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Polar interface vibrations in GaNÕAlN quantum dots: Essential effects of crystal anisotropy
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The inherent anisotropy of crystal lattices of the nitride semiconductor compounds is found to essentially
determine the character of surface polar vibrations of a GaN quantum dot in AlN matrix. The interface phonons
are analyzed within the framework of the anisotropic macroscopic dielectric continuum model. Analytical
solutions are obtained for surface modes on a quantum dot of oblate spheroidal form. These modes can exist
in continuous frequency regions, in contrast to quantized frequencies that are characteristic for isotropic case.
The period of spatial oscillations in these modes varies substantially over the dot surface, so that the oscilla-
tions can have condensation points at the dot poles. Along with truly localized surface states, there are two
other types of phonon modes. First, runaway modes, which freely leave the dot surface through escape roots in
equatorial regions. Second, quasistationary~leaky! states, in which the areas of spatial oscillations are sepa-
rated from the escape root regions by the areas of exponential behavior. The leaky states can provide effective
energy relaxation of the confined electrons.
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I. INTRODUCTION

Wide-band-gap nitride semiconductor materials are
substantial current interest in view of their potential applic
tions in electronics, optoelectronics, biomedical physics,
~see Ref. 1!. Besides their conspicuous advantages in th
fields, quantum structures based on nitride semiconduc
are quite attractive from a purely physical standpoint; th
fundamental physical properties can be affected and e
determined by the interplay of spatial quantization and inh
ent anisotropy of the crystal structure.

Both GaN and AlN usually crystallize in the hexagon
wurtzite structure of space groupC6v

4 . These wurtzites are
uniaxial crystals with the optical axis coinciding with thec
axis of the crystal structure that is perpendicular to the he
gons. Due to this uniaxial anisotropy, in bulk crystals t
optical phonons are classified into the so-called ordinary
extraordinary modes. The frequencies of the latter dep
essentially on the angle between the phonon wave vector
the c axis. In Ref. 2, the authors investigated polar opti
phonons in GaN/AlN quantum well~perpendicular to thec
axis! in the framework of the macroscopic dielectric co
tinuum model,3 modified for the uniaxial case. They found
number of essential distinctions from the well-studied c
of the conventional GaAs/AlAs structure.4 Most notably, the
confined phonon modes demonstrated substantial tails in
barrier media and acquired finite dispersion. Also, it w
shown that though interface modes at a single hererointer
are dispersionless and correspond to a few distinct frequ
cies, as was the case in GaAs/AlAs structure,4 proper choice
of the material composition in GaxAl12xN/AlN structure can
eliminate some of these interface modes.

Given this precursor, it is interesting and instructive
study the polar phonon modes in a quantum dot in the G
AlN system. In this case, the local orientation of the interfa
with respect to thec axis will vary over the dot, which can
0163-1829/2002/66~11!/115321~6!/$20.00 66 1153
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well invoke yet new features of the phonon spectrum. In t
investigation, it is natural to refer to the known case of o
tical phonons in zinc-blende GaAs/AlAs structures. Quant
dots in these structures have been studied by many aut
~see Refs. 5–9 and references therein! in the framework of
different models. In particular, in the above-mentioned
electric continuum model, the interface phonon spectra w
found for spherical and spheroidal dots.5,6,9 In these cases
each of the allowed frequencies of the planar sin
heterointerface4 is split into a convergent series of distin
frequencies labeled by the angular quantum number, in
case of a spherical dot, or by angular and magnetic quan
numbers, in the case of a spheroidal dot.

In the present paper, we will use the dielectric continuu
model to consider surface polar vibrations of a GaN quant
dot in an AlN matrix. We will show that the anisotropy con
siderably enhances the variety of possible polar vibrations
contrast to a series of distinct localized modes of an isotro
GaAs dot, in the GaN dot allowed frequency window
emerge, along with specific leaky and runaway states wh
can play an important role in the processes of electron ene
relaxation.

