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Polar interface vibrations in GaN/AIN gquantum dots: Essential effects of crystal anisotropy
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The inherent anisotropy of crystal lattices of the nitride semiconductor compounds is found to essentially
determine the character of surface polar vibrations of a GaN quantum dot in AIN matrix. The interface phonons
are analyzed within the framework of the anisotropic macroscopic dielectric continuum model. Analytical
solutions are obtained for surface modes on a quantum dot of oblate spheroidal form. These modes can exist
in continuous frequency regions, in contrast to quantized frequencies that are characteristic for isotropic case.
The period of spatial oscillations in these modes varies substantially over the dot surface, so that the oscilla-
tions can have condensation points at the dot poles. Along with truly localized surface states, there are two
other types of phonon modes. First, runaway modes, which freely leave the dot surface through escape roots in
equatorial regions. Second, quasistationdepky) states, in which the areas of spatial oscillations are sepa-
rated from the escape root regions by the areas of exponential behavior. The leaky states can provide effective
energy relaxation of the confined electrons.
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[. INTRODUCTION well invoke yet new features of the phonon spectrum. In this
investigation, it is natural to refer to the known case of op-
Wide-band-gap nitride semiconductor materials are ofical phonons in zinc-blende GaAs/AlAs structures. Quantum
substantial current interest in view of their potential applica-dots in these structures have been studied by many authors
tions in electronics, optoelectronics, biomedical physics, etc(see Refs. 5-9 and references therémnthe framework of
(see Ref. 1 Besides their conspicuous advantages in thesgifferent models. In particular, in the above-mentioned di-
fields, quantum structures based on nitride semiconductoksiectric continuum model, the interface phonon spectra were
are quite attractive from a purely physical standpoint; theirfound for spherical and spheroidal d&? In these cases,
fundamental physical properties can be affected and evegach of the allowed frequencies of the planar single
determined by the interplay of spatial quantization and inherheterointerfackis split into a convergent series of distinct
ent anisotropy of the crystal structure. frequencies labeled by the angular quantum number, in the
Both GaN and AIN usually crystallize in the hexagonal case of a spherical dot, or by angular and magnetic quantum
wurtzite structure of space grou@g, . These wurtzites are numbers, in the case of a spheroidal dot.
uniaxial crystals with the optical axis coinciding with te In the present paper, we will use the dielectric continuum
axis of the crystal structure that is perpendicular to the hexamodel to consider surface polar vibrations of a GaN quantum
gons. Due to this uniaxial anisotropy, in bulk crystals thedot in an AIN matrix. We will show that the anisotropy con-
optical phonons are classified into the so-called ordinary andiderably enhances the variety of possible polar vibrations. In
extraordinary modes. The frequencies of the latter dependontrast to a series of distinct localized modes of an isotropic
essentially on the angle between the phonon wave vector ar@aAs dot, in the GaN dot allowed frequency windows
the c axis. In Ref. 2, the authors investigated polar opticalemerge, along with specific leaky and runaway states which
phonons in GaN/AIN quantum welperpendicular to the  can play an important role in the processes of electron energy
axis) in the framework of the macroscopic dielectric con- relaxation.
tinuum modef modified for the uniaxial case. They found a  The paper is organized as follows. In Sec. II, we briefly
number of essential distinctions from the well-studied caselescribe the dielectric continuum approach, introduce the di-
of the conventional GaAs/AlAs structufeMost notably, the mensionless material parameters, give the basic equations in
confined phonon modes demonstrated substantial tails in theurvilinear coordinates, and transform the dielectric permit-
barrier media and acquired finite dispersion. Also, it wastivity tensor to spheroidal coordinates, thus obtaining the
shown that though interface modes at a single hererointerfacgy/stem of equations describing the optical phonon modes
are dispersionless and correspond to a few distinct frequemear the quantum dot. In Sec. Ill, we reduce the problem to
cies, as was the case in GaAs/AlAs structipeoper choice  surface modes and obtain a formal analytical solution for
of the material composition in GAl;_,N/AIN structure can these modes. In Sec. IV, we numerically analyze the physical
eliminate some of these interface modes. conditions for the existence of the surface modes, obtain the
Given this precursor, it is interesting and instructive toregions of existence for the stationary and quasistationary
study the polar phonon modes in a quantum dot in the GaNgurface modes, and discuss the peculiar character of these
AIN system. In this case, the local orientation of the interfacemodes. Finally, in Sec. V, we summarize the results obtained
with respect to the axis will vary over the dot, which can and briefly mention their possible significance for the elec-
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TABLE [. Characteristic phonon parameters of GaN/AIN z
system.
€ Wy 7 Wy 017 N N e W IR R -~
GaN 5.29 1.39 1.38 1.05 1 '," U
AIN 4.68 1.72 1.68 1.26 124 [ AT Pt '

U

tron energy relaxation in the dot.

