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FUNCTION VALUES AS BOUNDARY INTEGRALS 

RICHARD ARENS AND I. M. SINGER 

1. Introduction. For suitable families H of numerical-valued con- 
tinuous functions on a topological space S (see 2.4 below) we show 
that there is a smallest closed subset B of S such that on B every 
function in the family attains its maximum absolute value. The con- 
struction is patterned after that of the "Silov boundary" ([III] or, 
more conveniently, [I, p. 80]) where the family of functions has to 
be an algebra. Algebraically, our families have to be multiplicative 
semigroups. 

We then proceed to show that for each s ES there is at least one 
regular Baire measure m8 on B such that if gCH and its reciprocal 
also belongs to H, then log I g(s) I = fB log I g(b) I m8(db). Our main 
effort is directed toward finding how this integral representation gen- 
eralizes for those gCH whose reciprocal may not exist or at least be 
absent from H. In those cases where H is rich enough to ensure 
that the measures m8 are unique for each s, we obtain log Ig(s)| 

<fB log |g(b)m m8(db), which is to say that the geometric mean 
(relative to m,S) of f g on B is not less than its value at s. This gen- 
eralizes a classical inequality due to Szego [II] for regular functions 
on the disc S, where B is the usual boundary. 

In the nonunique case we show (see 6.4) that there is for each g 
at least one measure for which the inequality holds, but there may be 
some for which it fails. 

We intend to published elsewhere a more detailed discussion of 
these matters for a special type of Banach algebras generalizing more 
directly the classical case of functions regular on the disc (see ?4). 
In this case, the boundary is a locally compact abelian group. 

2. Existence of the boundary. Let H be a class of real or complex, 
bounded continuous functions on a topological space S. Consider a 
subset F of S with the properties: 

2.1 F is closed, 
2.2 for each h in H, I h(s) I attains on F the value sup8es | h(s)| 

and moreover 
2.3 If any subset F1 of S has the properties of F in 2.1 and 2.2, then 

F1 contains F. 
Such a set, if it exists, is evidently unique, and will be denoted by 

OHS, and may be called the Silov boundary of S relative to H. 
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If the class H of functions is replaced by the class of their absolute 
values, 9HS, as well as its existence, is clearly unaffected. We there- 
fore deal with non-negative real-valued functions only. 

2.4 THEOREM. Let S be a topological space and H a class of real- 
valued non-negative continuous functions on S such that 

2.41 if h, j H then hjCEH, 
2.42 if e > 0 and h GH, the set { s; h(s) > e ? is compact, 
2.43 each point so in S has a basis of neighborhoods of the form 

{s; hl(s) < 6, h2(s) < E, * * hn(s) < 4, 
where hi, * , hn CH and e > 0. 

Then aHS exists. 

PROOF. Let K be the class of all subsets F of S having properties 
2.1 and 2.2. Let Ko be a maximal decreasing chain in K, regarded as 
ordered by inclusion. This Ko exists by Zorn's lemma. Let Fo be the 
intersection of all members of Ko. Fo is closed, and also satisfies 2.2 
since for h O, the set {s; h(s) =max h1 (where max is always in- 
tended to refer to the maximum value of the function on S) inter- 
sects every F in Ko and hence intersects Fo. It remains to prove that 
Fo satisfies 2.3 (with F= Fo). Suppose B is closed in S and does not 
contain Fo. Then some point so of Fo has a neighborhood V defined 
as in 2.43 which does not meet B. Then Fo - V being closed does not 
satisfy 2.2. Hence max g is greater than sup g (s) for s in Fo- V. By 
taking h as a suitable power of g, we can obtain 

e max I 
2.44 max h(s) < 

EEFo-V max hi + * + max h. + 1 

Let sCFo. If sC V then h(s) hi(s) < e max h. If sCFo- V then again 
h(s)hi(s) <e max h, by 2.44, and this is true for each i. Hence max 
hhi <e max h. Now suppose h(t) = max h. Then h(t)hi(t) = h,(t) max h 
< e max h so that t C V. Hence h does not attain its max on B at all. 
Thus 2.3 holds, and the theorem is proved. 

2.5 COROLLARY. Let the hypothesis of 2.4 hold. Then SOEaHS if 
and only if for every neighborhood of so there is an h in H which attains 
its max only in that neighborhood. 