The paper is organized as follows. In Sec. II, we brie
describe the dielectric continuum approach, introduce the
mensionless material parameters, give the basic equatio
curvilinear coordinates, and transform the dielectric perm
tivity tensor to spheroidal coordinates, thus obtaining
system of equations describing the optical phonon mo
near the quantum dot. In Sec. III, we reduce the problem
surface modes and obtain a formal analytical solution
these modes. In Sec. IV, we numerically analyze the phys
conditions for the existence of the surface modes, obtain
regions of existence for the stationary and quasistation
surface modes, and discuss the peculiar character of t
modes. Finally, in Sec. V, we summarize the results obtai
and briefly mention their possible significance for the ele
©2002 The American Physical Society21-1
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tron energy relaxation in the dot.

II. BASIC EQUATIONS

In the adopted macroscopic dielectric continuum mod
neglecting the retardation effects, the phonon-borne par
the polarization in the two media labeled by indexi ( i 51
stays for GaN andi 52 for AlN! is determined entirely by
the equation for the electric potential,c ( i )(v,r ):

div@ «̂ ( i )~v!grad„c ( i )~v,r !…#50. ~1!

Here, «̂ ( i )(v) is the frequency-dependent dielectric perm
tivity tensor that, reflects uniaxial anisotropy of the crys
structure. In the Cartesian coordinates with thez axis coin-
ciding with the crystallographicc axis of the wurtzite struc-
ture, this tensor has the diagonal form

«̂ ( i )~v!5S «t
( i )~v! 0 0

0 «t
( i )~v! 0

0 0 « l
( i )~v!

D , ~2!

with the components

« l
( i )~v!5«`

( i )
v22~vLl

( i )!2

v22~vTl
( i )!2

«t
( i )~v!5«`

( i )
v22~vLt

( i )!2

v22~vTt
( i )!2

.

~3!

In these expressions, we assume that the high-frequenc
electric susceptibilities«`

( i ) are isotropic in both media. Thus
the anisotropic dielectric properties of the two media are
termined by the characteristic frequencies of the lo
itudinal-optical phonons (vLl

( i ) for the phonon propagating
along thez axis andvLt

( i ) for the phonon propagating in th
x-y plane! and the transverse-optical phonons (vTl

( i ) andvTt
( i ) ,

respectively!. In what follows, we use the lowest of thes
frequencies, that of theTl phonon in GaN,vTl

(1) as the fre-
quency unit. The values of«`

( i ) , along with the eight charac
teristic frequencies normalized tovTl

(1) are given in Table I.
In addition to Eq.~1!, the electric potential should satisf

boundary conditions on the interface of the two media:

c (1)~v,r s!5c (2)~v,r s! ~4!

and

@n~r !•grad„c (1)~v,r !…#ur5rs
5@n~r !•grad„c (2)~v,r !…#ur5rs

.
~5!

In these equations,r s is the position vector of a point at th
interface, andn(r s) is a unit normal vector at this point~di-
rected from medium 1 to medium 2!.

TABLE I. Characteristic phonon parameters of GaN/A
system.

«` vLt vLl vTt vTl

GaN 5.29 1.39 1.38 1.05 1
AlN 4.68 1.72 1.68 1.26 1.24
11532
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Since in anisotropic media, the spherical shape has
advantages of simplicity, we model the quantum dot as
oblate spheroid with the rotational axis directed along
crystallographicc axis of AlN and GaN. Accordingly, we use
the oblate spheroidal coordinates10 see~Fig. 1!:

x5a coshu sinv cosw,

y5a coshu sinv sinw, ~6!

z5a sinhu cosv.

The surfacesu5const are oblate spheroids; the dot surfa
corresponds to a certain value,u5u0. The surfacesv
5const are one-sheet hyperboloids of revolution. The va
of the parameteru0 determines the spheroid flatness: wh
u0→0, the spheroid degenerates into a disk; and wheu
→`, the spheroid becomes a sphere, provideda coshu
5const5R, the sphere radius.

