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Magnetotransport in a two-dimensional electron gas at large filling factors
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We derive the quantum Boltzmann equation for the two-dimensional electron gas in a magnetic field such
that the filling factorv>1. This equation describes all of the effects of the external fields on the impurity
collision integral including Shubnikov—de Haas oscillations, the smooth part of the magnetoresistance, and
nonlinear transport. Furthermore, we obtain quantitative results for the effect of the external microwave
radiation on the linear and nonlinear dc transport in the system. Our findings are relevant for the description of
the oscillating resistivity discovered by Zude¥ al, the zero-resistance state discovered by Msral. and
Zudov et al, and for the microscopic justification of the model of Andretal. We also present a semiclas-
sical picture for the qualitative consideration of the effects of the applied field on the collision integral.
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[. INTRODUCTION microwave power for which the longitudinal linear-response

The purpose of this paper is to construct the theory deeonductivity is negative,
scribing linear magnetotransport, the nonlinear effect of dc
electric field, and the effect of microwave on both linear and 04x<0. (1.1
nonlinear dc magnetotransport from a unified point of view.
Despite a long history of the systematic experimental and It was shown by Andreeet all? that Eq.(1.1) by itself
theoretical study of the properties of two-dimensional elecsuffices to explain theero-dc-resistancstate observed in
tron and hole systems in semiclassically stfoagd quantiz- Refs. 4 and 5, independent of the details of the microscopic
ing magnetic field, the system still brings us surprises. mechanism which gives rise to E(d..1). The essence of the

Recent experiment$® revealed the new class of phe- Andreevet al!? result is that a negative linear-response con-
nomena(ln fact, such effects were first considered theoreti-ductance implies that the zero current state is intrinsically
cally by Ryzhi?!° three decades ago but were not fully ap- unstable: the system spontaneously develops a nonvanishing
preciated. Exposing the two-dimensional electron system tolocal current density, which almost everywhere has a specific
microwave radiation, Zudoet al? discovered the drastic os- magnitudej, determined by the condition that the compo-
cillations of the longitudinal resistivity as a function of the nent of electric field parallel to the local current vanishes, see
magnetic field. The period of these oscillations was conalso Sec. VII of the present paper. The existence of this in-
trolled only by the ratio of the microwave frequeneyto the  stability was shown to be the origin of the observed zero
cyclotron frequencyw.. Moreover, the oscillations were ob- resistance state. It is worth mentioning that the instability of
served at relatively high temperatur€, such that usual the systertt with absolute negative conductivity is known
Shubnikov—de Haas oscillations in the absence of microsince the work of Zakharo\ The important new feature of
wave irradiation were not see,=%w.. Working with  the instability and the domain structure of Andreshal. ' is
cleaner samples, almost simultaneously, two experimentadhat the instability occurs at large Hall angle; as a result, the
group$™ reported observations of a novel zero-resistancelomains for the current coincide with the domains of the
state in two-dimensional electron systems, appearing wheaelectric field directed perpendicular to the current. We would
the oscillations of the resistivity hit zero. It is worth empha- also like to point out the similarity with the model of photo-
sizing that the zero-resistance state was not connected to amduced domains proposed by D'yakordas an explana-
significant features in the Hall resistivity in contrast to thattion of the experiments on ruby crystals under intense laser
for the quantum Hall effect.Further experimental activity irradiation®
consisted in analysis of the low-field part of the oscillations Subsequent theoretical works outlined the id&ds of
in order to understand the effect of the spin-orbit interaétion Refs. 11 and 12, postulat®dhe plasma drift instability, and
and observation of the zero-conductance state in the Corbinconsidered “a simple classical model for the negative dc
disk geometry. Result§® were later confirmed by an inde- conductivity” due to nonparabolicity of the spectrufh or

pendent experimefit. due to the lattice effects on ac-driven 2D electréhidle will
Two recent theoretical papéts?are likely to explain the not discuss those works further in the present paper.
main qualitative features of the daté Durst et al!! pre- Unfortunately, a comprehensive quantitative description

