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Spin Relaxation in Quantum Hall Systems
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We study spin relaxation in an interacting two-dimensional electron gas in a strong magnetic field for
the case where the electron density is close to filling just one Landau sublevel of one spin projection,
i.e., for filling factor » = 1. Assuming the relaxation to be caused by scattering with phonons, we
derive the kinetic equations for the electrons’ spin density which replace the Bloch equations in our
case. These equations are nonlinear and their solution depends crucially on the fillingsfaatdr
on the temperaturd of the phonon bath. In the limit of = 0 and v = 1, the solution relaxes
asymptotically with a power law inversely proportional to time, instead of following the conventional
exponential behavior. [S0031-9007(99)08943-7]

PACS numbers: 73.40.Hm, 71.35.-y, 76.20.+q, 76.30.—v

Experiments in two-dimensional (2D) electronic struc-approach by studying the uniform case; this has to be seen
tures in a strong magnetic field reveal a rich variety ofas the first step towards a solution of the more general
features. Recently, many experiments have focused goroblem of the formation of the Skyrmion.
properties related to the electrons’ spins [1-8]. Optical We consider, in the following, interacting electrons in
measurements of the magnetization and transport meéwo dimensions moving in a strong magnetic field under
surements of the activation energy are interpreted with théhe following conditions: The electron density should be
concept of Skyrmion quasiparticles [9,10]. These can belose to that of one filled spin-split Landau sublevel, i.e.,
described as extended spin textures containing a numbére filling factor » = 1, and the Zeeman energy should
of spins which are flipped with respect to the preferentiabe much less than the Coulomb energy. Both conditions
direction set by the magnetic field. Their number is de-are relevant for the Skyrmion case. The latter is real-
termined by the competition between Zeeman energy anided in the experiment by a variation of tigefactor with
Coulomb interaction of the electrons. While the equilib-pressure [6]. In three-dimensional (3D) semiconductors,
rium of systems containing Skyrmions has been studied inarious mechanisms of spin relaxation have been studied
various ways—both experimentally and theoretically—experimentally (e.g., in optical measurements) and theo-
the Skyrmion’s dynamical properties are much less underetically. Among them are scattering by holes due to the
stood. There are indirect measurements of electron-spiexchange energy, and scattering by phonons and impu-
resonance which use the magnetoresistivity to determingties which becomes possible because of the spin-orbit
the spin splitting of the Landau levels [11-13] and whichinteraction; for a comparison of these different mecha-
also yield a linewidth [12,13]. nisms, see Ref. [15]. In a system in strong magnetic field,

The first and fundamental question about the dynamicthe Zeeman energy has to be taken up by the scatterer
pertains to the formation of the Skyrmion. A Skyrmion—in an elementary spin flip. Therefore, we study here a
anti-Skyrmion pair has only half the energy of a particle-general model of inelastic scattering by phonons. In de-
hole excitation, a spin exciton [9,10]; nevertheless, itriving the kinetic equation which governs the relaxation
needs for its formation a mechanism which flips theof the spin density due to the scattering by phonons,
electrons’ spins, since a Skyrmion may contain a largehe following three assumptions are made: (i) The 2D
number of overturned spins. The mechanism must be preelectrons are described by a nonequilibrium distribution
vided from outside the bare electron system of Coulomlwhich yieldsuniform expectation values for density and
interaction and Zeeman energy, because the spin parapin density. (ii) The phonons are in thermal equilibrium
lel to the magnetic field is a constant of motion. In thisunperturbed by the electrons. (iii) The electron-phonon
paper, we analyze the spin relaxation, originating fromcoupling is so weak that it can be treated in perturbation
such a mechanism, specifically for a system of 2D intheory. The appropriate technique for performing pertur-
teracting electrons in a strong magnetic field. As will bation theory in nonequilibrium systems was introduced
be shown below, the result is intriguing and nontrivial— by Keldysh [16,17]. Reference [17] shows how to derive
quite different from the well-known Bloch equations [14]. the kinetic equation in the quasiclassical regime. The con-
The reason can be related to the fact that the linear coetlition for the applicability of the quasiclassical approxi-
ficient of the expansion of the relaxation equation aroundnation in the present context of the spin relaxation is
the stationary solution is small and can even vanish fogiven below.
this system. This already happens in the case of a uni- How can phonons flip the spin? Consider the standard
form spin density. Thus, we will demonstrate our newexpression of the spin-orbit energy,
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_ 1 —eh (n; > 1). The kinetic equation (4) is best discussed
VSO o E >< p > (l) - . . . .

