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Magnetoexcitons in planar type-Il quantum dots in a perpendicular magnetic field
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We study an exciton in a type-ll quantum dot, where the electron is confined in the dot, but the hole is
located in the barrier material. The exciton properties are studied as a function of a perpendicular magnetic
field using a Hartree-Fock mesh calculation. Our model system consists of a planar quantum disk. Angular
momentum(l) transitions are predicted with increasing magnetic field. We also study the transition from a
type-l to a type-ll quantum dot which is induced by changing the confinement potential of the hole. For
sufficiently large magnetic fields a reentrant behavior is found frga0 tol,#0 and back td,=0, which
results in a transition from type Il to type I.
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[. INTRODUCTION we apply an external magnetic field in the growth direction,
i.e., B=Be,. Including a magnetic field allows us to inves-
Self-assembled quantum dbtsave become the subject of tigate the transition region from exciton confinement due to
intensive research, both theoretically and experimentallythe Coulomb potential to a confinement which is due to the
since their first realization in the early 19908.The reason magnetic field. As a model system we take a planar quantum
for this large interest is, e.g., due to their possible applicadisk and assume that the particles are confined in a plane in
tions in optoelectronic devices, such as quantum dot laser§1e z direction. Strain effects are neglected in this model
The formation of this type of dots by the Stranski-Krastanowsystem.
growth mode requires two semiconductor materials with a In our model type-Il quantum dot the electron is confined
considerable lattice mismatch of typ|ca||y 5%. Many in the dot and the hole sits outside. The Corresponding ge-
experimenté]‘lo and theoreticé}‘ls works are devoted to Ometry is shown in Flg 1. The reverse confinement situation
type-| structures, e.g., InAs/GaAs or InAlAs/AlGaAs, where will lead to the same phySiCS. As we do not take the confine-
both electrons and holes are located inside the quantum dot&ent effects due to strain into account, the hole is only con-
Also very interesting, though yet less studied, are thdined because of the Coulomb attraction to the electron. As
type-1l quantum dots, where the quantum dot forms an antiwe have noa priori knowledge about the width of the hole
dot for one of the types of carriers, e.g., for the holes inwave function it is difficult to choose good basis functions
typically the InP/GaInP system or the electrons in, e.g.for the expansion of the hole wave function. Therefore, we
GaSb/GaAs. Landau level formation in strongly optically solved the Hartree-FockHF) equations on a grid, which
populated type-Il dots was observed by Nometaal® in allows very flexible solutions, in principle, of arbitrary
the photoluminescence spectra at high magnetic fields. Othéhape. With the same motivation, similar Hartree-Fock mesh
magnetophotoluminescence ~experiments on  verticallgalculations were recently used in atomic physfts.
stacked InP quantum dots were performed by Hagmnal.}’ As confinement potential, we take hard walls of finite
Sugisakiet al.'® studied the magnetic field effects in a single height. By varying the hole confinement potential, we can
InP dot. The optical recombination spectrum and the carrier
dynamics of the GaSb/GaAs system have been studied ex-
perimentally by Hatamet al*® Ve
Whereas the type-l system has been the subject of many
theoretical works, only few theoretical studies have paid at-

tention to the type-Il system. Pryet al° studied the elec- vV
tronic structure of InP/GalnP, using a strain-dependemt h
Hamiltonian. Also for InP/GalnP dots, Nomuea al®* per-

formed a theoretical calculation of the Landau levels in a GalnP InP GalnP

high magnetic field by solving the Hartree equations self-
consistently. Using the Hartree-Fock approximation, the
binding energy of excitons, charged excitons, and biexcitons
was studied by Lelongt al?? in GaSb/GaAs dots at zero
magnetic field. The magnetoexciton in a GaSb/GaAs dot was
investigated by Kalameitseet al?® They found transitions
of the angular momentum with increasing magnetic field.

