densitiesre(r 8) andrh(r 8) are given by, re-
spectively, uCe(r e ,we)u2 and uCh(r h ,wh)u2. The Hartree-
Fock equations were solved using a finite-difference sche
More details about the implementation of this finit
difference scheme can be found in Refs. 25 and 15. Note
there are no exchange terms as we only consider a si
electron and a single hole. However, these equations can
be called HF as the self-interaction is excluded. As confi
ment potentials we take hard walls of finite height:

Ve,h~r e ,r h!5H Ve,h , r e,h.R,

0, otherwise,
~2!
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with R the radius of the disk, and where we tookVe positive
andVh negative. Note that the only good quantum numbe
the total angular momentum in thez direction, defined by
L5 l e1 l h .

These equations must be solved self-consistently, whic
done iteratively. We start with the free electron solution b
cause in the absence of any Coulomb interaction only
free electron is confined. The Hartree integrals are integra
numerically,

E r~r 8!

ur2r 8u
dr 854E r~r 8!r 8

r 1r 8
KS 4rr 8

~r 1r 8!2D dr8, ~3!

whereK(x) is the complete elliptic integral of the first kind
More details about the calculation and numerical implem
tation of this integral are given in the Appendix.

After convergence, the total energy is given by

Eexciton5ee1eh1
e2

4peE E re~r !rh~r 8!

ur2r 8u
drdr 8. ~4!

The contribution of the correlation to the total energy is n
glected in HF, but for the self-assembled quantum dots,
expected to be less than 2%.12

III. RESULTS

A. Angular momentum transitions

First, we calculated the ground-state energy of the exc
as a function of the external magnetic field. We took t
following parameters: me50.077m0 , mh50.6m0 , Ve
5250 meV,Vh5250 meV, ande512.61, which are typi-
cal for the InP/GaInP system,20 and consider a dot of radiu
R58 nm.17 Our numerical results are depicted in Fig. 2 a
show that the exciton ground state exhibits transitions of
angular momentuml h as a function of the magnetic fiel
~indicated by the arrows!. These changes in angular mome

FIG. 2. The exciton energy as a function of the magnetic fie
for R58 nm,Ve5250 meV, andVh5250 meV. The successive
l h transitions are indicated by arrows. The inset shows a con
plot of the square of the hole wave function as a function of
magnetic field.
4-2
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tum of the ground state arenot present in type-I dots and ar
a direct consequence of the fact that we are dealing w
type-II dots. For the hole, the disk acts as a barrier and
increasing the magnetic field the hole is pushed closer to
disk boundary which leads to an increase of the hole po
tial energy. For a certain magnetic field it is for the ho
energetically more favorable to jump to a higherl h state,
which brings the hole farther away from the disk interfac
This is also demonstrated in the inset of Fig. 2, where
contour plot of the density of the hole wave function
shown as a function of both the magnetic field and the ra
position. It is apparent that the hole is located close to
disk, even at zero magnetic field, and that with increas
magnetic field the hole is pushed closer to the border of
disk. At the angular momentum transitions the hole is spr
out a little more and jumps a distance away from the d
interface. But note that on average the hole is pushed cl
to the disk boundary and its width decreases with increas
magnetic field. For the present case we find five transiti
for a magnetic field up toB550 T.

The magnetic field values at which the angular mom
tum transitions occur will depend on the disk radiusR. Fig-
ure 3 shows a phase diagram of thel h transitions as a func
tion of the magnetic fieldB and the disk radiusR, for the InP
parameters used above. With increasing disk radius, the
sitions shift to lower magnetic field values. This can be u
derstood as follows: for larger disks, a smaller magnetic fi
is needed to push the hole close to the border of the disk
to induce an angular momentum transition.

Another way to understand the angular momentum tr
sitions is as follows. The hole is spatially confined into
ringlike area, and if we make the extreme simplification o
zero width ring, the hole energy is given by

Eh5
\2

2mR2 S l h2
f

f0
D 2

, ~5!

from which it is clear that the ground state exhibits angu
momentum transitions each time the flux through the ringf
equals (l h11/2)f0 with f05hc/e the quantum of flux.

