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Eigenstates and fine structure of a hydrogenic impurity in a spherical quantum dot
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The fine structure of the energy levels for a hydrogenic impurity located in the center of a spherical quantum
dot is calculated using a simpler exact solution for the potential well. The results reveal that when the dot
radius approaches zero, the eigenenergies are just like a free-space hydrogenic atom. When the dot radius is
large enough, then the eigenenergies approach a free-space hydrogenic atom but are shifted by the confining
potential. Also we find that the radial expectation values will be equal to a free-space hydrogenic atom, when
the dot radius is extremely small and extremely large. Between these two situations, the radial expectation
values are smaller than those of a free space because of the pressing of the confining potential. Not every dot
radius influences the eigenenergy to the same degree. It is decided by the bumps of the electron’s wave
function and the place of the potential well's margin. When the margin of the well begins to push the bumps
of the wave then the eigenenergy will increase more quickly. Because of the changing of the electron distri-
bution probability, the degeneracy of the differéntalue in a free-space hydrogenic atom is removed by the
confining potential. The total-energy shifts of the fine structure of the impurity could be six times larger than
the total energy shifts of a free-space at¢80163-182608)08127-2

[. INTRODUCTION and the fine structure of the impurity itself are disregarded.
In this paper we calculate eigenvalues mentioned above

Since the technique for understanding the world of nanoand present our calculations and discussions in two sections.
structures has improved very much during recent years, wk Sec. Il, we present a simpler exact solution for the infinite
can now detect the fine-structure splitting spectra of a singl@nd finite potential well and we discuss how a QD influences
quantum dot, and people have become more concerned witdhe impurity's wave function, radial expectation value, and
the quantum effect of low-dimensional systems. Quantunihe other physical expectation quantities. In Sec. Ill, we use
effects of the doping atom caused by the confining potentialhe solutions we calculated to be our zero-order wave func-
are predicated to be much different with a normal free-spacéions and calculate the fine structure of the impurity. These
atom. Many people are interested in studying areas, such &€ the energy shifts due to the spin-orbit interaction, the
quantum wells (QW), quantum-well wires(QWW), and relativistic correction to the kinetic energy, and the relativis-
quantum dot{QD). Bastard3 was the first to work on the tiC correction to the potential energy, which is called the
binding energy of a hydrogenic impurity in an infinite poten- Darwin term. A summary of results is presented in Sec. IV.
tial well. Bryant' calculated the impurity’s binding energy in
quantum-well wires by assuming a cylinder coordinate.;| g|JGENSTATES AND RADIAL EXPECTATION VALUES
Parras-Montenegre et al. used a variational procedure
within the effective-mass approximation to calculate the A. Formulation
binding energies of hydrogenic impurity in QD. Zletial.>’ The Hamiltonian of a hydrogenic impurity located in the

solved the finite potential well for the impurity in the center center of a spherical quantum d@&QD) can be written as
of the QD and obtained the exact solutions by using the

method of series expansion. Chu, Hsiao, and®Mesolved o2
the infinite potential-well equation and presented a detailed Hoz[— — V2— ——+V(r)
formulation for the state energies of the hydrogenic impurity 2u er

located at the center of the QD and the QW. After that
people began to research new problems, such as the off!
center impurity’ the cubic quantum ddf and otherd!!2
Although much research has been done on various aspects of V(r)=[
electronic properties in a nanostructure as mentioned above,

however, a simpler convenient exact solution for the spheri- ) .
cal QD of the finite potential still has not been found. Al- @du, K, € andZ are the effective mass, electrical constant,
though Zhu's solution is quite correct, it is hard to calculatedielectric constant, and core chardk, andR, are the con-
the other expectation values for the impurity by using thefining potential and the radius of the SQD, and they are all
solution. Chu has found a good exact solution, but it is onlyPositive. The value of the confining potenti4} is from zero

for the infinite potential well. Most of them(Parras- to infinity. The solution of the Schobnger equation, because
Montenegro, Zhu, and Chupaid attention to the binding it is & spherical symmetric potential field, can be written as
energy of the impurity, but for the eigenstates, the wave

function’s penetrating situations, radial expectation values Y(r,0,0)=R(r)Y(6,P).