sented a physical picture and a calculation of the effect obf the datd™> is not possible within Refs. 9—11. Moreover,
microwave radiation on the impurity scattering processes othe phenomenology of Ref. 12 implies a certain form of the
a two-dimensional electron gésee also Ref. J0In addition  nonlinear dc transport in the presence of microwave radia-
to obtaining big oscillations of the magnetoresistance withtion which has not been microscopically justified yet. Our
the right period of Ref. 3, the crucial result of Refs. 9—11 ispaper presents a program for such a description. However,
the existence of the regimes of magnetic field and appliedve will not take into account effects which depend on the
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distribution function and are determined by inelastic pro- AR
cesses, see Ref. 23 and Sec. Il A. These effects will be con-
sidered elsewher&.

The paper is organized as follows. Qualitative discussion
based on a consideration of semiclassical periodic orbits is
presented in Sec. Il. The quantum Boltzmann equation appli-
cable for large filling factors and small-angle scattering on
the impurity potential is derived in Sec. Ill. This equation is
later used to obtain closed analytic formulas for linear-dc
transport, Sec. IV; nonlinear dc transport, Sec. V; and the
effect of microwave radiation on the dc transport, Sec. VI.
Section VII relates the results to the model of domains of
Ref. 12. Our findings are summarized in the Conclusions.

Il. QUALITATIVE DISCUSSION

The qualitative discussion of the effect of microwave ra-
diation on the dc transport was presented in Refs. 9—-11 in
terms of quantum transitions between Landau levels. We
chose to utilize the fact that only electrons with large
Landau-level indices are important and explain the effects in
terms of semiclassical periodic motion. This explanation be-
comes especially convenient when the Landau levels are sig- FIG. 1. (Color onling Scattering process off a single impurity.
nificantly broadened, which means that the number of repeti¥he inset shows the semiclassical trajectory in the vicinity of the
tions in the periodic orbit is smallAn infinite number of  impurity.
repetitions of the periodic orbit would correspond to the van-
ishing width of the Landau leve)sMoreover, the qualitative ing centerR intact. Collision with impurities moving with
picture will enable us to separate effects into two groupsvelocity 4,¢ causes the drift of the guiding center, so that the
according to their sensitivity to the electron distribution current density
function, and understand the status and validity of the ap-
proximation which will be made in the technical part of the j(d)=eNe(d—R) (2.4
paper. dt

To analyze the effect of external fields on the collision coll
processes, it is more convenient to switch into the movingarises. Herel, is the electron density andiR/dt) ., sym-
coordinate frame bolizes the probabilistic change in the position of the guiding

center, to be discussed below.
r—r—{t), (2.2 Let us consider the scattering process of the electron off
one impurity. Because the size of the scattering regoan-
in which the external electric field is absent. The position ofrg|ation length of the potential) is much smaller than the

the moving framel(t) is found from cyclotron radius, we can still characterize the scattering pro-
cess by the initial directiom, and the scattering angke as
d— wcé eE(t) shown in Fig. 1. We consider only small-angle scattering
W)= | — (2.2
ditwc/ Me 9<1. (2.5

where E(t) is the applied spatially homogeneous electric|n this case, each scattering event causes the shift in the
field, me is the electron band mass.=eB/mcc is the cy-  position of the guiding center,
clotron frequency, and is the antisymmetric tensok,,
:_SyX: 1!8XX: gyyZO, AR=—iRC0, (26)