FIG. 3. Phase diagram of thel h transitions as a function o
magnetic fieldB and disk radiusR, for Vh5250 meV.
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B. Type-II to type-I transitions

In Fig. 4 we give a closer look at the hole wave functio
for a very small diskR52 nm, Vh5250 meV, andB
50 T, and we find that, even without a magnetic field, t
hole is partially situated inside the quantum disk. This is
remarkable effect, as from the shape of the effective pot
tial, defined by the sum of the confinement potential and
Hartree potential~inset of Fig. 4!, we would expect the hole
wave function to be situated in the barrier. We attribute t
effect to a kind of tunneling of the hole through the quantu
disk, as a consequence of the very small disk radius. N
that this state continues to be the ground state and tha
effect becomes even stronger for higher fields. Another c
sequence of this effect is a higher overlap of the electron
hole wave functions, which is an indication of type-I beha
ior.

In a next step, we studied the exciton properties as a fu
tion of the hole confinement potential, which allows us
explore the transition region from type-I systems (Vh.0) to
type-II systems (Vh,0). Hereby we kept the disk radiu
fixed atR58 nm. Figure 5 shows the phase diagram for t
angular momentum transitions as a function of the confi
ment potentialVh and the magnetic fieldB. A feature that
immediately catches the eye is that up toVh.224.5 meV
the l h50 state remains the ground state over the totaB
region under consideration. Investigating this more in dep
we find that, even forB50 T, the hole wave function is
located almost entirely inside the quantum disk. This is
consequence of the Hartree potential~due to the attraction to
the electron! which overcomes the potential barrier of th
disk. Therefore, we can speak of type-I systems up toVh
.224.5 meV.

In order to have a more physical idea of the origin of t
type-I to type-II transition, we developed the following in
tuitive picture. When the system is type I, the hole will b
located inside the quantum disk. This will happen when
effective potential@the sum of the hole confinement potenti
and the Hartree potential; i.e.,Vc(r h)1Vh ~see the inset of
Fig. 4!# is lower atr h50 than atr h5R. For a type-II sys-

FIG. 4. Hole wavefunction forR52 nm andVh5250 meV,
at B50 T. The inset shows the effective confinement potential
the hole.
4-3
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tem, however, the effective potential will be lower at t
boundary, and the hole will prefer to sit outside the disk b
near the boundary. Generally, we can state that the trans
from type I to type II occurs when the effective potential
the origin equals the one at the radial boundary. Because
take the confinement potential zero inside the disk, this le
to the following formula:

Vc~r h50!5Vh1Vc~r h5R!. ~6!

From this equality, we can find an estimate for the confi
ment potentialVh at which the type-I to type-II transition
occurs. The Hartree potential was calculated within the
proximation of an infinitely high electron confinement pote
tial, where the electron wave function can be expressed
the Bessel functionsJ0, i.e.,

Vc~r h!52
e2

4pe
N2E uJ0~kre8!u2

ur h2r e8u
dre8 , ~7!

with N252/@R2uJ1(kre8)u
2# the normalization and k

5A2meE/\. In Fig. 6, we plot the values forVh as a func-
tion of the disk radiusR at which such a type-I to type-I
transition occurs. We show the results obtained by the
Hartree-Fock calculation~solid curve, squared dots! and the
approximated results, as obtained from Eq.~6! ~dashed
curve, circular dots!. We find that for largeR the two curves
converge to each other, but that for smallR an appreciable
discrepancy exists. This is due to the fact that for small d
radii, the approximation of a hard wall confinement is le
justified. By pushing the electron wave function complete
into the disk~in contrast to the ‘‘real’’ case of a finite poten
tial, where the wave function can tunnel into the barrier!, the
Hartree potential is strongly enhanced, thereby leading
strong enhancement of the critical confinement potentialVh .

Another interesting property is the probability for recom
bination of the exciton. This is proportional to the square
the overlap integral23

FIG. 5. Phase diagram of the successivel h states for varying
confinement potentialVh , as a function of the magnetic field. Th
disk radius is fixed atR58 nm. The dashed line indicates th
result obtained by the approximate model.
15532
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0

2p

ei ( l e1 l h)dwE
0

`

ce~r !ch~r !rdr .

