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We study spin relaxation in an interacting two-dimensional electron gas in a strong magnetic field
the case where the electron density is close to filling just one Landau sublevel of one spin projec
i.e., for filling factor n . 1. Assuming the relaxation to be caused by scattering with phonons,
derive the kinetic equations for the electrons’ spin density which replace the Bloch equations in
case. These equations are nonlinear and their solution depends crucially on the filling factorn and
on the temperatureT of the phonon bath. In the limit ofT ­ 0 and n ­ 1, the solution relaxes
asymptotically with a power law inversely proportional to time, instead of following the convention
exponential behavior. [S0031-9007(99)08943-7]
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Experiments in two-dimensional (2D) electronic struc
tures in a strong magnetic field reveal a rich variety
features. Recently, many experiments have focused
properties related to the electrons’ spins [1–8]. Optic
measurements of the magnetization and transport m
surements of the activation energy are interpreted with t
concept of Skyrmion quasiparticles [9,10]. These can
described as extended spin textures containing a num
of spins which are flipped with respect to the preferenti
direction set by the magnetic field. Their number is d
termined by the competition between Zeeman energy a
Coulomb interaction of the electrons. While the equilib
rium of systems containing Skyrmions has been studied
various ways—both experimentally and theoretically—
the Skyrmion’s dynamical properties are much less und
stood. There are indirect measurements of electron-s
resonance which use the magnetoresistivity to determ
the spin splitting of the Landau levels [11–13] and whic
also yield a linewidth [12,13].

The first and fundamental question about the dynam
pertains to the formation of the Skyrmion. A Skyrmion
anti-Skyrmion pair has only half the energy of a particle
hole excitation, a spin exciton [9,10]; nevertheless,
needs for its formation a mechanism which flips th
electrons’ spins, since a Skyrmion may contain a lar
number of overturned spins. The mechanism must be p
vided from outside the bare electron system of Coulom
interaction and Zeeman energy, because the spin pa
lel to the magnetic field is a constant of motion. In th
paper, we analyze the spin relaxation, originating fro
such a mechanism, specifically for a system of 2D i
teracting electrons in a strong magnetic field. As w
be shown below, the result is intriguing and nontrivial—
quite different from the well-known Bloch equations [14]
The reason can be related to the fact that the linear co
ficient of the expansion of the relaxation equation arou
the stationary solution is small and can even vanish f
this system. This already happens in the case of a u
form spin density. Thus, we will demonstrate our ne
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approach by studying the uniform case; this has to be s
as the first step towards a solution of the more gene
problem of the formation of the Skyrmion.

We consider, in the following, interacting electrons
two dimensions moving in a strong magnetic field und
the following conditions: The electron density should b
close to that of one filled spin-split Landau sublevel, i.
the filling factor n . 1, and the Zeeman energy shou
be much less than the Coulomb energy. Both conditio
are relevant for the Skyrmion case. The latter is re
ized in the experiment by a variation of theg factor with
pressure [6]. In three-dimensional (3D) semiconducto
various mechanisms of spin relaxation have been stud
experimentally (e.g., in optical measurements) and th
retically. Among them are scattering by holes due to t
exchange energy, and scattering by phonons and im
rities which becomes possible because of the spin-o
interaction; for a comparison of these different mech
nisms, see Ref. [15]. In a system in strong magnetic fie
the Zeeman energy has to be taken up by the scatt
in an elementary spin flip. Therefore, we study here
general model of inelastic scattering by phonons. In d
riving the kinetic equation which governs the relaxatio
of the spin density due to the scattering by phono
the following three assumptions are made: (i) The 2
electrons are described by a nonequilibrium distributi
which yieldsuniform expectation values for density an
spin density. (ii) The phonons are in thermal equilibriu
unperturbed by the electrons. (iii) The electron-phon
coupling is so weak that it can be treated in perturbat
theory. The appropriate technique for performing pertu
bation theory in nonequilibrium systems was introduc
by Keldysh [16,17]. Reference [17] shows how to deri
the kinetic equation in the quasiclassical regime. The c
dition for the applicability of the quasiclassical approx
mation in the present context of the spin relaxation
given below.