In the present paper, we focus our attention on the prop-
erties of a single exciton which is bound by the Coulomb
interaction in amodel type-Il quantum dot. We will take FIG. 1. The geometry of the system under consideration, with
material parameters of the InP/GalnP system. Furthermorajde and top views.
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study the transition from a type-| structufee., the hole is
confined in the dotto a type-ll structurdi.e., the dot is a
barrier for the holg We show that for small antidots the
attraction of the hole to the electron is stronger than the
barrier energy and the system is still type I. Increasing the
barrier height and/or the size of the dot induces a transition
to a type-Il system. Furthermore, we found angular momen-
tum transitions with increasing magnetic field. For large
enough magnetic fieldglepending on the height of the po-
tential barrie), we find a new reentrant behavior to the zero
angular momentum state.

The paper is organized as follows. In Sec. Il, we describe
briefly our theoretical model. The numerical results are pre-
sented in Sec. Ill. In Sec. Ill A, we discuss the effect of a
varying magnetic field and explain the origin of the angular
momentum transitions. Section Il B deals with the transition _ _ o
from a type-I to a type-Il system. Section Il C is dedicated FIG. 2. The exciton energy as a function of the magnetic _fleld,
to the reentrant behavior. In Sec Il D, we present the result{o" R=8 nm,Ve=250 meV, and/,=—50 meV. The successive
for the excitation spectrum. Our results are summarized ifllh transitions are indicated by arrows. Th_e inset shows_a contour
Sec. IV. In the Appendix, we discuss in more detail theplot of t_he_square of the hole wave function as a function of the
method we used for the calculation of the Hartree integral. magnetic field.

Exciton energy (meV)

with R the radius of the disk, and where we todk positive
Il. THEORETICAL MODEL andV,, negative. Note that the only good quantum number is
. . . . _the total angular momentum in thtedirection, defined by
The energies and wave functions are obtained by solvm%:I I
the following HF single-particle equations in the effective e’ 'h : . L
mass approximatiofwith m, and m,, the effective electron The_:se equations must be_ solved self-consistently, Wh'Ch 1S
4 hol e | h B \/—2—2— done iteratively. We start with the free electron solution be-
and hole masses, respectivelyen=Xen*Yen ©@ce  cause in the absence of any Coulomb interaction only the

=eB/me, andw,n=eB/my): free electron is confined. The Hartree integrals are integrated

numerically,
A2 1 9 a\ K213 e 1, .,
2Me o dre feﬁ +2meé+5 @cet gMew ele f p(r") dr’=4f p(rHr’ 4rr’ dr @
, Ir—r’| r+r’ \(r+r’)? ’
& [pnlr) | _ .
tVelre) =g | 01" |fe(Te) = €etfe(re), (1@ whereK(x) is the complete elliptic integral of the first kind.
r=r'] More details about the calculation and numerical implemen-
tation of this integral are given in the Appendix.
B 52 i 9 r 9 N £2 E_ I_hﬁ . Em 2 2 After convergence, the total energy is given by
th M &rh h(?rh th rﬁ 2 @eih 8 hwc,h h 2 ,
. € pe(r)pn(r’) ,
e2 ) (r’) Eexciton_ Ee+ ent A |r_r’| drdr’. (4)
FVn(rn) =7 — — dr'll/fh(rh):fhllfh(fh), (1b) - _ _
mel |r—r'| The contribution of the correlation to the total energy is ne-

) ~glected in HF, but for the self-assembled quantum dots, it is
where we made use of the axial symmetry by takingexpected to be less than 2.

\Pe(re-‘Pe):e”e(pe‘/’e(re) and \Ph(rha(Ph):e”h%‘ph(rh)v
and where the densitigs,(r’) andpn(r’) are given by, re-
spectively, | Wo(re,¢0)|? and |Wy(ry,en)|2 The Hartree-
Fock equations were solved using a finite-difference scheme. A. Angular momentum transitions
More details about the implementation of this finite-
difference scheme can be found in Refs. 25 and .15' Note_th s a function of the external magnetic field. We took the
there are no exchange terms as we only consider a sing

electron and a single hole. However, these equations can stilf I;osv(\)nnr% e\f %raTEtgés:er‘i gr?;@(iz GTh\Tvr?ign g} e t;//[gi
- . . . = yVh—™ ’ - . ’ =
%eegfl”i?e;'t'i:a?ssvtget;lflef Ln;féiigﬁg (')Sf ﬁﬁg’ii?rﬁs Conflnecal for the InP/GalnP systeffl,and consider a dot of radius
P ght: R=8 nmZl’ Our numerical results are depicted in Fig. 2 and
show that the exciton ground state exhibits transitions of the
2 angular momentunt, as a function of the magnetic field

