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Eigenstates and fine structure of a hydrogenic impurity in a spherical quantum dot

Chun-Ching Yang, Li-Chi Liu, and Shih-Hsin Chang
Department of Physics, National ChangHua University of Education, Changhua, Taiwan, Republic of China

~Received 7 October 1997; revised manuscript received 16 March 1998!

The fine structure of the energy levels for a hydrogenic impurity located in the center of a spherical quantum
dot is calculated using a simpler exact solution for the potential well. The results reveal that when the dot
radius approaches zero, the eigenenergies are just like a free-space hydrogenic atom. When the dot radius is
large enough, then the eigenenergies approach a free-space hydrogenic atom but are shifted by the confining
potential. Also we find that the radial expectation values will be equal to a free-space hydrogenic atom, when
the dot radius is extremely small and extremely large. Between these two situations, the radial expectation
values are smaller than those of a free space because of the pressing of the confining potential. Not every dot
radius influences the eigenenergy to the same degree. It is decided by the bumps of the electron’s wave
function and the place of the potential well’s margin. When the margin of the well begins to push the bumps
of the wave then the eigenenergy will increase more quickly. Because of the changing of the electron distri-
bution probability, the degeneracy of the differentl value in a free-space hydrogenic atom is removed by the
confining potential. The total-energy shifts of the fine structure of the impurity could be six times larger than
the total energy shifts of a free-space atom.@S0163-1829~98!08127-2#
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I. INTRODUCTION

Since the technique for understanding the world of na
structures has improved very much during recent years,
can now detect the fine-structure splitting spectra of a sin
quantum dot,1 and people have become more concerned w
the quantum effect of low-dimensional systems. Quant
effects of the doping atom caused by the confining poten
are predicated to be much different with a normal free-sp
atom. Many people are interested in studying areas, suc
quantum wells ~QW!, quantum-well wires~QWW!, and
quantum dots~QD!. Bastard2,3 was the first to work on the
binding energy of a hydrogenic impurity in an infinite pote
tial well. Bryant4 calculated the impurity’s binding energy i
quantum-well wires by assuming a cylinder coordina
Parras-Montenegre5 et al. used a variational procedur
within the effective-mass approximation to calculate t
binding energies of hydrogenic impurity in QD. Zhuet al.6,7

solved the finite potential well for the impurity in the cent
of the QD and obtained the exact solutions by using
method of series expansion. Chu, Hsiao, and Mei8 resolved
the infinite potential-well equation and presented a deta
formulation for the state energies of the hydrogenic impu
located at the center of the QD and the QW. After th
people began to research new problems, such as the
center impurity,9 the cubic quantum dot,10 and others.11,12

Although much research has been done on various aspec
electronic properties in a nanostructure as mentioned ab
however, a simpler convenient exact solution for the sph
cal QD of the finite potential still has not been found. A
though Zhu’s solution is quite correct, it is hard to calcula
the other expectation values for the impurity by using
solution. Chu has found a good exact solution, but it is o
for the infinite potential well. Most of them~Parras-
Montenegro, Zhu, and Chu! paid attention to the binding
energy of the impurity, but for the eigenstates, the wa
function’s penetrating situations, radial expectation valu
PRB 580163-1829/98/58~4!/1954~8!/$15.00
-
e

le
h

al
e
as

.

e

d
y
t
ff-

of
e,
i-

e
y

e
s

and the fine structure of the impurity itself are disregarde
In this paper we calculate eigenvalues mentioned ab

and present our calculations and discussions in two secti
In Sec. II, we present a simpler exact solution for the infin
and finite potential well and we discuss how a QD influenc
the impurity’s wave function, radial expectation value, a
the other physical expectation quantities. In Sec. III, we u
the solutions we calculated to be our zero-order wave fu
tions and calculate the fine structure of the impurity. The
are the energy shifts due to the spin-orbit interaction,
relativistic correction to the kinetic energy, and the relativ
tic correction to the potential energy, which is called t
Darwin term. A summary of results is presented in Sec.

