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We investigate the nonlinear propagation of electromagnetic waves in left-handed materials. For this pur-
pose, we consider a set of coupled nonlinear Schrödinger �CNLS� equations, which govern the dynamics of
coupled electric and magnetic field envelopes. The CNLS equations are used to obtain a nonlinear dispersion,
which depicts the modulational stability profile of the coupled plane-wave solutions in left-handed materials.
An exact �in�stability criterion for modulational interactions is derived, and analytical expressions for the
instability growth rate are obtained.

DOI: 10.1103/PhysRevE.72.016626 PACS number�s�: 41.20.Jb, 78.20.Ci, 42.25.Bs, 42.70.Qs

I. INTRODUCTION

An increasing amount of research work has recently been
focusing on left-handed �or negative index� materials
�LHM�, i.e., artificially produced materials which are char-
acterized by a negative value of both the dielectric permit-
tivity � and magnetic permeability �, in addition to a nega-
tive value of the refraction index n=−���. Although the
original theoretical concept of LHM dates back in the semi-
nal work of Veselago �1�, the absolute absence of naturally
occurring materials of this kind has restricted attention to
Veselago’s speculations until very recently. Since a number
of pioneering theoretical studies �2–4� suggested how these
peculiar properties could be realized in purpose-designed and
built materials, and experiments subsequently confirmed
those predictions �5–8�, the field of LHM has received a
considerable boost in the last half decade, overcoming an
initial controversial phase of lack of theoretical consensus
and acceptance �read, e.g., �9� for a recent review�. Interest-
ingly, a number of alternative theoretical schemes bearing
left-handed electromagnetic behavior were recently pro-
posed, including RLC transmission lines �10�, photonic cir-
cuits �11�, and other nanostructures �12�. Furthermore, a
number of applications �e.g., in optics �13�� were suggested
to exploit the singular physical properties of LHM �beam
refocusing, inversion of Snell’s law and of the Doppler shift
effect, backward Cerenkov radiation, etc�. It may be noted
that one is interested in media characterized by both � and �
being negative, since the mixed case �negative-positive� has
been shown in Ref. �5� to bear a reduced transmittivity �i.e.,
the medium is opaque to electromagnetic waves�.

Naturally, the theory of the propagation of electromag-
netic �EM� waves in linear LHM �14� was recently extended
to account for nonlinear �i.e., field-amplitude-dependent� ma-
terial properties �15,16�. Ab initio calculations of the nonlin-
ear dielectric and magnetic properties of split-ring resonator
�SRR� lattice structures showed that magnetic nonlinearity,

in principle, dominates in LH composite materials �15�. Tak-
ing this fact into account, the dynamics of the electric and
magnetic field envelope of an EM wave propagating in a LH
medium was recently related to the nonlinear amplitude
modulation formalism �17� by Lazarides et al., who showed
that modulated EM wave propagation is governed by a pair
of coupled nonlinear Schrödinger-type equations �CNLS�.
Such nonlinear equations generally describe the dynamics of
a slowly varying envelope, which confines �modulates� the
fast carrier wave �18–20�.

In this paper, we present an investigation of the nonlinear
stability of electromagnetic waves in a negative-refractive-
index medium or LHM. For this purpose, we use the CNLS
equations to obtain a nonlinear dispersion relation. The latter
is analyzed both analytically and numerically to demonstrate
the nonlinear stability or instability of a modulated electro-
magnetic wave packet in left-hand composite materials.

II. NONLINEAR DESCRIPTION OF EM WAVE
PROPAGATION IN LHM

The dielectric and magnetic behaviors of negative index
materials or LHM are characterized by both frequency dis-
persion �as physically imposed �1�� and nonlinearity �15,16�.
In the following, we shall briefly review the existing theories
modeling these mechanisms, in order to set the theoretical
background of the modulation stability analysis that will fol-
low.