How can phonons flip the spin? Consider the stand
expression of the spin-orbit energy,
© 1999 The American Physical Society
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where 1
2 s andp are the spin and momentum of the elec

tron. The electric fieldE has its origin in a piezoelectric
distortion of the lattice and it is linear in phonon opera
tors. Thus, the electrons are scattered and their spin
flipped by the phonons of the 3D lattice which contain
the 2D electron system atz ­ 0. The orbital part of the
electrons’ single-particle states is confined to the lowe
Landau level. We denote the projected spin density
the electrons at (2D) wave vectorq with Ŝsqd [18]. Then,
we get, for the electron-phonon part of the Hamiltonian,

He-ph ­
X
Q,s

Ŝsqd flss2Qdb2Q,s 1 lssQdpb
y
Q,sg . (2)

b
y
Q,s creates a phonon with (3D) wave vectorQ ­ sq, Qzd

and polarizations. The coupling constantlssQd can be
derived from (1). It contains the common electronic wav
function in thez direction. With a relation between elec-
tric field and phonons as in the model of Refs. [19,20
lssQd is quadratic in momentum. The consideration
below are valid for arbitrarylssQd.

Having specified the model, we will now study first the
kinetic equation for a strongly simplified case in which
only two noninteracting electronic states are kept. In
second step, we will then come back to the full model o
interacting electrons in two Landau sublevels coupled to
phonon bath.

Two noninteracting states.—The Hamiltonian is given
by

Htoy ­ 2Dscy
" c" 2 c

y
# c#d 1

X
q

vq

µ
by

q bq 1
1
2

∂
1

X
q

lqscy
# c"bq 1 c

y
" c#b

y
q d , (3)

wherec
y
",# sby

q d are electron (phonon) creation operator
Here, scattering from the" state to the# state occurs
under absorption of a phonon with an arbitrary wav
vector q, and the same is true for the reverse proces
The kinetic equation for the time-dependent averag
occupation numbersn",#std can be derived with the aid of
Fermi’s golden rule (here, time arguments are omitted):

≠tn" ­ 2≠tn# ­
1
t fs1 2 n"dn#s1 1 Nd 2 n"s1 2 n#dNg .

(4)

Equation (4) is valid in the quasistationary limitD ¿
1yt, and the relaxation timet is given by

1
t

­
X
q

l2
q2pds2D 2 vqd . (5)

N ­ feb2D 2 1g21 is the occupation number of the only
phononsvq ­ 2Dd which can be effective under energy
conservation. The densityn ­ n"std 1 n#std is fixed;
thus it is clear that Eq. (4) has two stationary solutions f
n". Only one of these is physical, the other is unphysic
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sn" . 1d. The kinetic equation (4) is best discusse
in terms of the depolarization, the deviation from th
physical solution,dstd ­ n"s`d 2 n"std:

t≠tdstd ­ 2dstd fe 1 dstdg . (6)

The crucial parametere is the difference between the two
stationary solutions,e ­ f4Ns1 1 Nd 1 sn 2 1d2g1y2.
It depends strongly on the temperature and the to
density. For zero temperature1yb ­ 0, e ­ jn 2 1j.
For n ­ 1, on the other hand,e , 2e2bD at low
temperatures. Now it is obvious that, and under whic
conditions, linearization in the kinetic equation (6) ca
fail: Equation (6) shows two regimes depending on th
relative size ofe and dstd. If dstd is smaller thane,
then one can linearize Eq. (6) indstd, and dstd decays
exponentially. Ifdstd is larger thane, then Eq. (6) be-
comes quadratic indstd, anddstd decays with1yt until it
becomes so small that it crosses over into the first regim
This behavior is pictured in Fig. 1 fordst ­ 0d ­ 0.25.
The solid line shows the depolarization fore ­ 0.05.
Initially, the curve follows that of the quadratic equatio
(e ­ 0, dashed line), until it crosses over to exponenti
behavior. This limiting exponential behavior is indicate
as a dotted line. We conclude that even the solution
the oversimplified modelHtoy shows a nontrivial behav-
ior, far from being exponentialper se. It displays a strong
dependence on temperature and density. The asympt
exponential decay ofdstd can become arbitrarily slow
se ! 0d as the temperature approaches0 andn ! 1, and
in the limit dstd ~ 1yt.