~8!

Notice that the first integral is equal to 2pd l e1 l h
, which

means that the probability for de-excitation is only nonze
for the casel e1 l h50. This implies that after an angula
momentum transition the probability for recombination of
exciton decreases drastically. In photoluminescence~PL! ex-
periments, one will observe a strong quenching or even
appearance of the PL spectrum after a certain value of
magnetic field.

Figure 7 shows the overlap integralI as a function ofVh ,
for B50 T. Without a magnetic field, thel h50 state is
always the ground state and, therefore,I is nonzero over the
total region. Up toVh5225 meV the overlap is large, an
further increasing2Vh , we find a sudden strong decrease

FIG. 6. Confinement potential of the hole at which a transiti
from a type-I to a type-II system occurs, as a function of the d
radius R. The solid curve~squared dots! indicates the result ob-
tained within the HF treatment, whereas the dashed curve~circular
dots! indicates the approximated result.

FIG. 7. Overlap integral for a varying confinement potential
the hole, forR58 nm and atB50 T ~solid curve! andB520 T
~dashed curve!.
4-4
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the overlap. The reason for this behavior is directly related
the position of the hole wave function. As long as the hole
sitting inside the disk, the overlap will be very large. How
ever, from the moment the hole jumps outside the disk,
overlap decreases strongly. In fact, from Fig. 7 we can in
immediately the position of the hole. Furthermore, the reg
of the strong decrease in overlap indicates the transition f
type-I to type-II behavior. The dashed line gives the over
integral atB520 T. As we see from Fig. 5, a transition t
the l h51 state occurs when the confinement potentialVh
approaches224.5 meV and the conditionl e1 l h50 for re-
combination of the exciton is no longer satisfied, which lea
to I 50. The recombination of the exciton will happe
through indirect processes, resulting in a much longer l
time of the exciton. The changing lifetime can be detec
experimentally by a changing line shape.27,28

C. Reentrant behavior

In this section, we concentrate more closely on the typ
to type-II transition region, i.e.,Vh between 220 and
230 meV. As an example, we investigated the exci
ground-state energy forVh5227 meV. The result is de
picted in Fig. 8 which shows one additional remarkable f
ture: after severall h transitions with increasing magnet
field, we find at sufficiently large magnetic field, i.e.,B
.42 T, a reentrance of thel h50 state. It is interesting also
to take a look at the evolution of the wave function wi
increasing magnetic field. This is depicted as a contourplo
the inset of Fig. 8. Initially, for very small magnetic field
we find that a small part of the wave function has alrea
entered the dot region. However, atB.6 T, due to a jump
to a higher angular momentum state, the hole wave func
is pushed outside the dot region. Further increasing the m
netic field leads to morel h transitions, as we found already i
Sec. III A. At the specific magnetic field value, howeve
where the re-entrance ofl h50 occurs, we find that suddenl
the hole wave function jumps almost entirely inside the di
At this point, the magnetic field and the attraction of t

FIG. 8. Exciton ground-state energy forVh5227 meV. The
successivel h states are indicated by arrows. Notice the reentr
behavior of thel h50 state.
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electron overcome the potential barrier of the quantum d
and it will be energetically more favorable for the hole to
inside the disk.

The reentrant behavior is also visible in the (B,Vh) phase
diagram~Fig. 5!. We want to emphasize that there will be
reentrant behavior for any value ofVh,224.5 meV, for
sufficiently large magnetic fields. This can already be se
from Fig. 5, where the line which indicates the transiti
from a certainl h state to thel h50 state is not a straigh
vertical line, but has a small slope. For example forVh
5250 meV we found that a magnetic field ofB5193 T is
needed to induce this reentrance to thel h50 state.