The "only if" was demonstrated above. The "if" part follows from 
2.3. 

3. Applications. Let A be an algebra of continuous complex-valued 
functions vanishing at infinity on a locally compact space, with the 
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property that for s #1 there is an f in A such that f(s) # f(t). The theo- 
rem of Silov [III] says that then 9AS exists. It may be of interest to 
prove that 2.4 really does generalize Silov's theorem. To this end, 
compactify S with a point oo obtaining S*. Let B be the class of all 
X+f, fEA and X complex. Let H be the class of all I gI, gCB. Then 
2.43 holds with S replaced by S*, since B has a unit [I, 5G], and 2.41, 
2.43 are obvious. Let F= 9HS* - { oo }. First of all, every element of 
A does attain its maximum modulus on F. Second, consider a closed 
subset F1 of S which does not include F. Then F1U { oo } does not 
include OHS*, hence there is a g in B which does not attain its maxi- 
mum modulus on the former set. 

By scalar multiplication and suitable potentiation one can arrange 
that 

3.1 max g(s) I< 1 
aEEFIU OI c 

3.2 3 < max I g(s) 
sES* 

Let g=X+f, f CA. Then IXI <1 because f vanishes at oo, whence 
max se Fi |f(s) I <1+IXI < 2, by 3.1. On the other hand, IXI <1 to- 
gether with 3.2 shows that max IfI >2, whence f does not attain its 
maximum modulus on F1. Thus F satisfies the definition of 9AS. 

For later reference we sum this up briefly as follows. 
3.3 The gilov boundary for A (with no unit) is obtained by deleting 

the point at infinity from the gilov boundary for A -with-unit-adjoined. 
The fact that 2.4 does not require two algebraic operations makes 

possible another application. Let L be a convex topological linear 
space, and let S be a weakly compact subset of L. Let L be the class 
of linear continuous (possibly complex) functionals on L. Let H be 
the class of functions h = ex+f |, f C(L, and X any complex constant. 
It is not hard to see that the sets of the form 2.43 with e = 1 form a 
basis for the weak topology in L, and 2.41, 2.42 obviously hold. The 
set aHS is what has been called the T-frontier of S by Milman [IV] 
in the case of Banach spaces. It can also be seen that it is the weak 
closure of the set of extreme points of the closed convex hull of S 
(supposing that hull to be compact), by generalizing the argument 
presumably used by Milman. 

4. Examples. Let T be a compact Hausdorff space. Let G be a 
group of homeomorphisms of T that acts transitively. Let A be a 
complete subalgebra, with unit, of (S(T, C) (C=complex numbers) 
with the obvious ring structure and norm, and satisfying: 

4.01 if t1l t2 then f(t1) f(t2) for some f in A, 
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4.02 if f CA and x EG then fx CA where (fx) (t) =f(x(t)). 
Now 4.01 shows that T can be imbedded in the space S of maximal 

ideals' of A, by sending t into s if f(s) =f(t) for allf in A. We may there- 
fore regard A as a set of functions on S, and regard T as a subset of S. 

4.1 THEOREM. Under the preceding assumptions, T=9AS. 

PROOF. Every f in A attains its maximum modulus on T, whence 
OAS is contained in T. From 4.02 we see that G induces automor- 
phisms in A which induce homeomorphisms of S under which 9AS 
is surely invariant. The induced homeomorphisms agree on T with 
the way G is supposed to act on T. Now G is transitive on T, and 
aAS is a nonvoid invariant subset of T. Hence 9AS= T, as asserted. 

Many specific examples of this sort of algebra can be obtained as 
follows. 

Let r be a discrete abelian group, and let ir be such a subset of r 
that 

4.21 a, i3ECr implies aoi,ECr (multiplicative notation), 
4.22 the neutral element 1 of r belongs to r, 
4.23 r is the smallest subgroup containing r. 
Now let G = {x, y, ... } be the character group of r, and regard r 

as functions on G. Let A be closed subalgebra of S(G, C) generated 
by r with the usual norm I|fII=max If(x) , xEG. The group to act 
on G shall be G itself, acting as translations. Then 4.01, 4.02 are 
satisfied. Hence G = aAS where S is the space of maximal ideals of A. 