Electron-electron interaction.—We now turn back to
the case of interacting electrons in the two lowest Land
sublevels split by the Zeeman energy. The electrons
scattered by phonons [seeHe-ph, Eq. (2)]. The electronic
part He of the total HamiltonianHe 1 Hph 1 He-ph

FIG. 1. Depolarizationdstd as a function oftyt for an initial
value ofds0d ­ 0.25; solid line:e ­ 0.05; dashed line:e ­ 0.
3325
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He ­ 2D
X
p

scy
"pc"p 2 c

y
#pc#pd 1 HCoul . (7)

Here,c
y
"p scy

#pd creates a Landau state with linear mome
tum p and spin " s#d. The most important ingredient
which was missing inHtoy , is the Coulomb interaction
HCoul between the electrons (cf. [21]). As stated in a
sumption (i) above, the expectation values of density a
spin density of the electrons are presumed to be unifor
The density is conserved and its value is given by t
filling factor n , 1. We wish to study the uniform spin
density,Sstd ­ kŜsq ­ 0dl,

Sstd ­
1

NF

X
p

*
scy

"p , c
y
#pd std

1
2

s

√
c"p

c#p

!
std

+
. (8)

NF denotes the number of states in a Landau subleve
all " states are populated and all# states are empty,Sstd ­
1
2 êz. The derivation of the kinetic equation forSstd can
be performed with the Keldysh method [16]. The kinet
equation contains a precession term, which is alrea
present without any phonon scattering, and the main te
resulting from the collisions with the phonons. In leadin
(second) order perturbation theory in the electron-phon
coupling, the collision integral becomes

≠tS
mstdjcoll ­ 2i

Z t

2`

dt0
X
Q

X
j,k,l

emjk

3 fC klsq; t, t0dD jlsQ; t 2 t0d
2 C lksq; t0, tdD ljsQ; t0 2 tdg . (9)

Only timest0 , t contribute due to causality. The func
tion C is the dynamical spin-spin correlation function,

C klsq; t, t0d ­
1

NF

kŜksq, tdŜls2q, t0dl . (10)

The spin density couples inHe-ph to the phonons via

F̂sQd ­
X

s
flss2Qdb2Q,s 1 lssQdpb

y
Q,sg ; (11)

thus, the phonon expectation valueD in (9) is given by

D jlsQ; t 2 t0d ­ kF̂jsQ, tdF̂ls2Q, t0dl . (12)

D is easily calculated with the equilibrium Hamiltonia
Hph of the phonons. eijk is the antisymmetric tensor.
Its origin is the time derivative in (9) which leads to
commutator ofŜ with the spin density inHe-ph.

It is apparent now thatcollective modesare responsi-
ble for the relaxation process. The question is wheth
one can express the two-particle (four-fermion) corre
tion function of the interacting system,C , again bySstd
and thus derive a closed equation forSstd. Fortunately,
this turns out to be possible in our case: The time d
pendence ofC is determined by particle-hole excitation
(e.g.,Ŝ1 ­ Ŝx 1 iŜy , c

y
" c#). For He, the particle-hole

excitations above the ground state are spin-excitons
3326
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their dispersionEexsqd is rigorously known [22,23] at
n ­ 1,

Eexsqd ­ 2D 1
e2

klB

r
p

2

"
1 2 e2q2l2

By4I0

√
q2l2

B

4

!#
,

(13)

where k is the dielectric constant,lB is the magnetic
length, andI0sxd denotes the Bessel function. We now
approximate, in the present case of a nonequilibrium st
and n , 1, the time dependence ofC with the above
dispersion of the spin-exciton,Eexsqd. Thus we neglect
(i) the difference between the real energy of a sing
spin-exciton in a nonequilibrium state andEexsqd, and (ii)
interactions between the spin excitations atn fi 1. This
yields, e.g.,

C k1sq; t, t0d . eiEexsqd st2t0 dC k1sq; t, td . (14)