A. Nonlinear LHM properties

The dielectric and magnetic response of a nonlinear ma-
terial is formally characterized by an electric flux density D
and a magnetic induction B, which depend on the electric

and magnetic field intensities E and H as D=�ef fE=�E+ P̂
and B=�ef fH=�H+M̂, where � and � denote the medium
�linear� dielectric permittivity and magnetic permeability, re-

spectively, while P̂=�NLE and M̂=�NLH express the nonlin-
ear contributions to the medium polarization and magnetiza-
tion. We note that, throughout this text, our notations
incorporate the vacuum dielectric permittivity �0 and mag-
netic permeability �0=1/c2�0 into �ef f and �ef f �contrary to a
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widely used notation, according to which B=�ef f�0H and
D=�ef f�0E�.

In specific, if one neglects energy dissipation �loss�, the
dielectric response of LH composite materials �SRR lattices
here� is given by the nonlinear and dispersive �frequency-
dependent� expression �15�

�ef f = �0�1 −
�p

2

�2� + �NL��E�2�

	 � + �NL��E�2�

	 �D��E�2� −
�p

2

�2 , �1�

where the effective cutoff �“plasma”� frequency �p is related
to the geometrical features of the SRR lattice �2,15�, � is the
propagating mode frequency, and �D is related to the �non-
linear� dielectric response. We observe that �0 sets the
asymptotic limit of � for �→�. The possibility for negative
permittivity arises from the frequency dependence for
���p.

The magnetic response of LH �in fact of SRR lattice-
based� materials was studied by Pendry et al. �3�, whose
result was generalized by Zharov et al. �also see �16�� to the
nonlinear expression

�ef f = �0�1 +
F�2

�0,NL
2 ��H�2� − �2�

= �0�1 +
F�2

�0
2 − �2� + �NL��H�2� 	 � + �NL��H�2� ,

�2�

where the �linear� resonant SRR frequency �0 and the factor
F �denoting the single ring to unit cell area ratio; 0�F�1,
ideally� are related to the intrinsic lattice structure �3�. Again,
we have neglected dissipation here. The �linear� permeability
� attains negative values for �0����0 /�1−F, while the
�complete� effective permeability �ef f yields an enriched be-
havior �cf. the discussion in Refs. �3,15�; see below�. We
note that �→�0 for �→0.

The nonlinear frequency �0,NL	X�0 is related to the
mode and resonance frequencies, �	��0 and �0, via a
complex expression, which is in turn related to the material’s
dielectric properties, viz., �H�2= f(X ,� ;�NL��E�2�) �15�. For a
relatively small field, one may assume a Kerr dielectric ma-
terial behavior, i.e., �ef f 
�+��E�2 �the nonlinearity param-
eter � is related to intrinsic material properties; here it is
equal to �Ec

2 in Ref. �15,16��; a positive �negative� value of
� denotes a focusing �defocusing� dielectric behavior. One
then has �15–17�

�H�2 = �A2Ec
4 �1 − X2��X2 − �2�2

�2X6 , �3�

where Ec determines the characteristic dielectric nonlinearity
scale �viz., �= ±Ec

−2� and the quantity A is related to the
physical features of the material unit elements �15,16�. Note
that this functional relation suggests a multivalued depen-

dence of X, and consequently of �ef f, on �H�2 �cf. Fig. 2 in
Ref. �15��.

For the sake of analytical tractability, one may consider a
“Kerr-like” dependence, viz., �ef f 
�+	�H�2, where the pa-
rameter 	 is related to intrinsic material properties. Al-
though, given the complexity of Eq. �3�, it is not trivial to
obtain an analytical expression for the phenomenological
nonlinearity parameter 	, this assumption seems to be justi-
fied �and may be numerically confirmed �17�� for sufficiently
low values of the magnetic field intensity H; also cf. �15�,
wherein the negative �stable� curves in Figs. 2�a�, 2�b�, and
2�c�, respectively, reflect the LH behaving cases ��
�0 and
� ,	
0�, ����0 and � ,	
0�, and ��
�0 and � ,	�0�,
here. We note that the case ����0 ,� ,	�0� bears no left-
handed behavior �as depicted in Fig. 2�d� in Ref. �15��.