If there were no disorder potential, the distribution func-
tion f(e) of the electrons in this moving frame would be the
Fermi function,

whereR.=vg/w, is the cyclotron radius angk is the Fermi
velocity, see Fig. 1.
During the collision process, the impurity moves with the
velocity — 4,{(t). Because the size of the impurity is small,
f(8)=fr(s)= 1 , 2.3 and we assume theit?tg(t)|<vp, this mption can be ne- _
1+es/T glected in the calculation of the scattering amplitude but it
has to be taken into account in the conservation of energy.
no excitations would appear and therefore no dissipative cuthdeed, during the scattering event the moving impurity
rent would be possible. On the classical level, an electrotransfers the energie = —9,{(t) - Ap, where the change of
experiences cyclotron motion with the position of the guid-the electron momentum is given by
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Ap=—§ip,:9 (2.7

for <1, andpr=mgvr is the Fermi momentum.
Taking this energy change into account, we write for the
displacement of the center of the orbit

1
Re

dR) 3 AR
gt COH— fdﬁﬁcJ' de{f(e)—f(e+Ae)}M A

<if dé Hf de
(2.8

where the functionM( ) is proportional to the scattering
cross section and is determined by the impurity potential. We

willassume thatM(¢) vanishes rapidly at—~#/(pe¢) tributions into the impurity scattering cross sections. The inset

<1, i.e, EQ.(2.5 holds. In Eq.(2.8), (---); stands for the ("0 "' crigt of the impurity between the scattering events in
averaging over the direction of the momentum of the elec-

. . . . moving coordinate frame.
tron incoming on the impurity.
Substituting Eq(2.7) into Eq. (2.8, one finds

af(e)
; [at§<t>-Ap]M>_,

&€

FIG. 2. (Color online Different amplitude giving coherent con-

Fig. 1 depicts the path for=0. Equation(2.8) takes into
dR R\[2d ¢ account the contribution from the shortest trajectdiiyst
(_) = _( C) <_t) (2.9  termin the second lineof Eq. (2.11) and misses the inter-
dt/ ., ference contributions.
To assess the role of the interference contributions, let us
employ the Born approximation of the impurity scattering.
1 perog Then, each semiclassical path may involve only one scatter-
—= —f dé 6>°M(6) (2.10 ing off an impurity, and all the paths are classified(bythe
Tur 2 scattering angle and (ii) whether the impurity affects the
is the transport scattering time at zero magnetic field. Toelectron in the beginning or in the end of the path; we will
gether with Eq.(2.4) this gives the Drude formular,,  call the corresponding amplitudel™ (6) and A(#6), see
=e’N./mw?7, for the large Hall angleo 7> 1. Fig. 2. Factorizing the impurity scattering potential into the
It is not the end of the story though. Considering oneScattering cross section at zero magnetic figtth(60), we
scattering event as a complete real process, we imply th&btain
there are no returns of an electron to the same impurity, or, to
be more precise, the possible returns are not correlated with - -
original scattering. However, in magnetic field an electron ~ M(6)=M,(6){ 1+2 RGE Al (O[A (9)]*]-
moves along a circle of the cyclotron radiks between L
shattering processes. This circular motion results in corre-
lated returns of the electron to the same impurifyo the
best of our knowledge, the first discussion of the magnetore- Equation(2.12) neglects the motion of the impurity dur-
sistance in terms of returning semiclassical orbits was pering the whole collision process. Apparently, it is consistent

Ttr UF

where

(2.12

formed in Ref. 25. with the derivation of Eq(2.8) where the effect of the im-
Such returns do not change the structure of @), but ~ purity motion on the mat_rix e_Iements was also neg_legted.
they do change the scattering cross sectlifd) in com-  Indeed, for the process in Fig. 1=0, the characteristic

parison with its value in zero magnetic field. Indeed, one cargcattering time can be estimated/sis= £/ve . The displace-
see from Fig. 2 that several semiclassical paths characterizedent of the impurity is then|Ar|=[d.{]- (élve)<é

by a different number of rotations and different instances ofor |4;{|<vg, and could be neglected. However, for the
the impurity scattering contribute to the same final state; amscattering shown in Fig. 2 the interfering processes are

plitudes for such processés'(#) sum up coherently, separated in time by the intervalt=2#l/w.. Displace-
ment during such an interval i\|r|=|d4-(27l/w¢)