(indicated by the arrowsThese changes in angular momen-

Ill. RESULTS

First, we calculated the ground-state energy of the exciton

Ve,h! re,h>R,

V le,fp)= i
en(Te™) =1 0" Gtherwise,
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FIG. 4. Hole wavefunction foR=2 nm andV,=—-50 meV,
FIG. 3. Phase diagram of thg transitions as a function of atB=0 T. The inset shows the effective confinement potential for
magnetic fieldB and disk radiusR, for V,=—50 meV. the hole.

tum of the ground state aret present in type-I dots and are
a direct consequence of the fact that we are dealing with
type-Il dots. For the hole, the disk acts as a barrier and by In Fig. 4 we give a closer look at the hole wave function
increasing the magnetic field the hole is pushed closer to théor @ very small diskR=2 nm, V,=—-50 meV, andB
disk boundary which leads to an increase of the hole poten=0 T, and we find that, even without a magnetic field, the
tial energy. For a certain magnetic field it is for the holehole is partially situated inside the quantum disk. This is a
energetically more favorable to jump to a higHgrstate, remarkable effect, as from the shape of the effective poten-
which brings the hole farther away from the disk interface.tial, defined by the sum of the confinement potential and the
This is also demonstrated in the inset of Fig. 2, where alartree potentialinset of Fig. 4, we would expect the hole
contour plot of the density of the hole wave function is wave function to be situated in the barrier. We attribute this
shown as a function of both the magnetic field and the radiagffect to a kind of tunneling of the hole through the quantum
position. It is apparent that the hole is located close to thdlisk, as a consequence of the very small disk radius. Note
disk, even at zero magnetic field, and that with increasinghat this state continues to be the ground state and that the
magnetic field the hole is pushed closer to the border of th&ffect becomes even stronger for higher fields. Another con-
disk. At the angular momentum transitions the hole is spreagequence of this effect is a higher overlap of the electron and
out a little more and jumps a distance away from the disldﬁO'e wave functions, which is an indication of type-I behav-
interface. But note that on average the hole is pushed closé?r-
to the disk boundary and its width decreases with increasing In a next step, we studied the exciton properties as a func-
magnetic field. For the present case we find five transition§on of the hole confinement potential, which allows us to
for a magnetic field up t®8=50 T. explore the transition region from type-| systenv§,&0) to

The magnetic field values at which the angular momentype-Il systems Y,<0). Hereby we kept the disk radius
tum transitions occur will depend on the disk radRisFig- ~ fixed atR=8 nm. Figure 5 shows the phase diagram for the
ure 3 shows a phase diagram of fgransitions as a func- angular momentum transitions as a function of the confine-
tion of the magnetic field® and the disk radiuR, for the InP~ ment potentialV, and the magnetic fiel®. A feature that
parameters used above. With increasing disk radius, the traffmmediately catches the eye is that up\Mg=—24.5 meV
sitions shift to lower magnetic field values. This can be unthe |,=0 state remains the ground state over the t&al
derstood as follows: for larger disks, a smaller magnetic fieldegion under consideration. Investigating this more in depth,
is needed to push the hole close to the border of the disk ange find that, even foB=0 T, the hole wave function is
to induce an angular momentum transition. located almost entirely inside the quantum disk. This is a

Another way to understand the angular momentum tranconsequence of the Hartree potentie to the attraction to
sitions is as follows. The hole is spatially confined into athe electron which overcomes the potential barrier of the
ringlike area, and if we make the extreme simplification of adisk. Therefore, we can speak of type-l systems up/fo