II. BASIC EQUATIONS

In the adopted macroscopic dielectric continuum model,
neglecting the retardation effects, the phonon-borne part of
the polarization in the two media labeled by indek =1
stays for GaN and=2 for AIN) is determined entirely by
the equation for the electric potentiat"(w,r):

z=a sinh u cos v
y=a cosh u sin v sin ¢
x=a cosh u sin v cos ¢

LA ; FIG. 1. The dot as an oblate spheroid, with the related spheroi-
(0 (i) =
dive""(w)grady'"”(w,r))]=0. @) gal coordinate system. The crystahxis is along the axis; the dot

Here, ;(i)(w) is the frequency-dependent dielectric permit- surface corresponds t0=uy=const; the points at this surface are

tivity tensor that, reflects uniaxial anisotropy of the crystal'ndicated by the coordinatesand ¢.
structure. In the Cartesian coordinates with thaxis coin-

ciding with the crystallographic axis of the wurtzite struc- Since in anisotropic media, the spherical shape has no
ture, this tensor has the diagonal form advantages of simplicity, we model the quantum dot as an
0 oblate spheroid with the rotational axis directed along the
g;)(w) 0 0 crystallographic axis of AIN and GaN. Accordingly, we use
e (w)= 0 (w) 0 ’ ) the oblate spheroidal coordinatgsee(Fig. 1):
0 0 &(w)

with the components x=a coshu sinv cose,

2_ 0 (i1N2 2 (i12
: Lo —(wp)) ) Lo —(w'))
() = () Ll () = L7 — ; ;
e(w)=eg . e (w)=¢g —. y=acoshu sinv sine, (6)
0= (o)’ 0= (0f)?
)
In these expressions, we assume that the high-frequency di- z=asinhu cosv.

electric susceptibilitiesg) are isotropic in both media. Thus,
the anisotropic dielectric properties of the two media are de- i
termined by the characteristic frequencies of the |0ng_The surfacesi=const are oblate spheroids; the dot surface

itudinal-optical phonons &) for the phonon propagating CO'fésponds to a certain value=u,. The surfacesy

along thez axis ande{!) for the phonon propagating in the =const are one-sheet hyperboloids of revolution. The value

x-y plang and the traanTverse-o tical honoméri( andot) of the parameteu, determines the spheroid flatness: when
yp P P T up—0, the spheroid degenerates into a disk; and when

respectively. In what follows, we use the lowest of these w0, the spheroid becomes a sphere, provi shu
: - (1) ] ’ ’ tech
frequencies, that of th&l phonon in GaNw¥,’ as the fre-  _ . R, the sphere radius,

quency unit. Thg values Qﬁ”l) alo?g with the eight charac- Applying the coordinate transformation of E@) to the
teristic frequencies normalized toy,” are given in Table I gielectric permittivity tensor of Eq(2), we obtain, after
In addition to Eq.(1), the electric potential should satisfy some algebra, the dielectric permittivity tensor in the oblate
boundary conditions on the interface of the two media: spheroidal coordinates:
Yo, 1) =P (w.ry @
and e(wuv) e(wuv) 0
eD(w,u,0)=| e(w,uv) (0,u,) 0 :

[n(r)- grad (@, 0)]1l= =[n(r)- grady®(w,r ]| = |
(5 0 0 ()
(7

In these equations is the position vector of a point at the
interface, andh(rg) is a unit normal vector at this poirdi-
rected from medium 1 to medium.2 where
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(i) i i (i) ) 1 .
o) = e{)(w) sinffu sirfy + e{"(w) costfu cosy £ (g 0) = Z[S(T')(w)—gf')(w)]sink(ZUO)sin(Zv).
sinfPu+ cogv
(14
_ (sg)(w)—s,(i)(w))sinhu coshu sinv cosu The fi'rst tW.O'Of Eqgs.(11) originate from Eq.(;}, the third
e (w,u,v)= equation originates from the boundary conditi@h.

sinffu+cosu . The fact that the third equation in E¢L1) contains first
(8)  derivative with respect to allows us to find formal analyti-
ergal solution of the syster(il1), under the assumption of Eq.