II. EIGENSTATES AND RADIAL EXPECTATION VALUES

A. Formulation

The Hamiltonian of a hydrogenic impurity located in th
center of a spherical quantum dot~SQD! can be written as

H05F2
\2

2m
¹22

KZe2

er
1V~r !G , ~1!

where

V~r !5 H 2V0 ,
0,

r ,R0

r>R0
~2!

andm, K, e, andZ are the effective mass, electrical consta
dielectric constant, and core charge,V0 andR0 are the con-
fining potential and the radius of the SQD, and they are
positive. The value of the confining potentialV0 is from zero
to infinity. The solution of the Schro¨dinger equation, becaus
it is a spherical symmetric potential field, can be written

c~r ,u,F!5R~r !Y~u,F!.
1954 © 1998 The American Physical Society
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We are only concerned with bound states, so the eigene
gies are negativeE52uEu, and the differential equation fo
the radical partR(r ) can be written in spherical coordinate
For inside the wellr ,R0 :

]2

]r 2 R~r !1
2

r

]

]r
R~r !1

2m

\2 S 2uEu1V01
KZe2

er D
3R~r !2

l ~ l 11!

r 2 R~r !50; ~3!

for outside the wellr>R0 :

]2

]r 2 R~r !1
2

r

]

]r
R~r !1

2m

\2 S 2uEu1
KZe2

er D
3R~r !2

l ~ l 11!

r 2 R~r !50. ~4!

Therefore we can study the solutions of these two equat
in two regions. One is the inside region forr ,R0 , the other
one is the outside region forr>R0 .

1. The inside region r<R0

Here we study the inside solution with three cases. C
1: uEu,V0 ; case 2:uEu.V0 ; and case 3:uEu5V0 .

Case 1: uEu,V0 . For uEu,V0 Eq. ~3! is convenient to
rescale distances and energies to define dimensionless
ables. Therefore we define

r,52S 2m~V02uEu!
\2 D 1/2

r ,

l,5
KZe2

e\ S m

2~V02uEu! D
1/2

.

With these definitions, Eq.~3! becomes

]2R~r !

]r,
2 1

2

r,

]R~r !

]r,
2

l ~ l 11!

r,
2 R~r !1S l,

r,
1

1

4DR~r !50.

~5!

This is similar to the free-electron equation of the hydrog
atom. It has two complex conjugated solutions.13 The first
one is the outgoing wave:

R~r !~1 !5e1 ir,/2r,
l M ~ l 112 il,,2l 12,2 ir,!. ~6!

The second one is the incoming wave:

R~r !~2 !5e2 ir,/2r,
l M ~ l 111 il,,2l 12,1 ir,!, ~7!

whereM is the confluent hypergeometric function:

M ~a,b,X!5 (
n50

`
~a!nXn

~b!nn!
.

Although we use the hydrogenic free-electron solution
the equation, the electron is still confined in the potential
can be totally reflected. The wave function must cont
waves in both directions. So the general solution is

R~r !5AR~r !~1 !1BR~r !~2 !.
er-

ns

se

ari-

n

r
t
n

Since the reflection coefficient must be equal to one, a
because of the boundary condition of SQD, we haveA5B.
The value ofl, can be determined from boundary cond
tions. The eigenenergies of the impurity may be given as

El, l52S V02
mK2Z2e4

2e2\2l,
2 D . ~8!

Case 2: uEu.V0 . For uEu.V0 , we define new variables
for Eq. ~3!:

r.52S 2m~ uEu2V0!

\2 D 1/2

r ,

l.5
KZe2

«\ S m

2~ uEu2V0! D
1/2

,

with these new definitions we rewrite Eq.~3! as follows:

]2R~r !

]r.
2 1

2

r.

]R~r !

]r.
2

l ~ l 11!

r.
2 R~r !1S l.

r.
2

1

4DR~r !50.

~9!

The solution is similar to the equation of hydrogen with
bound electron:

R~r !5e2r./2r.
l (

n50

`

anr.
n . ~10!

The recursion relation is

an115
n1 l 112l.