B. Type-Il to type-I transitions

zero width ring, the hole energy is given by =—245 meV.
In order to have a more physical idea of the origin of the
h? ¢ \? type-l to type-ll transition, we developed the following in-
Eh:m<|h_ ¢_o) ' ®)  tuitive picture. When the system is type |, the hole will be

located inside the quantum disk. This will happen when the
from which it is clear that the ground state exhibits angulareffective potentialthe sum of the hole confinement potential
momentum transitions each time the flux through the ging and the Hartree potential; i.eV,.(r,) +V}, (see the inset of
equals [+ 1/2)¢g with ¢o=hcl/e the quantum of flux. Fig. 4] is lower atr,,=0 than atr,=R. For a type-Il sys-

155324-3



. JANSSENS, B. PARTOENS, AND F. M. PEETERS

PHYSICAL REVIEWE 155324

50 T T T T T T T T T
i N 20 8
\ -20 | -
45 i . 4 | /-f/.__—-"
40 AN E 40 F e 4
r AN
35 i AN - F
30 \\ ] ~ -60 | |
| N () |
N
E 25 I 3 3 80 | 4
@ 20 i =5
I -100 | i
15 T
=0 ] L
10 i 7 120F )/ —=—full HF treatment
5 4 _— - - approximate model ]
0 [ ) -140 1 I R I . 1 . I R I
-50 -40 -30 -20 -10 2 6 8 10 12 14
V, (meV) R (nm)

FIG. 6. Confinement potential of the hole at which a transition
from a type-l to a type-Il system occurs, as a function of the disk
radius R. The solid curve(squared dojsindicates the result ob-
tained within the HF treatment, whereas the dashed ctoiveular
dotg indicates the approximated result.

FIG. 5. Phase diagram of the succesdiyestates for varying
confinement potentia¥/,,, as a function of the magnetic field. The
disk radius is fixed aR=8 nm. The dashed line indicates the
result obtained by the approximate model.

tem, however, the effective potential will be lower at the
boundary, and the hole will prefer to sit outside the disk but fq, N (r dr—J ellletlng f r frdr.
near the boundary. Generally, we can state that the transmon J¥(r) @ |, PN ¥n(r)
from type | to type Il occurs when the effective potential at (8)
the origin equals the one at the radial boundary. Because we

take the confinement potential zero inside the disk, this leadslotice that the first integral is equal tond, o+ which

to the following formula: means that the probability for de-excitation is only nonzero
for the casel.+1,=0. This implies that after an angular
momentum transition the probability for recombination of an
exciton decreases drastically. In photoluminesceRte ex-
periments, one will observe a strong quenching or even dis-
appearance of the PL spectrum after a certain value of the
magnetic field.

Figure 7 shows the overlap integtahs a function oW, ,

r B=0 T. Without a magnetic field, thg,=0 state is
always the ground state and, therefdrées nonzero over the
total region. Up toV,=—25 meV the overlap is large, and

Ve(rh=0)=Vx+Vc(rp=R). (6)

From this equality, we can find an estimate for the confine-
ment potentialV,, at which the type-| to type-Il transition
occurs. The Hartree potential was calculated within the ap*®
proximation of an infinitely high electron confinement poten-
tial, where the electron wave function can be expressed b}/
the Bessel functiong,, i.e., 0

2
Ve(rp)=— f |J0(kr | r, (7)  further increasing-V;, we find a sudden strong decrease of
with N?=2[R?J,(kr))|?] the normalization and k 10} .
=+2m.E/#%. In Fig. 6, we plot the values fov,, as a func- i
tion of the disk radiusR at which such a type-I to type-II 08|

transition occurs. We show the results obtained by the full
Hartree-Fock calculatiofsolid curve, squared dotand the
approximated results, as obtained from E§) (dashed