The special case in which r is linearly ordered will be treated in 
detail in another paper. 

The most important case of all this is when r is the integers and 7r 
is the set of non-negative integers. One arrives then at the classical 
theory of continuous functions on the unit disc which are regular in 
the interior. See Loomis [I, p. 81, Remark]. 

5. Measures on 9HS representing points of S. We are about to 
generalize some of the following well-known facts. 

Let P(s, 0) be Poisson's kernel, where s is complex and s <1, 
and 0 is the angle of the variable boundary point of the circle z = 1. 
Then m8(dO) = (1/2r)P(s, G)dG gives a measure on that circle such that 
if f(z) is continuous for Iz ?<1 and regular for IzI <1 (or perhaps 
merely the real part of a regular function), then f(s) =ff(eO)m8(dO), 
integration being the over the boundary. 

We shall construct, for each seS (notation of 2.4), a regular meas- 
ure m8 on, and supported by, (HS, "representing" the point s. The 

1 Or rather, as we prefer to take it, the space of homomorphisms of A onto C, and 
we shall write, somewhat ambiguously, f(s) for the value of s at f. 
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"representation" is however not such that h(s) =fh(x)m8(dx) (inte- 
gration being over CHS) for hECH, but rather this: if g and g-1 both 
belong to H then log g(s) =f log g(x)m8(dx). In the special case of the 
regular functions, i.e., H the class of all If I where f is continuous on 
the disc and regular inside, the familiar result is easily recovered, as 
follows. Form g = ef |; then g and g-1 both belong to H so that by 
the result on log g, we have Rf(s) =fRf(x)m8(dx), from which the 
desired result can be concluded. 

The hypothesis for this section will be now stated once for all. 
5.01 S is a topological space and H is a class of real-valued non- 

negative continuous functions on S such that 
5.02 If h, jCH then hjCH. 
5.03 Every element of H attains its maximum on some fixed compact 

Hausdorff subset B of S. 
5.04 There is an element k in H which is a positive constant less than 

1, on B. 
It is clear that if 2.41-2.43 hold, then B exists. However, we have 

no use for 2.43 in this section. 
We begin by introducing a linear space of continuous real functions 

on S. 
Let E be the class of all real linear combinations of functions log g, 

where g and g-1 both belong to H. 

5.1 LEMMA. Let hCH, uGE, and suppose u is a non-negative real 
number. Suppose A log h<u on B. Then ,u log h<u on S. 

PROOF. Let v= -u; then we have , log h+v<0 on B. Let us as- 
sume that there is an s in S such that ,t log h(s) +v(s) >e>0. (The 
ensuing contradiction will prove the theorem.) Select a positive 
integer p exceeding - e- log k. Suppose v = >Li log gi where the gi 
have inverses in H. Then 

5.12 a log h + E Xi log gi +-log k < 0 on B, 
p 

and 

5.13 , log h(s) + E Xi log gi(s) > e. 

Now find rational approximations m/n, mi/n for ,ux, X respectively 
(with common positive denominator n) such that if the Greek letters 
in 5.12 and 5.13 are replaced by the approximations, then the in- 
equalities still hold. It follows that 

pm n ml m2 p 
h k (g,g92 ... ) <1 on B 
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whence the same is true on all of S and so 

- log h(s) + Z-log gi(s) +- log k < 0. 
n n p 

Considering the rational approximation of 5.13, we see that 
- p- log k> e which contradicts the choice of p. 

5.2. THEOREM. Let 5.01-5.04 hold. Let s in S be given. Then there 
is a regular Baire measure m8 defined on B such that 

log g(s) = fblog g(x)m8(dx) 

whenever both g and g-' belong to H. 

PROOF. For u in E let u' be the function u with domain restricted 
to B. This gives a linear mapping of E onto a subspace E' of I5(B, R). 
For s in S define J(u') =u(s). Taking hJ=k and ,u=0 shows that J is 
non-negative, and it is clearly linear. Suppose now that u < 1 on B. 
Let u = -(log k)'-, which is positive, and we have , log k < - u. 
Applying 5.1, we obtain u(s) < 1. This shows that J has a bound not 
greater than 1. A well-known argument now gives an integral repre- 
sentation for J(s) in terms of a measure m8 on B and this is the 
measure m, on B such that u(s) =fBu(x)m8(dx). This is evidently the 
measure we promised to construct. It is not necessarily unique, as 
the following example, involving merely regular functions of 2 com- 
plex variables, will show. 