. @

here

_Vo, r<R0
0, r=R, )
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We are only concerned with bound states, so the eigenener- Since the reflection coefficient must be equal to one, and
gies are negativE = — |E|, and the differential equation for because of the boundary condition of SQD, we hAveB.
the radical parR(r) can be written in spherical coordinates. The value ofA - can be determined from boundary condi-

For inside the welfr<R;: tions. The eigenenergies of the impurity may be given as
? et 2 L rmys 2 igl v K2 g =y, mKZe 8
ar2 RO 5 RO+ 37 | —[E[+ Vot =27 =T\ Vo gz ) ©

I(1+1) Case 2:|E|>V,. For |E|>V,, we define new variables
XR(r) = —5— R(r)=0; (3  for Eq.(3):
1/2
for outside the welf =Ry: :2<2M(|E|—Vo))
P> —hz— r,
&2 = 29 R 21 . Kze?
(?—rz (r)+F0,)—r (I’)+? —| |+ or N _KZeZ( w )1/2
> _ ]
I(1+1) eh | 2(|E|—Vo)
XR(r)— r2 R(r)=0. (4) with these new definitions we rewrite E() as follows:

Therefore we can study the solutions of these two equations’R(r) 2 dR(r) I(1+1)

()\> 1)
R(r)+|{———=|R(r)=0.
p> 4

in two regions. One is the inside region fo R, the other ap2 o— ap 2
one is the outside region fo=R,. = - = )
1. The inside region kR, The solution is similar to the equation of hydrogen with a
Here we study the inside solution with three cases. CasgOund electron:
1:|[E|<Vy; case 2]E|>V,; and case 3E|=V,. o
Case 1: |E|<V,. For|E|§VO Eq. (3) is convenientto R(H)=e 2. S ap". (10)
rescale distances and energies to define dimensionless vari- n=0

ables. Therefore we define The recursion relation is

_ 1/2
p<:2(2f‘(v0 |E|)) N Nl+1-\-

—h = ==
h ani1 M+ D(n+21+2) a, and ap=1. (11
N :KZeZ ( i vz Again by matching the boundary conditions we can find
= eh \2(Vo—|E]) the value of\~ , and the eigenenergies may be given as
With these definitions, Eq:3) becomes uK?2z2e
o v £
R(r) 2 JR(r) 1(1+1) R )+(>\<+1)R( o - 26”h°\%
— r —+—|R(r)=0. E|= =
opZ s ap- P o 4 Case 3:|E|=V,. As |E|=V, Eq. (3) becomes
©) P 249 10+1) 2u KZ&
This is similar to the free-electron equation of the hydrogen W‘L Yo 12 T RZ T er R(r)=0.
atom. It has two complex conjugated solutidAsThe first (12)

one is the outgoing wave: )
We can search for a solution of the form, such as

R(r)H=etir<pl M(1+1—iN_,2+2~ip.). (6)

The second one is the incoming wave: R(r)=r52 anr". (13
n

D aipl2, | - -
R(N)=e <ol M(I+1+iN.2+2+ip2), (7)  Now substitute the power-series expansion Rfr). This
whereM is the confluent hypergeometric function: gives the solution

0 S:|
(a)pX"
M(a,b,X)—z,o DR and
2

Although we use the hydrogenic free-electron solution for a . .= —(2uleh?)KZe a  with a.=1
the equation, the electron is still confined in the potential. It 1T (n+21+2)(n+1) " o
can be totally reflected. The wave function must contain _ o _ _
waves in both directions. So the general solution is For an impurity in SQD there is probably no eigenstate

whose energy is equal ¥,. If there was, then there would
R(r)=AR(r)"+BR(r)7). be only one state that we could find fd&|=V,.
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2. The outside region =R, of the quantum dot more and more. The eigenenergy of the
Here we define new variables for the outside region fo?ound state becomes larger and larger. During this time we
Eq. (4): can see the wave function transferring from the inside to the
outside region of the well, and the wave function is widely
2u|E[\ 1?2 spread in a large domain, as in the electron radial probability
pout:z(?) r distribution. In Fig. 1c), when the size of SQD is extremely

small, it is apparent that the wave function approaches the

Kze? [ u |12 free-space hydrogen again, and most of the wave exists at the
Aoutzj m) outside region of the confining well, and the wave function
distributes itself at a region that is similar to the wave func-
Then Eq.(4) can be rewritten as follows: tion of a free-space hydrogen atom.
PR 2 R() 1(1+1) Aoy 1 In Fig. 2, we present the eigengne_rgies _of different
>+ — > R(r)+ — _) R(r)=0. states as a function of the dot radidk.is orbital quantum
Ipout  Pout IPout Pout Pour 4 number) For eachn state, the eigenenergy increases as the