06

overlap integral
o
'S
T

curve, circular dots We find that for largeR the two curves —  B-0oT
converge to each other, but that for smalln appreciable ----B=20T
discrepancy exists. This is due to the fact that for small disk 3 gs]

radii, the approximation of a hard wall confinement is less R =8nm

justified. By pushing the electron wave function completely 0ol
into the disk(in contrast to the “real” case of a finite poten- T
tial, where the wave function can tunnel into the bajridve 20  -10 0 10 20 30 40 50
Hartree potential is strongly enhanced, thereby leading to a -V_(meV)
strong enhancement of the critical confinement poteitial "

Another interesting property is the probability for recom-  FIG. 7. Overlap integral for a varying confinement potential of
bination of the exciton. This is proportional to the square ofthe hole, forR=8 nm and aB=0 T (solid curvé andB=20 T
the overlap integraf (dashed curve
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FIG. 8. Exciton ground-state energy fof,=—27 meV. The

successivd, states are indicated by arrows. Notice the reentrant FIG. 9. (B,R) Phase diagram fov,= —25 meV. The reentrant
behavior of thd,=0 state. behavior slowly decreases for large The dashed curve indicates

the result obtained by the approximate model.

the overlap. The reason for this behavior is directly related telectron overcome the potential barrier of the quantum disk,
the position of the hole wave function. As long as the hole is2nd it will be energetically more favorable for the hole to sit
sitting inside the disk, the overlap will be very large. How- inside the disk. o o

ever, from the moment the hole jumps outside the disk, the The reentrant behavior is also visible in tH#,Vy,) phase
overlap decreases strongly. In fact, from Fig. 7 we can infediagram(Fig. 5. We want to emphasize that there will be a
immediately the position of the hole. Furthermore, the regior{eer_“r"’mt behavior for any value ,<—24.5 meV, for

of the strong decrease in overlap indicates the transition fro uff|C|e_ntIy large magnetic flelds_. Th's can already be Seen
type-I to type-Il behavior. The dashed line gives the overlag o™ Fig. 5, where the line WTCh indicates the transition
integral atB=20 T. As we see from Fig. 5, a transition to rom a certainl, state to thel,=0 state is not a straight
the |,=1 state occurs when the confinement potental \ierucal line, but has a small SIOpe.‘ F_or xample W
approaches-24.5 meV and the condition.+1,=0 for re- —50 meV we found that a magnetic field BF 193 Tis
combination of the exciton is no longer satisfied, which Ieadéﬂ'eide?hto mducte_ this rr](_aehntra_nce to :]he Otr?ta(tf' K radius |

t0 1=0. The recombination of the exciton will happen quenncoes(-zrru;q l:eeSr:?rgnvtvbIgha?/ﬂ)SreTniuro Wrev;u;sin\:gstliuiulinc;n
through indirect processes, resuiting in a much longer life. f the influence of the disk raditjs on thep round-state e%er
time of the exciton. The changing Iifetimge can be detectea\‘l)ve found no evidence of this. because g\]/ve did not consic?gr,
experimentally by a changing line shagé. large enough magnetic fields for the confinement potential
under consideration\,= —50 meV). Therefore, we de-
cided to make a newH,R) phase diagram, this time for
V,=-—25 meV, for which we know from Fig. 5 that reen-

In this section, we concentrate more closely on the type-frant behavior occurs at rather small magnetic fields. The
to type-Il transition region, i.e.V, between —20 and result is depicted in Fig. 9, and the first striking feature is
—30 meV. As an example, we investigated the excitonthat the reentrant behavior occurs for any disk with radius
ground-state energy fov,=—27 meV. The result is de- R>8 nm. Furthermore, we find mork, transitions for
picted in Fig. 8 which shows one additional remarkable feajarger disk radii, thereby increasing the magnetic field at
ture: after severaly, transitions with increasing magnetic \hich the reentrance df,=0 takes place. However, &
field, we find at sufficiently large magnetic field, i.8, =12 nm, we find that the magnetic field position of the
=42 T, areentrance of thg=0 state. It is interesting also reentrant behavior reaches a maximum vabse42 T. For
to take a look at the evolution of the wave function with |arger disk radii, the reentrance occurs at slightly decreasing
increasing magnetic field. This is depicted as a contourplot ifnagnetic field. Indeed, with increasing disk radius, the elec-
the inset of Fig. 8. Initially, for very small magnetic fields, tron and hole are drawn more and more apart, and therefore
we find that a small part of the wave function has alreadyit will sooner become energetically more favorable for the
entered the dot region. However,Bt=6 T, due to a jump hole to jump inside the disk.
to a higher angular momentum state, the hole wave function Thjs reentrant behavior can be understood qualitatively
is pushed outside the dot region. Further increasing the magrom the following simple model. We compare the approxi-