~n11!~n12l 12!
an and a051. ~11!

Again by matching the boundary conditions we can fi
the value ofl. , and the eigenenergies may be given as

El. l52S V01
mK2Z2e4

2«2\2l.
2 D .

Case 3: uEu5V0 . As uEu5V0 Eq. ~3! becomes

F ]2

]r 2 1
2

r

]

]r
2

l ~ l 11!

r 2 GR~r !2
2m

\2

KZe2

«r
R~r !50.

~12!

We can search for a solution of the form, such as

R~r !5r s(
n

`

anr n. ~13!

Now substitute the power-series expansion forR(r ). This
gives the solution

s5 l

and

an115
2~2m/«\2!KZe2

~n12l 12!~n11!
an with a051.

For an impurity in SQD there is probably no eigensta
whose energy is equal toV0 . If there was, then there would
be only one state that we could find foruEu5V0 .
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2. The outside region r>R0

Here we define new variables for the outside region
Eq. ~4!:

rout52S 2muEu
\2 D 1/2

r ,

lout5
KZe2

«\ S m

2uEu D
1/2

.

Then Eq.~4! can be rewritten as follows:

]2R~r !

]rout
2 1

2

rout

]R~r !

]rout
2

l ~ l 11!

rout
2 R~r !1S lout

rout
2

1

4DR~r !50.

~14!

In order to find a solution in which the probability o
finding the electron at very large distances from the cente
the field must go to zero, we derive a general solution of
~14! as follows:

R~r !5e2rout/2rout
2s(

n50

`

anrout
2n . ~15!

By substituting the solution into Eq.~14!, we gets and the
recursion relation

s5 l 2lout,

an115
2~n1 l 112lout!~n212lout!

~n11!
an .

This solution is an asymptotic series solution.14

B. Discussion

By imposing the solutions to the boundary conditions
can get a suitablel value for every state of the impurity, an
the l values for each state need not be integers. From it
can find out the hydrogenic impurity’s eigenenergies, wa
functions, and radial expectation values. To make our res
more understandable, we let the reduced mass and the di
tric constant be the same with a free-space hydrogen, tha
the effective Rydberg energyRy* is equal to Rydberg energ
Ry ~13.6 eV!, and effective Bohr radiusa* is equal to Bohr
radiusa0 ~0.529 Å!. Here we assume that the confining p
tentialV0 is 5 eV. For convenience, we still use the princip
numbern to represent the eigenstate in order to comp
with the corresponding states of a free-space hydrogen
Figs. 1 and 4 below, the negative scale of they axis is related
only to the wave function. It is not related to the drawing
the confining potential. The confining potential is relat
only to thex axis. The results are as follows:

In Fig. 1, we present the 4f wave function as a function o
the dot radius. It is apparent that when the dot radius
extremely large then the confining potential has a very sm
influence on the impurity, and the wave function approac
the corresponding state of a free-space hydrogen atom
Fig. 1~a!, as the dot radius decreases, the wave functio
pushed into the inner space of the impurity by the confin
well. In Fig. 1~b!, while the dot radius continuously de
creases, the wave function penetrates into the outside re
r
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of the quantum dot more and more. The eigenenergy of
bound state becomes larger and larger. During this time
can see the wave function transferring from the inside to
outside region of the well, and the wave function is wide
spread in a large domain, as in the electron radial probab
distribution. In Fig. 1~c!, when the size of SQD is extremel
small, it is apparent that the wave function approaches
free-space hydrogen again, and most of the wave exists a
outside region of the confining well, and the wave functi
distributes itself at a region that is similar to the wave fun
tion of a free-space hydrogen atom.