Applying the coordinate transformation of Eq.~6! to the
dielectric permittivity tensor of Eq.~2!, we obtain, after
some algebra, the dielectric permittivity tensor in the obl
spheroidal coordinates:

«̂ ( i )~v,u,v !5S «1
( i )~v,u,v ! «2

( i )~v,u,v ! 0

«2
( i )~v,u,v ! «1

( i )~v,u,v ! 0

0 0 «t
( i )~v!

D ,

~7!

where

FIG. 1. The dot as an oblate spheroid, with the related sphe
dal coordinate system. The crystalc axis is along thez axis; the dot
surface corresponds tou5u05const; the points at this surface a
indicated by the coordinatesv andw.
1-2



pe
en
l
n
e

.

a

th
ur
ed

p
,

a

fo

.

n

t
f

zero

se
ari-
e
ec-

ur
ea-
iza-
-

e-
n

r
,
the

tive
er’’

POLAR INTERFACE VIBRATIONS IN GaN/AlN . . . PHYSICAL REVIEW B66, 115321 ~2002!
«1
( i )~v,u,v !5

«t
( i )~v! sinh2u sin2v1« l

( i )~v! cosh2u cos2v

sinh2u1cos2v

«2
( i )~v,u,v !5

~«t
( i )~v!2« l

( i )~v!!sinhu coshu sinv cosv

sinh2u1cos2v
.

~8!

Thus, in the oblate spheroidal coordinates the dielectric
mittivity tensor becomes nondiagonal and position dep
dent. Note that the off-diagonal elements are proportiona
@«t

( i )(v)2« l
( i )(v)#, and thus owe their existence to the a

isotropy of the media. Moreover, the position dependenc
also caused by the anisotropy; if«t

( i )(v)5« l
( i )(v)

5« ( i )(v), the tensor of Eq.~7!, as well as the tensor of Eq
~2!, duly degenerates into the scalar« ( i )(v).

The nondiagonality of the permittivity tensor means th
the variables in Eq.~1! @and in the boundary conditions~4!
and~5!# are no longer separable. This, in turn, means that
solution cannot be found in a general form. We restrict o
selves to considering only interface vibrations well localiz
near the dot surface.

III. ANALYTICAL SOLUTION

To obtain the interface modes, we present the electric
tential inside the dot,c (1)(v,r ), and outside the dot
c (2)(v,r ), in the approximate close-to-surface form,

c ( i )~v,u,v,w!5eimwek( i )(v,u0)(u2u0)x~v,u0 ,v !. ~9!

Here,m is the rotational quantum number andk (1) andk (2)

are the dimensionless inverse localization lengths. We
sume these lengths to be sufficiently small, so that

k (1),k (2)@1. ~10!

Substitution of this form of the potential in Eqs.~1!, ~4!,
and~5! gives us the system of three differential equations
k (1), k (2), andx as functions of variablev:

d2x

dv2
12

f 2
(1)

f 2
(1)

k (1)
dx

dv
1F ~k (1)!22

«t
(1)m2

f 0
2f 1

(1) Gx50,

d2x

dv2
12

f 2
(2)

f 2
(2)

k (2)
dx

dv
1F ~k (2)!22

«t
(2)m2

f 0
2f 1

( i ) Gx50, ~11!

f 1
(1)k (1)x1 f 2

(1) dx

dv
5 f 1

(2)k (2)x1 f 2
(2) dx

dv
.

Here, the auxiliary functions are

f 0~u0 ,v !5
coshu0sinv

sinh2u01cos2v
, ~12!

f 1
( i )~v,u0 ,v !5«t

( i )~v!sinh2u0sin2v1« l
( i )~v!cosh2u0cos2v,

~13!
11532
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f 2
( i )~v,u0 ,v !5

1

4
@«t

( i )~v!2« l
( i )~v!#sinh~2u0!sin~2v !.