netic field leads to mork, transitions, as we found already in mate energies for a hole of respectively a type-Il and a type-
Sec. Il A. At the specific magnetic field value, however, system:

where the re-entrance &f=0 occurs, we find that suddenly 5
the hole wave function jumps almost entirely inside the disk. el =§ﬁw __ ¢ l_v
At this point, the magnetic field and the attraction of the h=27%eh 4mepe R M

C. Reentrant behavior

(9a)
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tween the electron and hole, and the third is the potential 021

energy of the hole. In a type-lI systefq. (9b)] both the
electron and hole are located inside the disk and are sub- 90 T E A S A S
jected to a magnetic field. Now the one-particle hole energy 0 10 20 30 40 50

is just the energy of the first Landau level. We approximated B (T)

the Coulomb energysecond term in Eq(9b)] by using the

single-particle wave function of the electron and hole. At FIG. 10. Overlap integral as a function of the magnetic field, for
strong magnetic fields and for large disk radii, iB>1g,  fixed R=8 nm and forVy=—-25 meV (solid curvg and Vj

the potential confinement by the disk can be neglected with® —27 meV(dashed curve Whenl+1,#0, the overlap is 0.
regard to the confinement by the magnetic field. The single-

particle wave functions are then the well-known wave func-discrepancy for small disk radii is a consequence of our as-

1

Elhzzﬁwc,h_ECOUIomb- (9b) 1.0 - R = 8nm | .
The approximate energy for a hole in a type-Il systd. 08| T__.yo2omey E -
(9a)] is constructed by approximating the digkith radius = i !
R) by an infinitely high barrier for the hole. The first term of ;6; 0.6 L ' J
Eq. (99 gives the one-particle energy of the hole, which is £ |
just the first energy level of a particle in a magnetic field & ,, E )
which fulfills the zero-wave-function condition at the disk 5 !
boundary. The second term is the Coulomb interaction be- 3 !

tions of a particle in a magnetic field, given by sumption to neglect the disk confinement.
Figure 10 shows the overlap integfaks a function of
\F 1 rﬁyh the magnetic field for confinement potentials of the hole,
Pen(Ten) = ;\/_TIBGX _4T§ , (10 v, =—25 meV (solid curve and V,,= —27 meV (dashed

curve, and a fixed disk radiuR=8 nm. At first we find a

for the ground staten(=0,l,=0). As the wave functions are slowly increasing overlap, which is a consequence of the
mass independent, there is no distinction between the eletcreasing magnetic field, pushing the particles closer to-
tron and hole. Therefore we can treat our system as beingether. The already rather large value of the overlap indicates
completely analogous to a system consisting of two electronthat a considerable part of the hole is already situated inside
in a magnetic field, for which our first-order approximation the disk. When the firdt, transition occurs, the overlap falls

of the Coulomb interaction energy can be calculated analytiimmediately down to zero, becauket|,,#0. The overlap

cally and which reduces to remains zero, until thg,=0 state returns as the ground state
5 and the conditiorl.+1,=0 is satisfied. This reentrance of
e e ﬁ\ﬁ\/g (118 I,=0 is accompanied by a jump of the wave function in the
C°“|_4'n'60€ 2 h disk, and this leads to the strong enhancement of the overlap