2 2m2c? in terms of the depolarization, the deviation from the
where? o andp are the spin and momentum of the elec-Physical solution(r) = ny() — m(r):
tron. The electric field® has its origin in a piezoelectric 79,6(t) = —8(1)[e + 6(1)]. (6)

distortion of the lattice and it is linear in phonon opera- h il is the diff h
tors. Thus, the electrons are scattered and their spin i5'€ crucial parameter is the difference between the two

flipped by the phonons of the 3D lattice which containsStationary solutions,e = [4N(1 + N) + (v — 172]'2,
the 2D electron system at= 0. The orbital part of the It de_pends strongly on the temperature and the total
electrons’ single-particle states is confined to the lowesHensity. For zero temperature/ 8 = 0, € lv = 11.
Landau level. We denote the projected spin density of &' » = 1, on the other hande ~ 2e at low
the electrons at (2D) wave vectgmwith $(q) [18]. Then, emperatures. Now it is obvious that, and under which
we get, for the electron-phonon part of the Hamiltonian, conditions, linearization in the kinetic equation (6) can
fail: Equation (6) shows two regimes depending on the
- & _ w1 relative size ofe and 6(¢). If 8(¢r) is smaller thane,
He-pn (%S(q) (A (Qb-s + AQVb0s]- (2) then one can linearize Eq. (6) i6\(r), and §(r) decays
exponentially. If8(z) is larger thane, then Eq. (6) be-
comes quadratic id(r), and 8 (¢) decays withl /¢ until it
becomes so small that it crosses over into the first regime.
®This behavior is pictured in Fig. 1 fo8(r = 0) = 0.25.
The solid line shows the depolarization fer= 0.05.
Initially, the curve follows that of the quadratic equation
(e = 0, dashed line), until it crosses over to exponential
behavior. This limiting exponential behavior is indicated
kinetic equation for a strongly simplified case in which ?hseao\(ljgrt;?ﬂ p!llgizld Vr:]lgd(;?_z:ylusdﬁ o;{/cs taer\:gr?trticglsglaur:f\?- of

only two noninteracting electronic states are kept. In . 4 .
second step, we will then come back to the full model O?or, far from being exponentigler se It displays a strong

; . . dependence on temperature and density. The asymptotic
interacting electrons in two Landau sublevels coupled to & ponential deca 0B () can become arbitrarily Slow
phonon bath. b Y y

: . S (e — 0) as the temperature approaclesndr» — 1, and
A Two noninteracting states-The Hamiltonian is given in the limit 5(¢) o 1/t.
y Electron-electron interactior—=We now turn back to
1 the case of interacting electrons in the two lowest Landau
Hiyoy = —A(CTTCT — Cfcl) + qu<b:{bq + —) 9
q

bas creates a phonon with (3D) wave vec@r= (q, Q%)
and polarizations. The coupling constanmi;(Q) can be
derived from (1). It contains the common electronic wav
function in thez direction. With a relation between elec-
tric field and phonons as in the model of Refs. [19,20],
A;(Q) is quadratic in momentum. The considerations
below are valid for arbitrarp(Q).

Having specified the model, we will now study first the

2 sublevels split by the Zeeman energy. The electrons are
¢ ; scattered by phonons [sé&_,h, EQ. (2)]. The electronic
+ ZAq(cl ctbg + ¢ clbg), (3) part H, of the total HamiltonianH, + Hpn + Hepn
q

wherec;fl (b;f) are electron (phonon) creation operators.

Here, scattering from thé state to the| state occurs a(t) 1
under absorption of a phonon with an arbitrary wave 9(0)
vector q, and the same is true for the reverse process.

The kinetic equation for the time-dependent average
occupation numbers; () can be derived with the aid of

Fermi’s golden rule (here, time arguments are omitted): 0.1
ding = —am = ~[(1 = npm(1 + N) — m(1 = n)N].
(4)
Equation (4) is valid in the quasistationary limit >
1/7, and the relaxation time is given by

% = > 22278028 — wy). (5)
q

5(0) = 0.25

-
~-—_
—

asymptotic
exponential

0.01 A

N = [¢f?* — 117! is the occupation number of the only 0 10 20 30 40 50 60 70 80
phonon(wq = 2A) which can be effective under energy t/T
conservation. The density = n;(r) + ny(¢) is fixed;

thus it is clear that Eq. (4) has two stationary solutions folF|G. 1. Depolarizatiors(¢) as a function ot/ for an initial
ni. Only one of these is physical, the other is unphysicalalue of §(0) = 0.25; solid line: e = 0.05; dashed linee = 0.
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is then their dispersionE(gq) is rigorously known [22,23] at
t t v =1
H, = —A Z(CTPCTP - CL”Clp) + Hcoul - (7) 5 502
oot ’ . Eelq) =20 + < l[l - e"zlé/“lo(ﬂﬂ,
Here,c;, (c|,) creates a Landau state with linear momen- klp\V 2 4
tum p and spint (). The most important ingredient, (13)