Thus, in the oblate spheroidal coordinates the dielectric e
P P n(10). The localization lengths are found to be

mittivity tensor becomes nondiagonal and position depe
dent. Note that the off-diagonal elements are proportional to

[ (i) N0 . . ) |m| ) 8(1)f(1)_8(2)f(2)

e’ (w)—¢)’(w)], and thus owe their existence to the an- () = _| (= 1)k D T 1 T 1

isotropy of the media. Moreover, the position dependence is fof 2 FO_fF@

also caused by the anisotropy; it (w)=¢)(w)

=&0)(w), the tensor of Eq(7), as well as the tensor of Eq. N e e e

(2), duly degenerates into the scadP (). +(=1) FO_F®@ (19
The nondiagonality of the permittivity tensor means that

the variables in Eq(1) [and in the boundary conditiord)  where

and(5)] are no longer separable. This, in turn, means that the 0 ()2 (2

solution cannot be found in a general form. We restrict our- F=(f1) "= (f3)% (16)

selves to considering only interface vibrations well Iocalizedkzo,l andn=0,1.

near the dot surface. The functiony(w,uq,v) is determined by the expression

I1l. ANALYTICAL SOLUTION d |m| W1 _ (2)§(2)
e i . —(Inx)=(~DF [T (17)
To obtain the interface modes, we present the electric po- dv fo FO—F®

tential inside the dot,#Y(w,r), and outside the dot, o _ .
l//(z)(w’r), in the approxima‘te close-to-surface form' Note that the radical in qu?) is the same as the first
radical in Eq.(15). Note also that the pseudo-WKB form of
w(i)(w,uyv,(P):eimgoex(i)(w,uo)(ufuo)x(w’uo,v)' (9) the functionX(w,uo,v) in Eq. 17 resul_ts from the previ-
ously mentioned assumption and requires, at least, nonzero
Here,mis the rotational quantum number arf?) and«(?>  value of the angular quantum number Various choices of
are the dimensionless inverse localization lengths. We adhe integer numberk andn in formulas(15) and (17) give

sume these lengths to be sufficiently small, so that four independent formal solutions. However, not all these
solutions are physically possible at given values of the vari-
kD, kP>1, (100  ablesw andv. Their number is significantly restricted by the

physical requirements that we consider in the following sec-
Substitution of this form of the potential in Eqdl), (4), tion.
and(5) gives us the system of three differential equations for

1 2 : H .
K )1 K )1 andy as functions of variable: IV. CLASSIFICATION OF THE SURFACE VIBRATIONS

d2y f(zl) dy [ eWm2] Depending on the parameters involved, not all of the four

_2+2WK(l)d—+ (D)2~ = | x=0, independent solutions obtained in Sec. Il are always fea-

dv® f3 v fofi | sible. Specifically, to describe interface states, the localiza-
] tion parameters") and «? should provide evanescent de-

d?y % dx oy EDM? pendence ofy) and ¢/?) on |u—u,|. Since each radical in

— 42— kP 4| (k)2 5 [x=0, (11)  formula (15) can have either real or imaginary value, de-

dv? @ d faf)

pending onw anduv, this requirement leads to the condition

(1) (2)
f(ll)K(l)X+f(zl)j_i(:f(lZ)K(z)X+f(22)j_5_ Re(«*") Re(«)<0. (18)

Since the inverse localization lengtk§") and «(?) are com-
Here, the auxiliary functions are plex functions of the frequency and the coordinate, the
condition of Eqg.(18) determines the allowed windows for
the surface states in th@(v) plane. Within these windows,

fo(Ug,v)= m, (120  the character of the surface vibrations is determined by the
sinkfuy+cosv sign of the expression under the radical in form(l#);

_ _ _ negative sign corresponds to spatial oscillations; positive

9 (w,uq,0)=e"(w)sintPugsirfy + &) (w)cosfuscodv,  sign corresponds to evanescent or growing “under barrier”

(13 exponentials. We present typicab (v) charts(for up,=1 and
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1.0

0.5

u=1; m=7; of=2.6

FIG. 4. The functiony(v) for a localized interface state in the
middle of an allowed frequency strip. Note the “chirping” form of
the function, with the condensation points at the dot pajes0
andv = .