(14) radius decreases. It is found that when the dot radius is ex-
In order to find a solution in which the probability of rémely small the eigenenergis, of the impurity approach

finding the electron at very large distances from the center ofe c;)rr*espzonding energies of a _free_-space hydrogen:
the field must go to zero, we derive a general solution of Eq=—Z°R{/n°. And when the dot radius is large enough, the
(14) as follows: eigenenergy approaches a value that is equal to the confining

potential plus the corresponding energy of a free-space hy-
drogen:E=—(Z°R}/n*+ V). Also when the dot radius is

oo

- -s -n
R(r)=e poulzp"“‘go AnPout - (19 at these two extreme situations, eigenenergies drelé@gen-
eracy as the degeneracy of a free-space hydrogen atom.
By substituting the solution into Eq14), we gets and the Between these two extreme situations, théegeneracy
recursion relation disappears. For the same principal number, when the dot
S=1— Agy, radius decreases, the smallestates’ eigenenergies increase

more quickly than the biggdrstates. Because when the con-
_ _ 4 fining electron is in a small state, most of time it distributes

aps 1= (117 Moud(N =1~ Now) n itself at the more outer part of the impurity than the electron

(n+1) in big | state. While the dot radius is decreasing, the margin

This solution is an asymptotic series solutién. of the confining potential pushes the smiadtate first. So its
eigenenergy is influenced earlier than the bigjate. That is
why the smalll state’s energy increases quicker than the big
| state as the dot radius decreases.

By imposing the solutions to the boundary conditions we The number of times that the energy increases is equal to
can get a suitabl® value for every state of the impurity, and the bump number of the electron radial probability distribu-
the \ values for each state need not be integers. From it wéion function. For example, since there are two bumps in the
can find out the hydrogenic impurity’s eigenenergies, waveadial probability distribution function of thes2state, there-
functions, and radial expectation values. To make our resultipre the % state’s eigenenergy has two increasing times as
more understandable, we let the reduced mass and the dielefe dot radius decreases froma33o zero. The reason is that
tric constant be the same with a free-space hydrogen, that igshen the margin of the well meets the outer bump, then it
the effective Rydberg energ?§ is equal to Rydberg energy will push the bump into the inner part of the impurity. Dur-
Ry (13.6 eV}, and effective Bohr radiua® is equal to Bohr ing this time the influence of the well is apparent, and so the
radiusa, (0.529 A). Here we assume that the confining po- eigenenergy increases more quickly. When the outer bump
tential Vq is 5 eV. For convenience, we still use the principal has penetrated the well, then the node of the function is near
numbern to represent the eigenstate in order to compareghe well’'s margin. During this time the eigenenergy increases
with the corresponding states of a free-space hydrogen. Islowly, and the changes of the dot radius seem to have little
Figs. 1 and 4 below, the negative scale ofytexis is related  influence on the impurity. But when the margin meets the
only to the wave function. It is not related to the drawing of inner bump and begins to push the bump, the eigenenergy
the confining potential. The confining potential is relatedincreases quickly again. We found that not every dot radius
only to thex axis. The results are as follows: influences the eigenenergy apparently. It depends on which

In Fig. 1, we present thefdwave function as a function of state the confining electron is in and what the value of the
the dot radius. It is apparent that when the dot radius islot radius is. Also we can see from the figure that there is no
extremely large then the confining potential has a very smaltritical dot radius for which we could not find any bound
influence on the impurity, and the wave function approachestate, because the potential of the impurity is not a square
the corresponding state of a free-space hydrogen atom. Mvell potential. It is proportional to ~* at the outside region
Fig. 1(a), as the dot radius decreases, the wave function isf the SQD, and this is why there is no critical dot radius.
pushed into the inner space of the impurity by the confining In Fig. 3, we present radial expectation values of ttie 4
well. In Fig. 1(b), while the dot radius continuously de- state as the function of the dot radius. We can see that the
creases, the wave function penetrates into the outside regioadial expectation values are consistent with the wave func-

B. Discussion
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FIG. 1. The 4 state wave function of a hydrogenic impurity in the center of SQD of 5 eV well depth is expressed as a function of the
impurity’s radius with three different dot radii. At the bottom of each picture, in order to have a better understanding, we plot the confining
potential well.

tions of the 4 state in Fig. 1. When the dot radius is large into the inner region of the impurity, so the radial expecta-