Another question which arises is how the disk radius
fluences the reentrant behavior. In our previous investiga
of the influence of the disk radius on the ground-state ene
we found no evidence of this, because we did not cons
large enough magnetic fields for the confinement poten
under consideration (Vh5250 meV). Therefore, we de
cided to make a new (B,R) phase diagram, this time fo
Vh5225 meV, for which we know from Fig. 5 that reen
trant behavior occurs at rather small magnetic fields. T
result is depicted in Fig. 9, and the first striking feature
that the reentrant behavior occurs for any disk with rad
R.8 nm. Furthermore, we find morel h transitions for
larger disk radii, thereby increasing the magnetic field
which the reentrance ofl h50 takes place. However, atR
.12 nm, we find that the magnetic field position of th
reentrant behavior reaches a maximum valueB.42 T. For
larger disk radii, the reentrance occurs at slightly decreas
magnetic field. Indeed, with increasing disk radius, the el
tron and hole are drawn more and more apart, and there
it will sooner become energetically more favorable for t
hole to jump inside the disk.

This reentrant behavior can be understood qualitativ
from the following simple model. We compare the appro
mate energies for a hole of respectively a type-II and a typ
system:

Eh
II 5

3

2
\vc,h2

e2

4pe0e

1

R
2Vh , ~9a!

t FIG. 9. (B,R) Phase diagram forVh5225 meV. The reentrant
behavior slowly decreases for largeR. The dashed curve indicate
the result obtained by the approximate model.
4-5
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Eh
I 5

1

2
\vc,h2ECoulomb. ~9b!

The approximate energy for a hole in a type-II system@Eq.
~9a!# is constructed by approximating the disk~with radius
R) by an infinitely high barrier for the hole. The first term o
Eq. ~9a! gives the one-particle energy of the hole, which
just the first energy level of a particle in a magnetic fie
which fulfills the zero-wave-function condition at the dis
boundary. The second term is the Coulomb interaction
tween the electron and hole, and the third is the poten
energy of the hole. In a type-I system@Eq. ~9b!# both the
electron and hole are located inside the disk and are
jected to a magnetic field. Now the one-particle hole ene
is just the energy of the first Landau level. We approxima
the Coulomb energy@second term in Eq.~9b!# by using the
single-particle wave function of the electron and hole.
strong magnetic fields and for large disk radii, i.e.,R. l B ,
the potential confinement by the disk can be neglected w
regard to the confinement by the magnetic field. The sing
particle wave functions are then the well-known wave fun
tions of a particle in a magnetic field, given by

we,h~re,h!5A1

p

1

A2l B

expS 2
r e,h

2

4l B
2 D , ~10!

for the ground state (n50, l h50). As the wave functions are
mass independent, there is no distinction between the e
tron and hole. Therefore we can treat our system as b
completely analogous to a system consisting of two electr
in a magnetic field, for which our first-order approximatio
of the Coulomb interaction energy can be calculated ana
cally and which reduces to

ECoul5
e2

4pe0e

Ap

2
Ae

\
AB ~11a!

5CcoulAB. ~11b!

Equalization of Eqs.~9a! and ~9b! gives us the magnetic
field at which the reentrance occurs as a function of both d
radiusR and confinement potentialVh . The transition mag-
netic field can be obtained analytically as

B5
mh

2

2e2\2
CcoulFCcoul2ACcoul

2 1
4e\

mh
S e2

4pe0e

1

R
1VhD G

1
m

e\ S e2

4pe0e

1

R
1VhD . ~12!

For a fixed radiusR, we can varyVh and deduce the
magnetic field at which the transition occurs. The resul
shown by the dashed curve in Fig. 5. For large fields,
approximated curve~dashed line! has qualitatively the sam
behavior as the curve obtained from the full Hartree-Fo
treatment and the two curves converge to each other.
result for a fixedVh , when varying the disk radiusR, is
shown by the dashed curve in Fig. 9. We find a perfect ag
ment for large disk radii, where our model is valid. Th
15532
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discrepancy for small disk radii is a consequence of our
sumption to neglect the disk confinement.

Figure 10 shows the overlap integralI as a function of
the magnetic field for confinement potentials of the ho
Vh5225 meV ~solid curve! and Vh5227 meV ~dashed
curve!, and a fixed disk radiusR58 nm. At first we find a
slowly increasing overlap, which is a consequence of
increasing magnetic field, pushing the particles closer
gether. The already rather large value of the overlap indica
that a considerable part of the hole is already situated in
the disk. When the firstl h transition occurs, the overlap fall
immediately down to zero, becausel e1 l hÞ0. The overlap
remains zero, until thel h50 state returns as the ground sta
and the conditionl e1 l h50 is satisfied. This reentrance o
l h50 is accompanied by a jump of the wave function in t
disk, and this leads to the strong enhancement of the ove
value. We see that the reentrance of thel h50 state happens
at lower magnetic fields for the lower potential barrier.