~14!

The first two of Eqs.~11! originate from Eq.~1!, the third
equation originates from the boundary condition~5!.

The fact that the third equation in Eq.~11! contains first
derivative with respect tov allows us to find formal analyti-
cal solution of the system~11!, under the assumption of Eq
~10!. The localization lengths are found to be

k ( i )5
umu

f 0f 1
( i ) S ~21!kf 2

( i )A«t
(1)f 1

(1)2«t
(2)f 1

(2)

F (1)2F (2)

1~21!nA«t
(2)f 1

(2)F (1)2«t
(1)f 1

(1)F (2)

F (1)2F (2) D , ~15!

where

F ( i )5~ f 1
( i )!22~ f 2

( i )!2, ~16!

k50,1 andn50,1.
The functionx(v,u0 ,v) is determined by the expressio

d

dv
~ ln x!5~21!k11

umu
f 0
A«t

(1)f 1
(1)2«t

(2)f 1
(2)

F (1)2F (2)
. ~17!

Note that the radical in Eq.~17! is the same as the firs
radical in Eq.~15!. Note also that the pseudo-WKB form o
the functionx(v,u0 ,v) in Eq. ~17! results from the previ-
ously mentioned assumption and requires, at least, non
value of the angular quantum numberm. Various choices of
the integer numbersk andn in formulas~15! and ~17! give
four independent formal solutions. However, not all the
solutions are physically possible at given values of the v
ablesv andv. Their number is significantly restricted by th
physical requirements that we consider in the following s
tion.

IV. CLASSIFICATION OF THE SURFACE VIBRATIONS

Depending on the parameters involved, not all of the fo
independent solutions obtained in Sec. III are always f
sible. Specifically, to describe interface states, the local
tion parametersk (1) andk (2) should provide evanescent de
pendence ofc (1) andc (2) on uu2u0u. Since each radical in
formula ~15! can have either real or imaginary value, d
pending onv andv, this requirement leads to the conditio

Re~k (1)! Re~k (2)!,0. ~18!

Since the inverse localization lengthsk (1) andk (2) are com-
plex functions of the frequencyv and the coordinatev, the
condition of Eq.~18! determines the allowed windows fo
the surface states in the (v,v) plane. Within these windows
the character of the surface vibrations is determined by
sign of the expression under the radical in formula~17!;
negative sign corresponds to spatial oscillations; posi
sign corresponds to evanescent or growing ‘‘under barri
exponentials. We present typical (v,v) charts~for u051 and
1-3
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u050.1) in Figs. 2 and 3. In these figures, the areas of spa
oscillations are white and denoted as I, the areas of surf
state nonexistence~phonon escape! are shadowed and de
noted as II, and the underbarrier areas are dark and den
as III. As it is seen, while the dot form changes from diskli
(u050.1) to almost spherical (u051), the form of these
areas evolve substantially. However, the main features of

FIG. 2. The polar vibrations chart foru051.0. The white areas
are the windows of spatial oscillations; the shadowed areas are
escape regions; and the dark areas are the areas of expon
behavior. The three types of interface states are indicated in~a! by
dashed lines,i represents localized states,i i represents leaky states
and i i i represents runaway states.

FIG. 3. The polar vibrations chart foru050.1. Notation is the
same as in Fig. 2.
11532
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chart persist; at a given frequency, the anisotropy pushes
surface states towards the dot poles while the equatoria
gions correspond to the escape routes. Also, it can be m
tioned that, in contrast to the areas of types I and II, the ar
of type III never go uninterrupted throughout the who
range of thev variable. Typically, the areas of type III lie
between areas of type I and areas of type II; they never h
the areas of the same type on both borders.