We recall that the dispersive character of the medium is
hidden in the frequency dependence of both � and �, and
that, in fact, left-handed behavior is restricted within a cer-
tain range of frequency values. Thus, the above formulation
formally applies to both the right-handed and left-handed
behaving frequency ranges of the composite materials men-
tioned above. Nevertheless, rigorously speaking, the above
description refers to low magnetic fields, as explained above.
Finally, we note that the above relations are compatible with
the causality requirements d������� /d�
1 and
d������� /d�
1, as pointed out in Ref. �4�.

B. EM wave modulation

Let us consider an EM plane wave propagating in a left-
handed medium. The wave consists of an electric and a mag-
netic field�s� of intensities E and H, respectively, represent-
ing transverse propagating oscillations in perpendicular
directions. We recall that E�H determines the �Poynting�
direction of energy flow, which coincides �is opposed to� the
propagation direction, say along z, in right-handed �RH�
�left-handed �LH�� materials �4�. The field vector mag-
nitudes are E�z , t�=E�z , t�exp�i�kz−�t�� and H�z , t�
=H�z , t�exp�i�kz−�t��, where �, k=2� / and  here denote
the cyclic frequency, the wave number, and the wavelength,
respectively. The propagation of the EM wave considered is
governed by Maxwell’s laws. The nonlinear modulation of
the wave amplitude�s� was recently shown �17� to be gov-
erned by the system of coupled nonlinear Schrödinger
�CNLS� equations

i
�E
�T

+ P
�2E
�X2 + Q11�E�2E + Q12�H�2E = 0, �4�

i
�H
�T

+ P
�2H
�X2 + Q22�H�2H + Q21�E�2H = 0. �5�

The �slow� position and time variables are defined as X
=��x−vgt� and T=�2t, where ��1 is a small real parameter.
The field envelopes E and H move at the group velocity,
which is related to the wave vector k as by vg=c2k /� �viz.
vg=���k�=c2k /��. The �common� group velocity dispersion
coefficient is P=���k� /2= �c2−��2� /2�; we note that P
0,
since the condition vg�c is prescribed by causality in both
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RH and LH materials �4�. The frequency � is related to the
wave number k via a dispersion relation �related to the per-
plex expression for �ef f��� �4��, which to lowest order reads
�=k /���	ck. The nonlinearity coefficients Q11=Q21
=�c2�� /2	Q1 and Q22=Q12=�c2	� /2	Q2 are related to
the nonlinearity �“Kerr”� parameters � and 	 �both assumed
��2 here�. Note the peculiar symmetry of the nonlinear part
of Eqs. �4� and �5� �contrary to the “usual” case in the non-
linear optics, where the self-interaction nonlinearity and
cross-coupling coefficients are, separately, equal to each
other, viz., Q11=Q22 and Q12=Q21, instead�.

III. PLANE-WAVE SOLUTIONS—MODULATIONAL
STABILITY ANALYSIS

In search of a set of coupled solutions to the CNLS equa-
tions above, one may set E�X ,T�=�1exp�i�1� and H�X ,T�
=�2exp�i�2�, where �1,2 and �1,2 are real functions of �X ,T,
to be determined. Substituting in Eqs. �4� and �5�, one readily
obtains

�i,T + P�2�i,X�i,X + �i�i,XX� = 0 �6�

and

�i,T = P��i,XX/�i − ��i,X�2� + Q1�1
2 + Q2�2

2, �7�

where i and j�1 are either 1 or 2, and the subscripts X and
T denote partial differentiation, viz. fX	�f /�X and so forth.
Taking �1,2=const, we obtain a set of coupled monochro-
matic envelope �Stokes� wave solutions in the form

�E�X,T�,H�X,T� = �E0,H0ei�Q1�E0�2+Q2�H0�2�T. �8�

These solutions represent two copropagating modulated field
envelopes, oscillating �slowly� at a frequency �= �Q1�E0�2
+Q2�H0�2� �which depends on the constant linear field wave
amplitudes E0 and H0�. Note that the phase �T is common,
due to the symmetry of the CNLS equations above.