Figure 11 shows the overlap integralI as a function of the
disk radiusR for B50 T ~solid curve!, B520 T ~dashed
curve!, and B540 T ~dotted curve!. This figure gives evi-
dence for the fact that for very small radii the hole wa
function is almost entirely situated inside the disk. For
creasing disk radius, the hole is pushed more and more
side the disk, thereby decreasing the value of the ove
integral. This decrease is initially less for increasing ma
netic field because of the enhanced localization effect.
sufficiently large magnetic fields,l h transitions are induced
which leads to a zero overlap integral. Also here we see
for sufficient largeR a reentrant behavior to thel h50 state is
found, at which point the overlap integral becomes ag
nonzero.

D. Excitation spectrum

Last, we investigated the exciton energy spectrum a
function of the magnetic field. The physical parameters u
in this calculation are the ones mentioned in Sec. II, with
disk radiusR58 nm. We considered states with differe

FIG. 10. Overlap integral as a function of the magnetic field,
fixed R58 nm and for Vh5225 meV ~solid curve! and Vh

5227 meV ~dashed curve!. When l e1 l hÞ0, the overlap is 0.
4-6
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radial quantum numberske andkh and different angular mo
mental e and l h . Note thatke andkh are approximate quan
tum numbers for the current system. Furthermore, our res
are afirst-orderperturbation theory approximation to the re
energy spectrum, as we perform only one HF iteration; i
the energy of the exciton is obtained by solving the equa
for the hole in the field of the confined electron. Note th
changing the electron quantum number results in a str
increase of the energy value. The states (ke ,l e)5(2,0) and
(1,62) appear to be already unbound; i.e., the energy
ceeds the electron barrier of 250 meV. The inset of Fig. 12~a!
shows the bound states of the energy spectrum where
varied bothke and l e , keepingkh and l h fixed at (0,0). The
main part of Fig. 12~a! shows the energy spectrum for fixe
(ke ,l e)5(0,0) and varying the hole quantum numberskh
and l h . We find that now the energy values span a sma
energy region. This is due to the fact that~i! the hole is much
heavier than the electron and therefore has substant
lower energies and~ii ! the hole is less confined. In fact, fo
every possible value of the electron quantum numberske and
l e , one has a spectrum of all possible (kh ,l h) values, and
because these span a smaller energy region, the total en
spectrum will consist of mainly the electron branches, w
superimposed on each of them the spectrum with the ch
ing hole quantum numbers.

Notice also the anomalous behavior of certain states,
(kh ,l h)5(2,0), in the high-magnetic-field region. To inve
tigate this further, we concentrated on the variation of
radial quantum numberkh , keeping the angular momentum
l h fixed at 0. This result is shown in Fig. 12~b! which clearly
shows the occurrence of anticrossings. These anticross
are due to the fact that the radial quantum number is n
good quantum number, leading to strong mixing of rad
states at the anticrossings.

IV. CONCLUSIONS

We investigated the exciton properties in a strongly s
plified type-II model quantum disk, with the hole located

FIG. 11. Overlap integral as a function of the disk radius,
Vh5225 meV and magnetic fields of respectively 0 T~solid
curve!, 20 T ~dashed curve! and 40 T~dotted curve!.
15532
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the barrier. Strain effects were disregarded and a flat d
geometry was assumed. Because in our model system t
is no geometrical confinement for the hole, the only ‘‘co
finement’’ comes from the attraction to the electron, i.e.,
Coulomb interaction energy. We solved this problem by
ing a Hartree-Fock mesh calculation, which allowed us
calculate the exciton energy, without ana priori knowledge
of the single-particle hole wave function.