value. We see that the reentrance of the 0 state happens
=CeouVB. (11b  at lower magnetic fields for the lower potential barrier.
Figure 11 shows the overlap integitads a function of the
Equalization of Eqs(9a) and (9b) gives us the magnetic disk radiusR for B=0 T (solid curve, B=20 T (dashed
field at which the reentrance occurs as a function of both diskurve, andB=40 T (dotted curvé This figure gives evi-
radiusR and confinement potenti&l,,. The transition mag- dence for the fact that for very small radii the hole wave
netic field can be obtained analytically as function is almost entirely situated inside the disk. For in-
) creasing disk radius, the hole is pushed more and more out-
_om; \/ ) deh [ € 1 side the disk, thereby decreasing the value of the overlap
- choul Ceou™ \ Coourt m, |4mege RN integral. This decrease is initially less for increasing mag-
netic field because of the enhanced localization effect. For
e 1 sufficiently large magnetic fields,, transitions are induced,
R +Vh)- (12 which leads to a zero overlap integral. Also here we see that
for sufficient largeR a reentrant behavior to thg= 0 state is
For a fixed radiusR, we can varyV, and deduce the found, at which point the overlap integral becomes again
magnetic field at which the transition occurs. The result ishonzero.
shown by the dashed curve in Fig. 5. For large fields, the
approximated curvédashed linghas qualitatively the same
behavior as the curve obtained from the full Hartree-Fock
treatment and the two curves converge to each other. The Last, we investigated the exciton energy spectrum as a
result for a fixedV,,, when varying the disk radiuR, is  function of the magnetic field. The physical parameters used
shown by the dashed curve in Fig. 9. We find a perfect agreen this calculation are the ones mentioned in Sec. Il, with a
ment for large disk radii, where our model is valid. The disk radiusR=8 nm. We considered states with different

m
+_
eh

4mege

D. Excitation spectrum
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FIG. 11. Overlap integral as a function of the disk radius, for
V,=-25 meV and magnetic fields of respectively 0(Folid
curve, 20 T (dashed curveand 40 T(dotted curve

radial quantum numbeig, andk;, and different angular mo-
mental . andl,. Note thatk, andk;, are approximate quan-
tum numbers for the current system. Furthermore, our results
are afirst-order perturbation theory approximation to the real
energy spectrum, as we perform only one HF iteration; i.e.,
the energy of the exciton is obtained by solving the equation
for the hole in the field of the confined electron. Note that
changing the electron quantum number results in a strong
increase of the energy value. The statks, ) =(2,0) and
(1,£2) appear to be already unbound; i.e., the energy ex-
ceeds the electron barrier of 250 meV. The inset of Figa)12 B(T)

shows the bound states of the energy spectrum where we

varied bothk, andl,, keepingk, andl, fixed at (0,0). The FIG. 12. (a) Energy spectrum for differeri, andly,, for fixed
main part of Fig. 12) shows the energy spectrum for fixed (ke,le)=(0,0?, as a function of the magnetic field. Inset: the same,
(Ke,le)=(0,0) and varying the hole quantum numbégs but_nowfordlfferemke andleanc_zl for (kh,lh)_=(0,0_).(b) The same
andl,,. We find that now the energy values span a smallef’S in(@, but now forl,=0. Notice the anticrossings as a function
energy region. This is due to the fact tiftthe hole is much of the magnet_lc_ field, which is due to the lifting of the degeneracy
heavier than the electron and therefore has substantial@/aStrong mixing of the radial states.

lower energies andi) the hole is less confined. In fact, for {he parrier. Strain effects were disregarded and a flat disk
every possible value of the electron quantum numkgend  geometry was assumed. Because in our model system there
le, one has a spectrum of all possible, (/) values, and s no geometrical confinement for the hole, the only “con-
because these span a smaller energy region, the total energyement” comes from the attraction to the electron, i.e., the

spectrum will consist of mainly the electron branches, withcoylomb interaction energy. We solved this problem by us-
superimposed on each of them the spectrum with the changhg a Hartree-Fock mesh calculation, which allowed Us to