In Fig. 2, we present the eigenenergies of differentn l
states as a function of the dot radius.~l is orbital quantum
number.! For eachn state, the eigenenergy increases as
radius decreases. It is found that when the dot radius is
tremely small the eigenenergiesEl l of the impurity approach
the corresponding energies of a free-space hydrogenE
>2Z2Ry* /n2. And when the dot radius is large enough, t
eigenenergy approaches a value that is equal to the confi
potential plus the corresponding energy of a free-space
drogen:E>2(Z2Ry* /n21V0). Also when the dot radius is
at these two extreme situations, eigenenergies are inl degen-
eracy as the degeneracy of a free-space hydrogen atom

Between these two extreme situations, thel degeneracy
disappears. For the same principal number, when the
radius decreases, the smallerl states’ eigenenergies increa
more quickly than the biggerl states. Because when the co
fining electron is in a smalll state, most of time it distributes
itself at the more outer part of the impurity than the electr
in big l state. While the dot radius is decreasing, the mar
of the confining potential pushes the smalll state first. So its
eigenenergy is influenced earlier than the bigl state. That is
why the smalll state’s energy increases quicker than the
l state as the dot radius decreases.

The number of times that the energy increases is equa
the bump number of the electron radial probability distrib
tion function. For example, since there are two bumps in
radial probability distribution function of the 2s state, there-
fore the 2s state’s eigenenergy has two increasing times
the dot radius decreases from 35a0 to zero. The reason is tha
when the margin of the well meets the outer bump, then
will push the bump into the inner part of the impurity. Du
ing this time the influence of the well is apparent, and so
eigenenergy increases more quickly. When the outer bu
has penetrated the well, then the node of the function is n
the well’s margin. During this time the eigenenergy increa
slowly, and the changes of the dot radius seem to have l
influence on the impurity. But when the margin meets t
inner bump and begins to push the bump, the eigenene
increases quickly again. We found that not every dot rad
influences the eigenenergy apparently. It depends on w
state the confining electron is in and what the value of
dot radius is. Also we can see from the figure that there is
critical dot radius for which we could not find any boun
state, because the potential of the impurity is not a squ
well potential. It is proportional tor 21 at the outside region
of the SQD, and this is why there is no critical dot radius

In Fig. 3, we present radial expectation values of thef
state as the function of the dot radius. We can see that
radial expectation values are consistent with the wave fu
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FIG. 1. The 4f state wave function of a hydrogenic impurity in the center of SQD of 5 eV well depth is expressed as a function
impurity’s radius with three different dot radii. At the bottom of each picture, in order to have a better understanding, we plot the c
potential well.
e
re
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ro
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t of
ins
get-
tions of the 4f state in Fig. 1. When the dot radius is larg
(60a0), the expectation value approaches the value of a f
space hydrogen, because the confining potential has few
fluences on the impurity. When the dot radius decreases
margin of the confining potential begins to push the elect
e-
in-
he
n

into the inner region of the impurity, so the radial expec
tion values become smaller and smaller. Finally they reac
limit, and when the wave function begins to penetrate ou
the margin of the SQD, the radial expectation value beg
getting larger. At the same time, the eigenenergy is also
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ting larger. As the dot radius is extremely small, most of
wave function exists at the outside region of the dot. Th
the radial expectation value approaches the value of a f
space hydrogen again.

In Fig. 4, we show the 5s state’s wave function. By using
the solutions we mentioned above, we can still find out
exact wave function for the impurity. There is no limitin
value of the dot radius for which we can not find the bou
state.

FIG. 2. The eigenenergies of a hydrogenic impurity in the cen
of a SQD of 5 eV well depth, from 1s to 4f states is expressed a
a function of the dot radius.

FIG. 3. The 4f state’s radial expectation value of a hydrogen
impurity in a SQD of 5 eV well depth is expressed as a function
the dot radius~curve 1!. The curve 2 represents a radial expectat
value of a free-space hydrogen.
e
n
e-

e

III. THE FINE STRUCTURE OF THE IMPURITY

A. Formulation

The Hamiltonian for the fine-structure calculation can
written as

H5H01H8.