A. Oscillatory behavior

Here, we describe in more detail the peculiar characte
the previously derived interface states. In the type-I area
the (v,v) plane, where the argument of the radical in fo
mula ~17! is negative, the integration yields complex exp
nentials. It is convenient to combine them into even and o
functions and write these functions as follows. For the ev
states,

xe~v !5cosS umu E
p/2

v dv8

f 0~v8!
A«t

(2)f 1
(2)~v8!2«t

(1)f 1
(1)~v8!

F (1)~v8!2F (2)~v8!
D ;

~19!

for the odd states,

xo~v !5sinS umu E
p/2

v dv8

f 0~v8!
A«t

(2)f 1
(2)~v8!2«t

(1)f 1
(1)~v8!

F (1)~v8!2F (2)~v8!
D .

~20!

For small values ofv, f 0}v. This causes the integrals i
formulas ~19! and ~20! to diverge logarithmically whenv
→0, unless the expression under the radical also goe
zero, which happens only at the borders of the allowed w
dows. Thus, in general, near the pointv50, the argument of
the trigonometric functions in Eqs.~19! and~20! behaves as
ln(v) and causes functionsxe(v) andxo(v) to oscillate rap-
idly when v approaches zero~see Fig. 4!. These rapid oscil-

he
tial

FIG. 4. The functionx(v) for a localized interface state in th
middle of an allowed frequency strip. Note the ‘‘chirping’’ form o
the function, with the condensation points at the dot poles,v50
andv5p.
1-4
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lations might seem to create nonphysical divergence in
electric-field magnitude and the atomic displacement am
tudes. However, the localization lengths of Eq.~15! shrink to
zero in this same region. This circumstance effectively elim
nates the divergence. It should be noted also that when
oscillations ofx(v) become essentially of short wavelengt
they cannot be treated within the model employed.

B. Exponential behavior

In the type-III areas of the (v,v) plane, where the argu
ment of the radical in formula~17! is positive, the formula
yields

x~v !5A expS umu E
p/2

v dv8

f 0~v8!

3A«t
(2)f 1

(2)~v8!2«t
(1)f 1

(1)~v8!

F (1)~v8!2F (2)~v8!
D

1B expS 2umu E
p/2

v dv8

f 0~v8!

3A«t
(2)f 1

(2)~v8!2«t
(1)f 1

(1)~v8!

F (1)~v8!2F (2)~v8!
D . ~21!

where the constantsA andB are determined by matching o
the area boundary.

As was already mentioned, the areas of type III do not
uninterrupted throughout the whole range ofv. Thus, at a
given v, the segment of validity of Eq.~21! either reaches
the dot pole on one side and borders an escape region o
other side, or borders an oscillatory region on one side
an escape region on the other side. If the extension to
pole is the case, the integrals in Eq.~21! diverge logarithmi-
cally, just as in Eqs.~19! and ~20!. In this case, we need t
take B50 to avoid divergence of the functionx(v) itself.
Thus, whenv→0, the functionx(v) behaves asv umu. When
v grows, the functionx(v) also grows monotonically up to
the boundary of the area. The exception of this generic
havior is the case when the expression under the radic
zero at the pointv50. This corresponds to the boundary
a type-III area in the (v,v) plane. In this case, the choic
A50 in formula ~21! is also allowed. Then, the formul
describes a function that is concentrated near the pole
rapidly decreases away from it.

In the case when the area of type III is sandwiched
tween an area of type I and an area of type II, both choice
A50 andB50 in formula~21! are possible. The first choic
corresponds to a function decreasing from the escape ro
i.e., a penetrating state. The second choice corresponds
function decreasing from the oscillatory region to the esc
route, i.e., a quasistationary state. In the latter case, the
of the amplitudes of the functionx at the I-III boundary and
at the III-II boundary gives the lifetime of this state.

The character of the exponential states is illustrated
Fig. 5. Here, we take the frequency corresponding to
upper edge of the upper dark area in Fig. 2 atv50. The
11532
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argument of the radicals in Eq.~21! being zero atv50 al-
lows us to chooseA50, i.e., a quasistationary state arou
the pole. As seen in Fig. 5, the lifetime of this state can
estimated as 1024/v.