The remaining equal-time correlations are then calc
lated in the Hartree-Fock approximation. This is th
weak-scattering approximation in which the effect of th
phonons is included in the lowest order in the state, b
neglected in the time dependence [17]. Since the ch
acteristic energy for the time dependence is the Zeem
energyD, the approximation corresponds to the conditio
D ¿ 1yt, where the scattering timet is defined below in
Eq. (16). The other two approximations above regardi
the exciton energy demand that the electronic tempe
ture must be small compared to the Zeeman energyD and
also that the filling factor must be such thatjn 2 1j ø 1.
Now, collecting all terms, we obtain the resulting kinet
equations for the components ofSstd (S1 ­ Sx 1 iSy ;
details of the calculation are deferred to a forthcomin
publication):

≠tS
zstd ­

1
t

"
1 2

n

2
2 Szstd

# "
n

2
2 Szstd

#

2
2
t

N̄Szstd , (15)

s≠t 1 i2DdS1std ­ 2
1
t

"
1
2

2 Szstd 1 N̄

#
S1std .

The relaxation timet and the average phonon numberN̄
are defined by [here,Nsvd ­ febv 2 1g21]

1yt ­
X
Q,s

j­x,y

p

2
jlj

ssQdj2dfEexsqd 2 vQ,sg (16)

N̄yt ­
X
Q,s

j­x,y

p

2
jlj

ssQdj2dfEexsqd 2 vQ,sgNsvQ,sd .

It is quite instructive to formulate again the kineti
equation in terms of the depolarization vectordstd. We
use dzstd ­ Szs`d 2 Szstd and we split the precession
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term off S1std by redefining d1std ­ expsi2DtdS1std.
Then, the result is

t≠td
zstd ­ 2dzstd fe 1 dzstdg ,

t≠td
1std ­ 2d1std f e

2 1 dzstdg .
(17)

Here, the parametere corresponding to the one use
above in the case of the two-state model is defined
e ­ f4N̄s1 1 N̄d 1 sn 2 1d2g1y2. Obviously, Eqs. (17)
are quite different from the standard Bloch equations [1
They are nonlinear, and it is seen that the relaxation
the transverse componentd1std depends on the other
component. Since the first of the two kinetic equatio
(17) is identical to (6), the same discussion applie
Observingt≠t lnfdzstdyd1stdg ­ 2ey2, Eqs. (17) can be
explicitly solved with the result

dzstd
dzs0d

­ e2etys2td d1std
d1s0d

­
e2etyt

1 1 dzs0d s1 2 e2etytdye
.

(18)

For any finite value of the parametere, the leading
asymptotic behavior yields a ratioT2 ­ 2T1 of the relaxa-
tion times. On the other hand, for zero temperature a
n ­ 1, all normalized components of the depolarizatio
follow the same functionwhich is a power law~t21.

The relaxation timet is determined by those phonons
whose energy and in-plane momentum match the
ergy and the momentum of the spin-excitons [s
Eq. (16)]. Using the model of D’yakonov and Pere
(cf. Refs. [19,20]), we calculate the electron phono
coupling parameterl

j
ssQd and perform the summations

and integrations in (16) with the following result in th
limit of D ­ 0:

1
t

­
1
8

s
2
p

µ
y

s

∂2 h̄

rl5
B

x0e24x0 W1,1s8x0d . (19)

Here, y parametrizes the electron-phonon coupling,s is
the phonon velocity,r is the 3D density, andW1,1sxd is
the Whittaker function. The parameterx0 is given by
x0 ­ fh̄syseclBdg2, whereec is the Coulomb energy. An
estimate with characteristic values for electrons in GaAs
a magnetic field of 10 T yieldst , 10210 sec. This order
of magnitude is much smaller than the estimate in Ref. [2
and is in agreement with the experimental observation
the ESR linewidth in both Refs. [12] and [13].

We have studied the spin relaxation in a quantum H
system for filling factorsn . 1. The resulting kinetic
equation (15) is nonlinear and quite different from
conventional Bloch equation. This difference is mo
pronounced forn ! 1 and T ! 0; there, a linearization
of the kinetic equation fails, since the linear term vanish
d
as
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at n ­ 1, T ­ 0. The relevant timet [(16) and (19)]
in the kinetic equation is determined dominantly by th
Coulomb interaction between the electrons.
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