FIG. 2. The polar vibrations chart far,=1.0. The white areas
are the windows of spatial oscillations; the shadowed areas are tHghart persist; at a given frequency, the anisotropy pushes the
escape regions; and the dark areas are the areas of exponenirface states towards the dot poles while the equatorial re-
behavior. The three types of interface states are indicatéa) ioy ~ gions correspond to the escape routes. Also, it can be men-
dashed lines, represents localized statés represents leaky states, tioned that, in contrast to the areas of types | and Il, the areas
andiii represents runaway states. of type Il never go uninterrupted throughout the whole

range of thev variable. Typically, the areas of type Il lie
up=0.1) in Figs. 2 and 3. In these figures, the areas of spatidietween areas of type | and areas of type II; they never have
oscillations are white and denoted as |, the areas of surfacéie areas of the same type on both borders.
state nonexistencéphonon escapeare shadowed and de-
noted as Il, and the underbarrier areas are dark and denoted A. Oscillatory behavior
as lll. As it is seen, while the dot form changes from disklike
(up=0.1) to almost sphericalug=1), the form of these
areas evolve substantially. However, the main features of th

Here, we describe in more detail the peculiar character of
Q_Ee previously derived interface states. In the type-l areas of
the (w,v) plane, where the argument of the radical in for-
mula (17) is negative, the integration yields complex expo-
nentials. It is convenient to combine them into even and odd
functions and write these functions as follows. For the even
states,

do’ \/e?’f(f)(v')—si”f&”(v'))_

Xe(v)=005< [m| FOW ) —F@ )

wl2fo(v’) 19

for the odd states,

do’ \/s(f)f‘f)(v')—si”f&”(v'))

XO(U):Sin<|m| 'n'/Zfo(U/) F(]_)(vr)_F(Z)(vr)

(20

For small values ob, fycv. This causes the integrals in
formulas (19) and (20) to diverge logarithmically whem
—0, unless the expression under the radical also goes to
zero, which happens only at the borders of the allowed win-

0 T dows. Thus, in general, near the pairt 0, the argument of

v the trigonometric functions in Eq$19) and(20) behaves as

FIG. 3. The polar vibrations chart far,=0.1. Notation is the In(v) and causes functiong.(v) and x,(v) to oscillate rap-
same as in Fig. 2. idly whenuv approaches zersee Fig. 4. These rapid oscil-
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lations might seem to create nonphysical divergence in the 1.0
electric-field magnitude and the atomic displacement ampli-
tudes. However, the localization lengths of EtH) shrink to 0.8
zero in this same region. This circumstance effectively elimi- vl me7: afe2.48
nates the divergence. It should be noted also that when the 0.6+ o ’ '
oscillations ofy(v) become essentially of short wavelength, =2
they cannot be treated within the model employed. 0.4+
B. Exponential behavior 0-21

In the type-lll areas of thed,v) plane, where the argu- 0.0 : , ‘ : : )

ment of the radical in formul&l7) is positive, the formula 0 v w2

yields

FIG. 5. The functiony(v) in the region of exponential behavior.
do’ The frequency is taken of the top edge of the top dark area in Fig.
2. The function drops at the onset of the escape region.

x(v)=AeXP(|m|

w2 fo(v”)

e B argument of the radicals in E¢21) being zero av =0 al-
PP —e PP lows us to choos&=0, i.e., a quasistationary state around
X @)y ()1 the pole. As seen in Fig. 5, the lifetime of this state can be
F0)—F¥ (') :
estimated as 107/ .

o du’ To summarize this analysis and classification, the surface
+Bexp —|m| - phonon modes can generally fall into three categorigs:

2fo(v”) truly localized modes, which sustain oscillatory character

2@ D throughout the dot surfad¢hese modes are markeéh Fig.
\/87 f17(v") et (v") 21) 2), (i) quasistationary, or leaky, modes; for which the re-
FOw)—F ") ’ gions of spatial oscillations are surrounded by barrier regions
followed by regions of the surface-state nonexistence, i.e.,
where the constants andB are determined by matching on escape routegthese modes are marked in Fig. 2), (iii)
the area boundary. runaway modes, for which the regions of surface-state non-
As was already mentioned, the areas of type IIl do not gexistence directly neighbor the previously mentioned oscilla-
uninterrupted throughout the whole rangewof Thus, at a tory regions(these modes are markéd in Fig. 2).
given w, the segment of validity of Eq(21) either reaches  The escape routes for quasistationary modes and for run-
the dot pole on one side and borders an escape region on thgay modes lie in the equatorial region of the dot. The life-
other side, or borders an oscillatory region on one side anfimes of quasistationary modes depend essentially on the