In order to study the stability of the above monochromatic
solution, we set E0→E0+�E1�X ,T� and H0→H0

+�H1�X ,T�, where the small ���1� perturbations E1 and H1

are complex functions of �X ,T. Isolating terms in �, we ob-
tain

iE1,T + PE1,XX + Q1�E1 + E1
*�E0

2 + Q2�H1 + H1
*�E0H0 = 0,

along with the analogous equation for H1 �obtained upon the
permutation E1↔H1 and Q1↔Q2�. Separating real and

imaginary parts, and assuming a perturbation wave number k̃
and frequency �̃, we obtain

�− �̃2 + Pk̃2�Pk̃2 − 2Q1E0
2��ã1 − 2PQ2E0H0k̃2ã2 = 0 �9�

and

− 2PQ1E0H0k̃2ã1 + �− �̃2 + Pk̃2�Pk̃2 − 2Q2H0
2��ã2 = 0.

�10�

This system is tantamount, formally, to the eigenvalue prob-
lem �M− �̃2I�ã=0, where the elements of the vector ã
= �a1 ,a2�T are the perturbation’s amplitudes, I is the unit ma-

trix �Iij =�ij, for i , j=1,2�, and the elements of the matrix M
are M11= Pk̃2�Pk̃2−2Q1E0

2�, M22= Pk̃2�Pk̃2−2Q2H0
2�, M12

=−2PQ2E0H0k̃2, and M21=−2PQ1E0H0k̃2. The condition for
the existence of eigenvalues, viz., det�M− �̃2I�=0, provides
the bi-quadratic polynomial equation

�̃4 − T�̃2 + D = 0, �11�

where T=M11+M22	Tr M and D=M11M22−M12M21
	det M denote the trace and the determinant, respectively,

of the matrix M. Evaluating T and D, we find T=2P2k̃2�k̃2

−K� and D= P4k̃6�k̃2−2K�, where we defined the quantity
K= �Q1�E0�2+Q2�H0�2� / P. The discriminant quantity T2−4D

=4P4k̃4K2�0 turns out to be non-negative, so Eq. �11�
yields two real solutions for �̃2, viz.,

�̃±
2 =

1

2
�T ± �T2 − 4D� , �12�

or, explicitly,

�̃+
2 = P2k̃4, �̃−

2 = P2k̃2�k̃2 − 2K� . �13�

We immediately see that �+= ± Pk̃2�R, while, on the other
hand, the sign of �−

2 �hence the existence or not of a nonzero

imaginary part of �−� depends on the quantity k̃2−2K. In
specific, if the following criterion is met:

k̃2 −
2

P
�Q1�E0�2 + Q2�H0�2� 
 0, �14�

or, recalling the definitions of Q1,2 above,

k̃2 −
�

P
��

�
�E0�2 +

	

�
�H0�2� 	 k̃2 −

�

P
K� 
 0, �15�

then the EM wave will be modulationally stable. Since
P
0, we see that the EM stability profile will essentially
depend on the quantity K� �within parentheses�. In the
existing description of “ordinary” RH materials, one has
� ,�
0, so �for 	=0, say, i.e., for a linear magnetic re-
sponse� a modulational instability may or may not occur,
depending on the focusing or defocusing dielectric property
of the medium �i.e., on the sign of ��. However, in LHM,
both � and � are negative, while � and 	 depend on the
medium’s structure. Clearly, the EM wave will be stable if
the quantity

K� =
�

�
�E0�2 +

	