The unperturbed HamiltonianH0 is the same as Eq.~1!. The
perturbationH8 is given as15

H85H181H281H38 ,

with

H185S KZe2

« D 1

2m2c2r 3 S–L ,

H285
2P4

8m3c2

and

H385
p\2

2m2c2 S KZe2

« D d~r !, ~16!

where the first term,H18 , is the spin-orbit term, the secon
term, H28 , is the relativistic correction to the kinetic energ
and the third term,H38 , is the Darwin term. We shall star
from the unperturbed term equation

H0cl lmlms
5El lcl lmlms

~17!

r

f

FIG. 4. The 5s state wave function for the impurity is expresse
as the function of the impurity radius. And the function of th
confining potential.
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with

cl lmlms
5cl lmlx1/2,ms

5Rl l~r !Ylml
~u,f!x1/2,ms

,

wherecl lmlms
is the zero-order wave function of the unpe

turbed state and theRl l(r ) is the radial function we calcu
lated in Sec. II.

When we calculate the fine structure of the impurity, w
use the time-independent perturbation theory for the imp
ty’s energy levels. Here we calculate the first-order ene
correction to the energy levelsEl l due to the termsH18 , H28 ,
andH38 .

1. Energy shift due to the term H18 (spin-orbit term)

Since the perturbationH18 is diagonal in the couplecl l jm j

representation, we construct the functionscl l jm j
from linear

combinations of functionscl lmms
. We obtain

cl l jm j
5 (

mlms

^ lsmlmsu jmj&cl lmlms
,

where^ lsmlmsu jmj& are Clebsch-Gordan coefficients. So w
have the first-order energy correctionDE1 due toH18 as

DE15^cl8 l 8 j 8m
j8
uH18ucl l jm j

&

5d l l 8dmjmj8
d j j 8S KZe2

e D 1

4m2c2 K 1

r 3L
l l

3\2F j ~ j 11!2 l ~ l 11!2
3

4G , ~18!
tio
i-
y

where

j 5H l 6 1
2 , lÞ0

1
2 , l 50.

2. Energy shift due to the term H28 (relativistic correction
to the kinetic energy)

For calculating the energy shift due toH28 , we rewrite this
term as

H285
2p4

8m3c2 52
1

2mc2 FH01
KZe2

«r
2V~r !G2

.

The first-order energy correctionDE2 due toH28 is given by

FIG. 5. Total energy shifts of 2s1/2, 2p1/2, and 2p3/2, as the
function of the dot radius.
DE25^cl lmlms
uH28ucl lmlms

&52
1

2mc2 FEl l
2 12El l

KZe2

« K 1

r L
l l

1
K2Z2e4

«2 K 1

r 2L
l l

1V0
2E

0

R0
Rl l

2 r 2dr

12El lE
0

R0
Rl l

2 V0r 2dr1
2KZe2V0

« E
0

R0
Rl l

2 S 1

r D r 2drG . ~19!
al-

t of
e
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ot.
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3. Energy shift due to the term H38 (Darwin term)

This term acts only at the origin, for since the caselÞ0
the wave functions of the impurity vanish atr 50, we only
have to consider the casel 50. BecauseH38 does not act on
the spin variable and commutes with the operatorsL2 and
LZ , it is also diagonal in the matrix. The energy shiftDE3

due to theH38 is given by

DE35
p\2

2m2c2 S KZe2

« D ^cl00ud~r !ucl00&

5
p\2

2m2c2 S KZe2

« D 1

4p
uRl0~0!u2. ~20!

B. Discussion

Here we have calculated the fine structure of then52
state for the impurity and present them below as a func
 n

of the radius of the SQD. In Fig. 5, we present the tot
energy shiftDE5DE11DE21DE3 as a function of the dot
radius. The upper curve represents the total-energy shif
the 2p3/2. Two curves in the lower part of the figure are th
total energy shifts of 2p1/2 and 2s1/2 in which both j values
are the same. In the impurity, the total-energy shift of t
impurity not only depends on thej value, it also depends on
the l value. We can see that the energy shifts 2p1/2 and 2s1/2

are different in a dot radius. The reason is that the to
energy shiftDE depends on the expectation values of^1/r &,
^1/r 2&, and^1/r 3&. They are alll dependent because of thel
dependency of the electron probability distribution, which
influenced by the SQD. That is why the degeneracy 2p1/2

22s1/2 of the energy shift is removed by the quantum d
But when the dot radius is in an extreme situation, very sm
or large, the total-energy shifts approach that of a free-sp
hydrogen atom, and the total energy shifts of 2p1/2 and 2s1/2
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FIG. 6. Fine structure of the free-space hydrogen atom and the impurity. For clarity, the scale in each diagram is differe
t
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get close to each other, then the degeneracy of these
states is recurs. Also we can see that, when the dot radi
between 3a0 and 5a0 , the total-energy shift of the impurity
could be about six times larger than that of a free-sp
atom. They are apparently influenced by the SQD.