(60a,), the expectation value approaches the value of a fredion values become smaller and smaller. Finally they reach a
space hydrogen, because the confining potential has few ifimit, and when the wave function begins to penetrate out of
fluences on the impurity. When the dot radius decreases, thbe margin of the SQD, the radial expectation value begins
margin of the confining potential begins to push the electrorgetting larger. At the same time, the eigenenergy is also get-
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FIG. 4. The 5 state wave function for the impurity is expressed
as the function of the impurity radius. And the function of the
220

confining potential.
FIG. 2. The eigenenergies of a hydrogenic impurity in the center

of a SQD of 5 eV well depth, fromd.to 4f states is expressed as l. THE FINE STRUCTURE OF THE IMPURITY

a function of the dot radius. A. Formulation

The Hamiltonian for the fine-structure calculation can be
ting larger. As the dot radius is extremely small, most of theyritten as
wave function exists at the outside region of the dot. Then
the radial expectation value approaches the value of a free- H=Hy,+H".
space hydrogen again.
In Fig. 4, we show the § state’s wave function. By using
the solutions we mentioned above, we can still find out th

The unperturbed Hamiltoniad , is the same as Eql). The
eperturbationH’ is given a$®

exact wave function for the impurity. There is no limiting Y ’ ’
) . . Hi+Hz+H;s,
value of the dot radius for which we can not find the bound
state. with
/ Kze 1 oL
Fla =
0 e ) amZcHE T
18 4
L 16} H! —-P
é 1t 2 8m3c2
E 12¢
g 10 and
g s
= mh? [KZe?
~ 4 3 2m2C2 & 5(r)1 (16)
2
0 where the first termH;, is the spin-orbit term, the second

0 10 20 30 40 50 ria, 60 term, H,, is the relativistic correction to the kinetic energy
and the third termHj, is the Darwin term. We shall start

FIG. 3. The 4 state’s radial expectation value of a hydrogenic .
P ydrog from the unperturbed term equation

impurity in a SQD of 5 eV well depth is expressed as a function of
the dot radiugcurve 1. The curve 2 represents a radial expectation H _E 17
value of a free-space hydrogen. o¥nimmg = Exi¥nimmg
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with

Primm= YMM X172 = Ry (1) Yim (6, @) x12pm

where Pximm, is the zero-order wave function of the unper-

turbed state and thR,,(r) is the radial function we calcu-
lated in Sec. Il.

When we calculate the fine structure of the impurity, we

use the time-independent perturbation theory for the impur

ty’s energy levels. Here we calculate the first-order energy

correction to the energy levels,; due to the termsi;, HJ,
andHj.
1. Energy shift due to the term Kl (spin-orbit term)

Since the perturbatioH ; is diagonal in the coupl&zmmj
representation, we construct the functiomjmj from linear
combinations of functions(/)\,mms. We obtain

lﬂmmj:n;n (Ismymg|jm;) i imm,,
I"s
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r/a

Total energy shift (0.01 meV)

FIG. 5. Total energy shifts of 2,,, 2py, and 25, as the
function of the dot radius.

where

where(lsmmg|jm;) are Clebsch-Gordan coefficients. So we

have the first-order energy correctidrE; due toH; as

AE1:<¢>\'|'j'mj’|H1|¢Mjmj>
< >x|

(KZeZ) 1

4m?c?

1

=616 10 —
1’ mjmj i’ r3

X 2

o 3
](]+1)_|(|+1)_Z

(18)

E2 +2E,

1
AE2:<‘/’)\Im|mS|Hé|'p)\lm|ms>: “om&
2KZe?V, J’Ro 5
e

Ro
+2EMJ R2,Vor2dr+ 2
0

3. Energy shift due to the term K (Darwin term)

This term acts only at the origin, for since the chged
the wave functions of the impurity vanish et 0, we only
have to consider the case 0. BecauseH; does not act on
the spin variable and commutes with the operatotsand
L, it is also diagonal in the matrix. The energy shifE,
due to theH; is given by

_ wh?
- 2m?c?

wh?
B. Discussion

Kz¢e?

&

Es

)(ll/xoo| 8(r) o0
Kze?

o

€

1

g |R\0(0)|2. (20

©2m?c?

Here we have calculated the fine structure of the2

d

2. Energy shift due to the term Kl (relativistic correction
to the kinetic energy)

For calculating the energy shift dueli,, we rewrite this
term as

1 2

- 2mé

The first-order energy correctiahE, due toH; is given by
1

e
]

“8mic?

H>

H +Kze2 V
ot —; (r)

Kz¢e?