Let r be J2, where J is the group of integers, and let II be the 
class of pairs of non-negative integers. This sets in motion the train of 
ideas presented in ?4. The space S of maximal ideals of A is (homeo- 
morphic to) the class of pairs (A, ,u) where X, ,u are complex and | X I I 

I ,u < 1. By the maximum modulus principle, 9AS iS the class of pairs 
(X, ,u) where \Xl I = j = 1 which is the character group of J2. Refer- 
ence to 4.1 produces the same result. For fEA, f(X, /u) =ao+a1X 

+bl,i+ * * *, we surely have f(O, 0)=fGf(X, /u)IdXI d,u| where I I 
refers to the usual (Haar measure) of the circle group. Thus the 
Haar measure of the torus G can be used to represent the point (0, 0) 
of S. But the 1-dimensional Haar measure of certain 1-dimensional 
closed subgroups will produce the same representation. In fact, let 
X p= mS /U =p (where I vj =1 and m, n are positive integers) para- 
metrize a subgroup G1 of G. Then ff(Vm, Vn) j dv j =f(O, 0) (integration 
being over the circle group). 

6. Further properties of the measures. From a theorem of Szego5 
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[II] one knows that for f regular in the disc and continuous on the 
boundary, the function log IfI is integrable (unless f=0) over the 
boundary of the disc, and in any case, 

6.01 log If(O) I -f log If I, 

integration being over the boundary, with the usual measure di- 
vided by 2r. For each interior point of the disc there is an analogous 
inequality, involving the measure representing the point in question. 
We shall generalize this proposition. It will actually be a consequence 
of findings on the totality of values of I8(1og h), where I8 runs through 
all possible extensions of J18. In the classical case there is only one 
extension of J.8. If the reader were to deflate the following considera- 
tions to this special case, he would obtain a proof of 6.01 rather dif- 
ferent from Szego's, since it makes no use of the group structure of 
the boundary of the disc. 

The hypothesis 5.01-5.04 will be assumed for this section just as 
for the last. The set E is that defined in the last section. 

Now let I be any extended-real-valued (meaning that + oo are 
permitted as values) function defined on B. Then another extended- 
real-valued function, defined on all of S, can be constructed thus: 

6.1 h-(s) = inf u(s) 
uEE,u2 IonB 

where we let the inf be + oo if there are no such u. A dual function 
L_ can be defined, using a sup, or we may simply define L- = - (-1)-. 

Properties of this sort of prolonged upper envelope are listed in the 
following. 

6.2 THEOREM. The function 1- is upper semicontinuous, and 

6.21 1_ < I < 1-onB, 

6.22 11 < 12 on B implies li -< 1? on S, 

6.23 (11 + 12) ?< lj + 12; (cl)- = cl-for c > 0; 

6.24 for I = log h, h C H, the inequality log h < (log h)- holds on all of S. 

We shall consider only the proof of 6.24. Suppose u ->log h on B. 
Then u_log h on S by 5.1. Taking the inf of these u, we get 6.24. 

In the definition (6.1) of 1-(s) we consider the class of all ZXi log gj 

which dominate I on B. We note next that actually only sums of one 

term need to be considered. 

6.25 THEOREM. Suppose that k-'CH, so that log kEE. Then 
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h (s) = inf [- log g(s) < oo 

where (g, n) runs through all gEHsuch that g-'EHand g >es, n being 
a positive integer. 

PROOF. Let the right-hand side of 6.25 be called a. Then surely 

a_I-(s). Now let l-(s) <b. Then there is a ueE such that u I on 
B and u(s) <b. Since log k may be assumed present in u, we can alter 
its coefficient a bit and get u >I on B. With this elbow room we can 
replace all coefficients by rational numbers, and obtain a relation like 
,n, log gi>nl, Eni log gi(s) <nb where the ni and n are positive 
integers. Let g=g 'ge * . Then (l/n) log g(s) <b, so that a<b. 
Thus a < 1-(s). 