To summarize this analysis and classification, the surf
phonon modes can generally fall into three categories:~i!
truly localized modes, which sustain oscillatory charac
throughout the dot surface~these modes are markedi in Fig.
2!, ~ii ! quasistationary, or leaky, modes; for which the r
gions of spatial oscillations are surrounded by barrier regi
followed by regions of the surface-state nonexistence,
escape routes~these modes are markedi i in Fig. 2!, ~iii !
runaway modes, for which the regions of surface-state n
existence directly neighbor the previously mentioned osci
tory regions~these modes are markedi i i in Fig. 2!.

The escape routes for quasistationary modes and for
away modes lie in the equatorial region of the dot. The li
times of quasistationary modes depend essentially on
value ofu0, i.e., on the aspect ratio of the dot spheroid.

V. CONCLUSIONS

We have analyzed polar vibrations of a GaN/AlN qua
tum dot in the framework of the anisotropic macroscop
dielectric continuum model, and obtained formal analytic
solutions for interface modes on a quantum dot of obl
spheroidal form. The crystal anisotropy makes these mo
drastically different from their analogs in spherical5,6,8 and
even spheroidal6,9 quantum dots in the GaAs/AlAs system
Specifically, the allowed modes exist in continuous allow
frequency windows rather than at discrete frequencies. Mo
over, the spatial oscillations of these modes can have c
densation points at the dot poles.

Qualitatively, this striking difference from the case of c
bic semiconductors can be understood by comparing in
face modes for a plane boundary of two isotropic media4 and
interface modes for a plane~0001! boundary of two media of
wurtzite symmetry.2 In the former case, there exist just tw
singular frequencies of the interface mode; in the latter ca
the anisotropy of the wurtzite structure leads to dispersion
these energy levels. On the other hand, in isotropic me
for a spherical dot, both of the singular energy levels s
into convergent series labeled by the angular quantum n

FIG. 5. The functionx(v) in the region of exponential behavio
The frequency is taken of the top edge of the top dark area in
2. The function drops at the onset of the escape region.
1-5
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ber; for spheroidal dot, additional splitting by the magne
quantum number occurs. Then, it is not unnatural that i
wurtzite spheroidal dot, the combination of these two effec
dispersion and splitting, results in the allowed frequen
windows.

In addition to the truly localized surface states of the
lowed frequency windows, there always exist runaw
modes that freely leave the dot surface through escape r
in equatorial regions. There also exist quasistationary~leaky!
states, in which the areas of spatial oscillations are separ
from the escape route regions by the areas of expone
behavior.

To the best of our knowledge, no direct experimental e
dence has verified these results so far. However, Ram
scattering results provide indirect evidence. In particular,
cite recent Raman-scattering experiments in GaN/AlN qu
tum dot systems.11 In these experiments, Raman peaks we
observed at room temperature, and redshift of these p
with respect to the phonon frequencies in bulk GaN and A
was indicated. The authors ascribe the redshift to the st
fields, though some features, including inhomogene
broadening of the peaks, remain unexplained. Since the
1153
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allowed frequency windows in Fig. 2 lie below the respe
tive frequencies of longitudinal phonons, the observed r
shift can be caused by the localized phonon states we
scribe here, or the combination of the localization and
strain. The role of the allowed frequency window surfa
states can be confirmed if the peaks remain broadene
lower temperatures. Another indication of the surface sta
can be weak transitions involvingc-axis polarization.

Finally, the broadband character of the interface state
likely to facilitate energy relaxation of electrons confined
the dot; the continuous regions of allowed phonon ene
can make it easy to match the electron energies in m
tiphonon processes, while the leaky states can provide e
tive energy removal from the dot surface. Quantitative d
cussion of these effects requires proper description
electron quantization in a wurtzite dot and lies well beyo
the scope of this paper.
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