We studied the influence of a perpendicular applied m
netic field and foundangular momentum transitionswith
increasing magnetic field. These are a consequence of
fact that the magnetic field pushes the hole closer to the d
making it energetically more favorable to jump to a higherl h
state. Varying the disk radius showed that the transitions s
to lower magnetic field for largerR. We also found that the
hole is located almost entirely inside the disk for very sm
disk radii.

Furthermore, we investigated the transition region fro
type-I to type-IIsystems by varying the confinement pote
tial of the hole,Vh . A striking feature here is the fact that w
are dealing with type-I systems up toVh.224.5 meV.

r

FIG. 12. ~a! Energy spectrum for differentkh and l h , for fixed
(ke ,l e)5(0,0), as a function of the magnetic field. Inset: the sam
but now for differentke andl e and for (kh ,l h)5(0,0). ~b! The same
as in ~a!, but now for l h50. Notice the anticrossings as a functio
of the magnetic field, which is due to the lifting of the degenera
or a strong mixing of the radial states.
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Even atB50 T, the Coulomb attraction overcomes the p
tential barrier and the hole is situated inside the quant
disk. Taking a closer look at the transition region betwe
type I and type II showed the existence of areentrant behav-
ior of the l h50 state. This reentrant behavior is coupled w
a sudden jump of the wave function into the disk.

The angular momentum transitions and the reentrant
havior should be measurable experimentally by quenchin
luminescence and/or changing line shapes.

In the last part, we studied the excitation spectrum a
function of the magnetic field. We varied the quantum nu
bersk and l for both electron and hole, and found that f
every value of (ke ,l e) one has a spectrum consisting of th
different radial and angular momentum hole states. Furth
more, taking a closer look at the varyingkh states, with fixed
l h and fixed electron quantum numbers, we found an a
crossing of levels, a consequence of the fact thatkh is not a
good quantum number and therefore lifts the degeneracy
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APPENDIX: CALCULATION OF THE HARTREE
INTEGRAL

The Hartree integral, which expresses the effect of o
particle, e.g., the electron, on the other particle, e.g., the h
is given by

E r~r 8!

ur2r 8u
dr 8

5E dr8r 8E dw8
r~r 8!

Ar 21r 8222rr 8cos~w2w8!

.

~A1!

As we are dealing with cylindrical symmetry, we can remo
the w dependence. The integral over the angle becomes
complete elliptic integral of the first kind, which converts E
~A1! into
.N
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4E r~r 8!r 8

r 1r 8
KS 4rr 8

~r 1r 8!2D dr8. ~A2!

The radial integral has to be solved numerically. We us
polynomial approximation for the elliptic function,26 namely,

K~x!5@a01a1x81a2x82#2@b01b1x81b2x82# ln~x8!,
~A3!

with x8512x and where the coefficientsai andbi are given
in Ref. 26. Since this implies the appearance of a logarith
divergence in the integrand, the commonly used trapezo
rule will give bad results. Therefore we used another meth
the so-called ‘‘logarithmically weighted method,’’ whic
takes into account this problem.

Generally, the following integral can be considered:

I ~r !5E
0

1

dxF~x!ln
~x2r !2

~x1r !2
, ~A4!

which, after transformation, becomes

I ~r !5 (
i 50

N21 E
0

h

dxF~x1hi !ln
@x2~r 2hi !#2

@x1~r 1hi !#2
, ~A5!

with h the discretization step andN the number of steps. I
we replaceF(x1hi) by Fi1@Fi 112Fi #(x/h), we can write
Eq. ~A5! as

I ~r !5 (
i 50

N21

$FiAi~r !1@Fi 112Fi #Ci~r !%, ~A6!

and the remaining problem is the calculation of the coe
cientsAi(r ) and Ci(r ). The integrals which determine th
coefficients can be solved exactly, which leads to the follo
ing results:

Ai~r !5a@h2~r 2hi !#2a@h1~r 1hi !#, ~A7!

with

a~y!52y ln y12~h2y!ln~h2y! ~A8!

and

Ci~r !5h21$c@h2~r 2hi !#2c@h1~r 1hi !#%22r ,
~A9!

with

c~y!5@y~2h2y!# ln y1~h2y!2ln~h2y!. ~A10!
ev.
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