We want now to extend J8 to all of S(B, R) and we want to see 
what are the possible values of the extension h, for a fixed lE (B, R). 

6.3 THEOREM. Let lEG(B, R); let sES; and suppose L(s) <j<l-(s). 
Then 

6.31 Ul+ Xl?<U2+/,Il implies u1(s) +Xj<u2(s) +pLj for every pair of 
elements ul, U2 of E; 

6.32 by setting J'(u +Xl) = u(s) +Xj one obtains a linear, non-nega- 
tive extension to the linear space of the u +Xl of the functional J , and its 
bound is still 1; 

6.33 all linear non-negative extensions I, of J8 from E to S(B, R) 
can be obtained in this way. 

PROOF. We consider the case X <, in 6.31, leaving the others to 
the reader. Then u = (u -X)-(ul - u2) <I on B, so that (,ui -X)-(ul(s) 
-u2(s)) < L(s) <j, from which the desired inequality follows. 

Part 6.32 follows easily from 6.31. Part 6.33 follows from the fact 
that L(s) ?<I8() <I-(s) for all such extensions of J8. 

6.34. COROLLARY. If every J8 has only one non-negative linear ex- 
tension to C(B, R) or if (which is assuming at least as much) E is dense 
in C(B, R), then there is a linear, order-preserving mapping I >*I* of 
C(B, R) to C(S, R) such that l* is an extension of 1, and such that if I 

is the restriction of uEE to B, then I* =u. 

For the proof, let 1*=1_. By 6.3, l*=1-. Finally, 6.2 insures that 

I* has all the properties stated. 
This theorem (6.34) constitutes a kind of general solution to 

Dirichlet's problem. We shall not pursue this topic, and return to the 

question of what values I8(log h) can have, for h in H but having 
possible zeros on B so that 6.3 does not apply. 



1954] FUNCTION VALUES AS BOUNDARY INTEGRALS 743 

6.4. THEOREM. Let hCH, and sES, and suppose k-1CH (see 5.04). 
Then the totality of values of '8 (log h), where I, ranges over all extensions 
to C(B, R) of J8, is an interval possessing at least its upper end point, 
which is (log h)-(s), plus possibly the point - oo. In the latter event, the 
point -oo may or may not be the lower end point. 

PROOF. The set of measures { m8 } representing the various I, is 
clearly convex, and so therefore is the set of values I8(log h) insofar 
as they are finite. Therefore, except for the detail about -oo which 
we shall settle by an example, the main thing to prove is the identity 
of the upper end point. It is of course clear as in 6.2 that I8(1og h) 
< (log h)-(s). We shall now construct an I8 such that I8(log h) 
> (log h)-(s). 

Let a be a real positive number. Let ja = (log (h+a))-(s) < oo by 
6.25. By 6.3 there exists an extension Ia of J8 such that 1a (log (h+a)) 
=ja. These Ia all belong to the unit ball of the conjugate space, 
S(B, R)-, and hence cluster weakly at some I of the unit ball, as 

a--O. 
Let b>a. Then, since log h?log(h+a) ?log(h+b), one has 

(log h)-(s) <ja < Ia (log (h+b)). For fixed b, the last term clusters at 
I (log (h+b)) as a--O. Hence (log h)-(s) <I(log (h+b)). As b->O, 
log (h+b) tends monotonely to log h on B (in fact, on S), on which I 
is represented as an integral, so (log h)-(s) <I (log h). This is the 
desired inequality. What we have proved means that log h is sum- 
mable-I if and only if (log h)-(s) # -oo. 

From 6.24 and 6.4 we have the following: 

6.41 COROLLARY. If JI has only one extension I8, and m8 is the repre- 
senting measure, then 

log h(s) < L log h(x)m8(dx). 