�
�H0�2 �16�

is negative �and thus Eq. �15� is satisfied ∀k�. If, on the other
hand, K� is positive, the EM wave will be unstable to

external perturbations with a wave number k̃ lower than

k̃cr	�2K=��K� / P �see definitions above�. The growth
rate �= i�−�̃−

2 of the instability then attains its maximum

value �max= PK=�K� /2=����E0�2 /�+	�H0�2 /�� /2 at k̃

=�K= k̃cr /�2.
In order to study the numerical behavior of the �lower

branch of the� perturbation dispersion relation �13�, one may
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express it as �̂−
2 = k̂2�k̂2−1�	��k̂�, where �̂−

2 =�−
2 / ��2K�2�

and k̂2= k̃2 /2K= Pk̃2�K� �we assume K�
0 here, to study
instability; the opposite case K��0 would be stable�. The

function ��k̂� is depicted in Fig. 1�a�; for k̂�1, it bears
negative values, implying instability, viz., �̂−

2 	−�̂2�0. The
associated growth rate attains its maximum value �̂max

=1/2 at k̂=1/�2; see Fig. 1�b�. On the other hand, if k̂
1,
then �̂2
0 �hence �̂ is real� and the EM wave will be stable.
The field amplitude�s� will then oscillate around the station-
ary �constant amplitude� state, but will otherwise retain their
stability against the external perturbation. We see that the
stable and unstable wave number ranges are separated by the

critical value k̂cr=1, which corresponds to a perturbation

wave number k̃cr= �2/ P�1/2�Q1�E0�2+Q2�H0�2�1/2.
The stability criterion K��0, where K� is defined in Eq.

�16�, may be investigated with respect to real material val-

ues, provided by experiments. It may be instructive to refer
to the cases depicted in Fig. 2 in Ref. �15�. For instance, we
see that �the negative branch of� Fig. 2�a� therein, referring to
the case �� , ��0 and � , 	
0�, corresponds to a modula-
tionally stable EM wave propagation �since K��0�. On the
other hand, �the stable negative branch of� Fig. 2�c� in Ref.
�15�, which refers to the case �� ,��0 and � ,	�0�, corre-
sponds to unstable EM waves �since K��0�. Finally, EM
waves propagating in the medium depicted in Fig. 2�d� �in
Ref. �15��, which refers to the �opaque, see above� case
���0��, assuming ���p, and � ,	�0�, may be poten-
tially unstable, depending on the relative magnitude of the
field amplitudes E0 and H0.

It is interesting to note that the quantity whose sign deter-
mines the stability profile of the EM wave, according to our
analysis, is essentially

K� 
 �ef f/� + �ef f/� − 2 �17�

�to lowest order in nonlinearity, i.e., O��E�2 , �H�2��. Quite ex-
pectedly, from a physical point of view, the nonlinear profile
of EM waves in LH media is thus exactly related to the
intrinsic nonlinear properties of the response of the media.
The well known focusing/defocusing nonlinearity criterion,
related to the Kerr property of a medium, is thus generalized
to account for the intrinsically nonlinear magnetization prop-
erties of a left-handed material.

IV. CONCLUSIONS

We have investigated, from first principles, the conditions
for the occurrence of the modulational instability in left-
handed materials. Relying on a set of coupled nonlinear
Schrödinger-type equations for the electric and magnetic
field envelopes, we have shown that an electromagnetic
wave consisting of two modulated field waves may become
modulationally unstable. An exact criterion for �in�stability
has been derived and analytical expressions for the instabil-
ity growth rate have been obtained. The modulational insta-
bility is a well known mechanism of energy localization in
nonlinear dispersive media, associated with the formation of
propagating localized excitations. The present investigation
aims at contributing to this new direction of thought, with
respect to novel LH materials.
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FIG. 1. �a� The square of the perturbation frequency �̃ �scaled

by 2KP=�K�� is depicted vs the perturbation wave number k̃
�scaled by �2K�, as derived from the relation �13� for K
0 �un-
stable case�. �b� The square of the instability growth rate � �scaled

by 2KP=�K�� is depicted vs the perturbation wave number k̃
�scaled by �2K�.
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