In Fig. 6, we plot two fine-structure splitting diagrams.
Fig. 6~a!, we present the fine structure of a free-space hyd
gen atom whenn52, in order to compare it with the impu
rity. We can see that the fine structure 2p1/222s1/2 of the
free-space atom is degenerate. In Fig. 6~b! we present the
fine-structure splitting of then52 state of the impurity in a
SQD with dot radiusR054a0 . When the impurity is doped
in a SQD, then52 state splits into two energy levels, 2s and
2p, which we call the unperturbed energy levels. After t
fine structure is taken into account the spin degenerac
removed, and they split into three energy levels, 2s1/2,
2p1/2, and 2p3/2, which we call perturbed energy levels.

In Table I, we list some values of the unperturbed ene
values and the energy shifts ofn52 state for different dot
radii. We can see that when the dot radius is extremely la
wo
is

e

-

is

y

e

(R0517a0) or small (R050.1a0) the energy shifts approac
to the value of a free-space hydrogen. The reasons are
cussed in Sec. II.

IV. CONCLUSION

We derived a simpler exact solution for a hydrogenic i
purity located at center of a quantum dot and calculated
fine structure of the impurity. We found that as the dot rad
becomes very large, the energy levels approach the co
sponding states of a free-space hydrogen atom, but
shifted by the confining potentialV0 . As the dot radius be-
comes very small, there still are bound states similar with
corresponding states of a free-space hydrogen. Betw
these two limitations the energy levels increase fromE
52(Z2Ry* /n21V0) to E52Z2Ry* /n2. Also we find the
number of times that the energy increases is equal to
number of bumps of the radial probability distribution fun
tion. As far as the radial expectation values are concern
they are smaller than those of a free-space hydrogenic a
unit
TABLE I. Energy values and shifts of each state of an impurity in SQD with different dot radii. The
of El l is in electron volts~eV!, and units ofDE1 , DE2 , DE3 , andDE are in 0.01 meV.

El l DE2 DE1 DE3 DE

2s1/2 23.402 214.8 0 9.11 25.70

R050.1 2p1/2 23.401 22.65 23.03 0 25.68

2p3/2 23.401 22.65 1.51 0 21.14

2s1/2 24.923 240.8 0 22.9 217.9

R054.0 2p1/2 26.306 28.92 27.33 0 216.3

2p3/2 26.306 28.92 3.67 0 25.25

2s1/2 27.990 221.8 0 13.2 28.62

R058.0 2p1/2 28.190 23.57 23.80 0 27.37

2p3/2 28.190 23.57 1.90 0 21.67

2s1/2 28.400 214.8 0 9.09 25.67

R0517.0 2p1/2 28.400 22.66 23.03 0 25.68

2p3/2 28.400 22.66 1.51 0 21.14
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but they approach the value of a free-space hydrogen a
when the dot radius is very large or very small. There is
critical dot radius for the bound state, when the dot radiu
small, the penetration becomes very large. The result of
structure reveals that the remaining degeneracy inj is re-
moved by the SQD, and the total energy shifts of the fi
structure of the impurity could be six times larger than t
total energy shifts of a free-space hydrogen atom.

From our results, by using the effective-mass approxim
tion method, we can understand the fine-structure splitting
D

e

R

m
o
is
e

e

-
of

an exciton in a single quantum dot. Also by using our so
tion we can calculate the Zeeman effect, Stark effect,
two-electron confined atoms. These are in progress.
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