The following rather trivial example shows that our assumptions 
permit us to say nothing more about the values of I. (log h) in gen- 
eral. Let S = s1, S2, S3 be a set of three points, and let H be the class of 
all non-negative constant functions on S (to satisfy 5.04) plus the set 
of all non-negative functions which vanish for at least one point (to 
satisfy 2.43). Actually, all axioms made above are satisfied. Clearly 
OHS is S itself, and E is one-dimensional. Hence any measure on S 
with m(S) = 1 represents each of the three points. Let h(s1) = 0, 
h(s2) =X, h(s3) =,u with 0 <X <,u. Then the set of values for I(log h) 
is the closed interval [log X, log ,u] plus (if X#0) the point -oo. 
Notice that one may have - oo I(log h) <log h(s). 
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The final remarks of this section are devoted to showing that the 
theorems proved above constitute a generalization of Szeg6's in- 
equality 6.01. 

We return to the classical example already referred to at the end 
of ?4, which is the Banach algebra A of functions continuous on the 
disc S= { XI < 1 } and regular for lXI <1. We let Hbe the class of Ifl| 
with f CA. Obviously OHS is the ordinary boundary B = I I| )I = 1. 
The set E (regarded as continuous functions on B) surely contains 
all real parts Rf for f CA since log j ef j = Rf and j ef I has its inverse 
I e-f in H. Since every trigonometric polynomial is the boundary 
value of some polynomial f(z), the {Rf} and thus E is dense in 
C(B, R) so that each sES has precisely one representing measure on 
S, which is now to be identified as that given by Poisson's integral. 
Let us consider merely s = 0. By Cauchy's formula, if fCA then 
f(0) = (2w7r)f- gf(e0)d0 =fBf with a suitable normalization of the meas- 
ure. Now let I = log Ief . Then ICE, so that Cauchy's formula gives 
1(0) =fBI. Thus the Haar measure on B does give the unique repre- 
senting measure, since the class { Rf } is large enough to define it. 
Now let l=log If, f CEA. Then log If(0)I <(log If I)-(0) by 6.24, 
and (log If I )-(0) <fBlog If I| by 6.4. This gives 6.01. The example 
f(X) =X exhibits a phenomenon that should not be overlooked (cf. 
Jensen's formula). 

7. Noncompact spaces of maximal ideals. Suppose we have a 
commutative Banach algebra A and S is its space of maximal ideals, 
and H is the class of functions If j, f in A, regarded as defined on S. 
Then 5.03, 5.04 will not be satisfied unless A has a unit. Hence we 
adjoin a unit, which adds a point at infinity to S, while 3.3 says that 
precisely the same thing happens to the Silov boundary B. Now the 
representing measures will a priori require for their support the set 
B*=BU J } in S*=SUJ oo }. However, the point oo may be re- 
garded as of measure 0 in every case, since all thef from A vanish there. 

We shall formulate the result of applying these considerations to 
5.2 and 6.4. 

7.1 THEOREM. Let A be a commutative Banach algebra. Let S be the 
space of maximal ideals. Let B be the Silov boundary. We regard the 
elements of A as functions on S. Let s be any point of S. Then there is a 
regular Baire measure m8 defined on B such that 

7.11 m8(B) < 1, 

7.12 ff(x)ms(dx) = f(s) for every f in A; 
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and for each particular f the measure may be so chosen that (moreover) 

7.13 log I f(x) I m,(dx) _ log I f(s) |. 

Naturally, if for some reason there is for some s only one measure 
satisfying 7.12, then 7.13 holds for that measure. 
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FAMILIES OF CURVES 

S. STEIN 

Amasa Forrester in [1] proved the following theorem of a mixed 
Euclidean and topological character. If 4 is a continuous map with- 
out fixed points on the Euclidean n-sphere such that 42 iS the identity, 
then the chords P4(P) for all points P of the sphere completely fill 
the interior of this sphere. 

The object of this note is to generalize this theorem to a purely 
topological statement. 

First we recall the definition of retract. If BCA are two spaces, 
then B is a retract of A if there is r: A ->B which leaves fixed all 
points of B. (If X and Y are spaces the symbol f: X-> Y shall denote 
a continuous map from X to Y.) 

Let I denote the unit interval. If F: B XI->A and tEI, define 
Ft: B--A by Ft(b) =F(B, t) for all bEB. 

OBSERVATION. If F: B XI->A and if B is a retract of A by the map 
r and if p, qCI, then rFp is homotopic to rFq. 

In fact such a homotopy is provided by G: B XI-->B defined by 

Presented to the Society, November 28, 1953; received by the editors October 26, 
1953 and, in revised form, February 28, 1954. 
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