&

K2z2%e*

82

1

r2

Ro
| +V§J’ RZr2dr
A 0

1

T (19

of the radius of the SQD. In Fig. 5, we present the total-
energy shifAE=AE;+AE,+ AE; as a function of the dot
radius. The upper curve represents the total-energy shift of
the 2p,,. Two curves in the lower part of the figure are the
total energy shifts of g,,, and %,,, in which bothj values

are the same. In the impurity, the total-energy shift of the
impurity not only depends on thevalue, it also depends on
thel value. We can see that the energy shiffg,2and %,,,

are different in a dot radius. The reason is that the total-
energy shiftAE depends on the expectation valueg df ),
(1/r?), and(1/r3). They are all dependent because of the
dependency of the electron probability distribution, which is
influenced by the SQD. That is why the degenerapy,2
—2s,,, of the energy shift is removed by the quantum dot.
But when the dot radius is in an extreme situation, very small
or large, the total-energy shifts approach that of a free-space

state for the impurity and present them below as a functiolydrogen atom, and the total energy shifts pf2 and Z,,,
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Fine structure of the hydrogen atom

Fine structure in the SQD
( perturbed )
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FIG. 6. Fine structure of the free-space hydrogen atom and the impurity. For clarity, the scale in each diagram is different.

get close to each other, then the degeneracy of these twWd&R,=17a,) or small Ry=0.1a,) the energy shifts approach
states is recurs. Also we can see that, when the dot radius ie the value of a free-space hydrogen. The reasons are dis-
between 3, and 5, the total-energy shift of the impurity cussed in Sec. Il.
could be about six times larger than that of a free-space
atom. They are apparently influenced by the SQD.

In Fig. 6, we plot two fine-structure splitting diagrams. In
Fig. 6(a), we present the fine structure of a free-space hydro- We derived a simpler exact solution for a hydrogenic im-

IV. CONCLUSION

gen atom whem=2, in order to compare it with the impu-
rity. We can see that the fine structur@,2—2s,,, of the
free-space atom is degenerate. In Fi¢h)Bve present the
fine-structure splitting of the=2 state of the impurity in a
SQD with dot radiuRy=4a,. When the impurity is doped
in a SQD, then=2 state splits into two energy levelss and

purity located at center of a quantum dot and calculated the
fine structure of the impurity. We found that as the dot radius
becomes very large, the energy levels approach the corre-
sponding states of a free-space hydrogen atom, but are
shifted by the confining potentidly. As the dot radius be-
comes very small, there still are bound states similar with the

2p, which we call the unperturbed energy levels. After thecorresponding states of a free-space hydrogen. Between
fine structure is taken into account the spin degeneracy ithese two limitations the energy levels increase fr&m

removed, and they split into three energy levels;2
2py», and g, Which we call perturbed energy levels.

=—(Z°R}/n*+V,) to E=—Z°Rj/n® Also we find the
number of times that the energy increases is equal to the

In Table I, we list some values of the unperturbed energyhumber of bumps of the radial probability distribution func-

values and the energy shifts nf=2 state for different dot

tion. As far as the radial expectation values are concerned,

radii. We can see that when the dot radius is extremely largéhey are smaller than those of a free-space hydrogenic atom,

TABLE I. Energy values and shifts of each state of an impurity in SQD with different dot radii. The unit
of E,, is in electron voltgeV), and units ofAE;, AE,, AE;, andAE are in 0.01 meV.

= AE, AE; AE; AE
251 —3.402 ~-14.8 0 9.11 -5.70
Ry=0.1 21 —3.401 ~2.65 -3.03 0 ~5.68
2Pa —3.401 —2.65 1.51 0 -1.14
251 -4.923 —40.8 0 22.9 -17.9
Ry=4.0 201 ~6.306 -8.92 -7.33 0 -16.3
2Pap —6.306 -8.92 3.67 0 ~5.25
251 ~7.990 -21.8 0 13.2 ~8.62
Ry=8.0 201 ~8.190 —357 —3.80 0 ~-7.37
2Pap ~8.190 —357 1.90 0 ~1.67
251 —8.400 ~14.8 0 9.09 ~5.67
Ry=17.0 P10 —8.400 —2.66 -3.03 0 ~5.68
2P —8.400 —2.66 1.51 0 -1.14




PRB 58 EIGENSTATES AND FINE STRUCTURE ORA . .. 1961

but they approach the value of a free-space hydrogen atomn exciton in a single quantum dot. Also by using our solu-
when the dot radius is very large or very small. There is ndion we can calculate the Zeeman effect, Stark effect, and
critical dot radius for the bound state, when the dot radius iswo-electron confined atoms. These are in progress.

small, the penetration becomes very large. The result of fine

structure reveals that the remaining degeneracy is re-

moved by the SQD, and the total energy shifts of the fine ACKNOWLEDGMENTS
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