which was missing inH,.y, is the Coulomb interaction
Hcoul between the electrons (cf. [21]). As stated in as-where k is the dielectric constantlz is the magnetic
sumption (i) above, the expectation values of density andtength, andly(x) denotes the Bessel function. We now
spin density of the electrons are presumed to be uniformapproximate, in the present case of a nonequilibrium state
The density is conserved and its value is given by theand v ~ 1, the time dependence df with the above
filling factor » ~ 1. We wish to study the uniform spin dispersion of the spin-excitor;.(¢). Thus we neglect
density,S(¢) = (S(q = 0)), () the difference between the real energy of a single
1 A | o spin-exciton in a nonequilibrium state afg, (g), and (ii)
S(t) = — Z<(q,,,c1,,)(t) — 0'( ”)(t)>. (8) interactions between the spin excitationsva 1. This
No % 2 Clp yields, e.g.,

Ng¢ denotes the number of states in a Landau sublevel; if

all 1 states are populated and piitates are empt§(r) = CH(qst. 1) = eB=DUNCK (qr,1). (14)
1

> .. The derivation of the kinetic equation f8i(r) can  the remaining equal-time correlations are then calcu-
be performed with the Keldysh method [16]. The KineliC|yteq in the Hartree-Fock approximation. This is the

equation contains a precession term, which is already,qay scattering approximation in which the effect of the
present without any phonon scattering, and the main termgp,nqns is included in the lowest order in the state, but

resulting from the collisions with the phonons. In Ieadingneglected in the time dependence [17]. Since the char-
(second) order perturbation theory in the electron-phonog .eristic energy for the time dependence is the Zeeman
coupling, the collision integral becomes energyA, the approximation corresponds to the condition

m N mjk A > 1/7, where the scattering timeis defined below in

98" (Dleon = —i ffoo dt Z Z € Eg. (16). The other two approximations above regarding

Q , the exciton energy demand that the electronic tempera-
X [CM(q:1,1")D/(Q:1 — 1) ture must be small compared to the Zeeman endrgyd

— C™q:1',))DY(Q;¢ — 1)]. (9) also that the filling factor must be such that— 1| < 1.
Now, collecting all terms, we obtain the resulting kinetic
equations for the components 8fr) (ST = S* + iS”;
details of the calculation are deferred to a forthcoming

Jokil

Only timest’ < ¢ contribute due to causality. The func-
tion C is the dynamical spin-spin correlation function,

CH(q;t,1') = NL (8%(q,1)8'(—q,7")).  (10) publication):
® 1 v v
The spin density couples i, ,;, to the phonons via 9,8%(t) = = |:1 -5 Sz(t)} [7 - Sz(t):|
T, _ _ s, T .
®Q = DA (-Qb-os + L@ bo )i (A - 2 x50, (15)
thus, the phonon expectation valfi® in (9) is given by 171
. n . N . + — _ | = _ ¢z N +
DJI(Q;I _ l‘/) — <(I)](Q,l)q)l(—Q,l/)>. (12) ((")t + le)S (l) - |: 2 S (I) + N:|S (l)

D is easily calculated with the equilibrium Hamiltonian
Hyn of the phonons. €% is the antisymmetric tensor.
Its origin is the time derivative in (9) which leads to a
commutator of with the spin density iHeph.

It is apparent now thatollective modesre responsi- 1/
ble for the relaxation process. The question is whether =y
one can express the two-particle (four-fermion) correla- _—_—
tion function of the interacting systend;, again byS(r) N/t Z > N (Q)I?8[Eex(q) — wqsIN(wq.s).
and thus derive a closed equation 8(). Fortunately, Qs
this turns out to be possible in our case: The time de- Iy
pendence of” is determined by particle-hole excitations |t is quite instructive to formulate again the kinetic
(e.9.8" = 8% + i8 ~ c;rcl). For H,, the particle-hole equation in terms of the depolarization vec&r). We
excitations above the ground state are spin-excitons angse §%(r) = S%(») — S%(r) and we split the precession

The relaxation timer and the average phonon numbér
are defined by [hergy(w) = [¢f — 1]71]

> IMQIPS[Ea(g) — wo.] (16)
‘Q,s
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term off S*(¢) by redefiningd*(r) = expi2A7)S*(r). atwv =1, T = 0. The relevant timer [(16) and (19)]

Then, the result is in the Kinetic equation is determined dominantly by the
2 — _ sz z Coulomb interaction between the electrons.
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component. Since the first of the two kinetic equations
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