an escape region on the other side. If the extension to thgajye ofu,, i.e., on the aspect ratio of the dot spheroid.
pole is the case, the integrals in Eg1) diverge logarithmi-

cally, just as in Eqs(19) and(20). In this case, we need to
take B=0 to avoid divergence of the functiop(v) itself.
Thus, wherv—0, the functiony(v) behaves as!/™. When We have analyzed polar vibrations of a GaN/AIN quan-
v grows, the functiony(v) also grows monotonically up to tum dot in the framework of the anisotropic macroscopic
the boundary of the area. The exception of this generic bedielectric continuum model, and obtained formal analytical
havior is the case when the expression under the radical isolutions for interface modes on a quantum dot of oblate
zero at the point =0. This corresponds to the boundary of spheroidal form. The crystal anisotropy makes these modes
a type-lll area in the ¢,v) plane. In this case, the choice drastically different from their analogs in spheritdf and
A=0 in formula (21) is also allowed. Then, the formula even spheroid&f quantum dots in the GaAs/AlAs system.
describes a function that is concentrated near the pole ar@pecifically, the allowed modes exist in continuous allowed
rapidly decreases away from it. frequency windows rather than at discrete frequencies. More-
In the case when the area of type Ill is sandwiched beover, the spatial oscillations of these modes can have con-
tween an area of type | and an area of type Il, both choices afensation points at the dot poles.
A=0 andB=0 in formula(21) are possible. The first choice Qualitatively, this striking difference from the case of cu-
corresponds to a function decreasing from the escape routbic semiconductors can be understood by comparing inter-
i.e., a penetrating state. The second choice corresponds toface modes for a plane boundary of two isotropic médisd
function decreasing from the oscillatory region to the escapénterface modes for a plai®001) boundary of two media of
route, i.e., a quasistationary state. In the latter case, the ratigurtzite symmetry. In the former case, there exist just two
of the amplitudes of the functiog at the I-1ll boundary and singular frequencies of the interface mode; in the latter case,
at the 1ll-1l boundary gives the lifetime of this state. the anisotropy of the wurtzite structure leads to dispersion of
The character of the exponential states is illustrated inthese energy levels. On the other hand, in isotropic media,
Fig. 5. Here, we take the frequency corresponding to théor a spherical dot, both of the singular energy levels split
upper edge of the upper dark area in Fig. 2vat0. The into convergent series labeled by the angular quantum num-

V. CONCLUSIONS
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ber; for spheroidal dot, additional splitting by the magneticallowed frequency windows in Fig. 2 lie below the respec-
guantum number occurs. Then, it is not unnatural that in dive frequencies of longitudinal phonons, the observed red-
wurtzite spheroidal dot, the combination of these two effectsshift can be caused by the localized phonon states we de-
dispersion and splitting, results in the allowed frequencyscribe here, or the combination of the localization and the
windows. strain. The role of the allowed frequency window surface
In addition to the truly localized surface states of the al-states can be confirmed if the peaks remain broadened at
lowed frequency windows, there always exist runawaylower temperatures. Another indication of the surface states
modes that freely leave the dot surface through escape rootan be weak transitions involvingaxis polarization.
in equatorial regions. There also exist quasistatiofi@aky) Finally, the broadband character of the interface states is
states, in which the areas of spatial oscillations are separatditely to facilitate energy relaxation of electrons confined in
from the escape route regions by the areas of exponentighe dot; the continuous regions of allowed phonon energy
behavior. can make it easy to match the electron energies in mul-
To the best of our knowledge, no direct experimental evi-tiphonon processes, while the leaky states can provide effec-
dence has verified these results so far. However, Ramaitive energy removal from the dot surface. Quantitative dis-
scattering results provide indirect evidence. In particular, wecussion of these effects requires proper description of
cite recent Raman-scattering experiments in GaN/AIN quanelectron quantization in a wurtzite dot and lies well beyond
tum dot system&! In these experiments, Raman peaks werethe scope of this paper.
observed at room temperature, and redshift of these peaks
with respect to the phonon frequencies in bulk GaN and AIN
was indicated. The authors ascribe the redshift to the strain
fields, though some features, including inhomogeneous This work was supported by the US Army Research Of-
broadening of the peaks, remain unexplained. Since the twfice through Contract No. DAAH04-96-C-0086.
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