ing hole quantum numbers. _ _ calculate the exciton energy, without arpriori knowledge
Notice also the anomalous behavior of certain states, €.ggf the single-particle hole wave function.
(kn.In)=(2,0), in the high-magnetic-field region. To inves-  \ye studied the influence of a perpendicular applied mag-
tigate this further, we concentrated on the variation of theyetic field and foundangular momentum transitiongith
radial quantum numbek,, keeping the angular momentum increasing magnetic field. These are a consequence of the
I, fixed at 0. This result is shown in Fig. @ which clearly  fact that the magnetic field pushes the hole closer to the disk,
shows the occurrence of anticr_ossings. These antic_rossing,saking it energetically more favorable to jump to a higher
are due to the fact that the radial quantum number is not gtate. Varying the disk radius showed that the transitions shift
good quantum number, leading to strong mixing of radialg |ower magnetic field for largeR. We also found that the
states at the anticrossings. hole is located almost entirely inside the disk for very small
disk radii.
IV. CONCLUSIONS Furthermore, we investigateq the transitipn region from
type-I to type-lisystems by varying the confinement poten-
We investigated the exciton properties in a strongly sim-ial of the hole,V},. A striking feature here is the fact that we
plified type-ll model quantum disk, with the hole located in are dealing with type-l systems up %,>—24.5 meV.

Exciton energy (meV)
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Arr’
tential barrier and the hole is situated inside the quantum dr’. (A2)

2
disk. Taking a closer look at the transition region between (r+r’)
type | and type Il showed the existence akantrant behav- T radial integral has to be solved numerically. We use a

ior of thel h= 0 state. This reentrar_lt bghavior is_coupled with polynomial approximation for the elliptic functidi,namely,
a sudden jump of the wave function into the disk.

The angular momentum transitions and the reentrant be- _ , o / ! /
havior should be measurable experimentally by quenching of K(x)=[ao+asx’ +a;x %]~ [bo+ byx' +bax In(x )(:0\3)
luminescence and/or changing line shapes.

In the last part, we studied the excitation spectrum as avith X’ =1—x and where the coefficientg andb; are given
function of the magnetic field. We varied the quantum num-in Ref. 26. Since this implies the appearance of a logarithmic
bersk and| for both electron and hole, and found that for divergence in the integrand, the commonly used trapezoidal
every value of k.,l.) one has a spectrum consisting of the rule will give bad results. Therefore we used another method,
different radial and angular momentum hole states. Furtheithe so-called “logarithmically weighted method,” which
more, taking a closer look at the varyifg states, with fixed takes into account this problem.

l,, and fixed electron quantum numbers, we found an anti- Generally, the following integral can be considered:
crossing of levels, a consequence of the fact kyats not a

Even atB=0 T, the Coulomb attraction overcomes the po- p(r’)r’
!

r+r’

good quantum number and therefore lifts the degeneracy. I(r)= fldxF(x)In(X_r)z, (A4)
0 (X+r)?
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APPENDIX: CALCULATION OF THE HARTREE i=0

INTEGRAL L. . . .
and the remaining problem is the calculation of the coeffi-

The Hartree integral, which expresses the effect of oneientsA;(r) and C;(r). The integrals which determine the
particle, e.g., the electron, on the other patrticle, e.g., the holeoefficients can be solved exactly, which leads to the follow-

is given by ing results:
f p(r’) Ai(r)y=alh—(r—hi)]—a[h+(r+hi)], (A7)
dr’
[r—r’| with
p(r’) a(y)=2ylIny+2(h—=y)in(h—y) (A8)
= | dr'r’ | de’ .
/ and
\/r2+r Z2rr'cogo—¢')
(A1) Ci(r)=h"Yc[h—=(r—hi)]—c[h+(r+hi)]}—2r,
o o (A9)
As we are dealing with cylindrical symmetry, we can remove
the ¢ dependence. The integral over the angle becomes thgith
complete elliptic integral of the first kind, which converts Eq.
(Al) into c(y)=[y(2h—y)]Iny+(h-y)?n(h—y). (A10)
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