w2 =104 (élve)(2mIR/€). BecauseR.> &, the displacement

M(6)= % A'(0) may easily become comparable with the impurity sjzsven

for |9,{<vg. Therefore, the displacement must be taken
_ ) o N . into account in the interference terms in Eg.12). Due to
=[Ag(0)*+2 Re 2 , A (OTANO]" (21D he impurity motion, the scattering off impurity occurs at
W ara different points, see the inset in Fig. 2. In this respect, the
where index| labels the number of rotations and labels  scattering off a moving impurity is analogous to the interfer-
semiclassical paths; Fig. 2 shows the pathd fol,2, while  ence in a grate interferometer with the distance between slits
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equal tog(t)=t— (27l/w:)]—¢(t). By analogy with the
grate interferometer, we find that E@.12 has to be modi-
fied as

M:Mo(ﬁ)[1+2 Re>, Ai[Af]*eXF{M} ’
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motion of the electron, see Sec. Il C for a more detailed
discussion. The accurate expression for the factgysis
written in Sec. IV B.

Neglecting the effect of the applied electric field on the
electron distribution functiorf(e), i.e., f(g)=fg(e), see

W f Eg. (2.3), we obtain
(2.13
where Ap is given by Eq.(2.7). Finally, the quantum- Y — 27’mT (218
mechanical amplitude&;”"=(#6) can be decomposed into the m _[27’mT\ " '
smooth prefactoa and the rapidly oscillating exponent in- fiwsin hog

volving the reduced action along a semiclassical cyclotron
trajectory,

2y 2
e e [ TPENY  2me
A| =4q eX[{I'(T‘Fm , (214)

c

Therefore, the Shubnikov—de Haas oscillations are exponen-
tially suppressed at high temperatie w,/ 72.

The consideration of nonlinear effects in the applied elec-
tric field is a more complicated task. Indeed, electric field

with A= (hc/eB) 2 being the magnetic length. may significantly change the distribution functidfe). In

1\ / i particular, the shape of the distribution function in a strong
Having investigated the effect of the retuming paths MNajectric field may have nothing to do with the Fermi distri-

¥he tsr(]:attde_rlng ptr_ocess, Wet arg rbez%[g[yt_to er_zlte&a&)exprgs& tion. Because these effects are extremely sensitive to the
or the dissipative current. - Substituting =qee. an form of the distribution function, their description requires

(2.14 into Eq. (2.8), we find specifying the microscopic mechanism of the energy relax-

dR pr ation.
(_) =R, if dooM,( g)j de (e) [d,4(t)-Ap] ~ We notice, however, that the smooth part of the electron
dt/ o de distribution function with the characteristic widthgg=T

(1’ —1)p2N3
N ( JPENG
hZ

much larger thamw, results in an exponentially small contri-
Sy iAp-§(t) bution to the resistivity. Therefore, we focus our discussion
Xy1+2 ReZ apla ] exg ———— on the high-temperature limif>%w, and neglect the
. Shubnikov—de Haas contribution to the nonlinear effects in
iw(l’—l)s)]> further consideration. Unfortunately, the latter restriction
+ . (2.15  does not allow us to avoid consideration of nonlinear effects
hwe i of the electric field on the electron distribution function. In-

) . . o . deed, the nonequilibrium component of the electron distribu-
Equation (2.15 is the main qualitative result of this on function produced by the impurity scattering oscillates
section?® It shows that due to the presence of the returningitn period# . .2° Substitution of such as oscillating func-
orbits on one hand, and the largeness of the period on thg, inio Eq. (5.17} results in a contribution which is not
other hand, the scattering process is extremely sensitive t@kponentially small. An estimai®shows that this contribu-
external fields applied to the system. As a result, a rich varigion gominates the effects discussed below if the inelastic
ety of effects arise. The effects can be separated into tWy|axation processes are not too strong. A more detailed
groups:(i) sensitive to the distribution function; aifit) non-  54ysis of the nonlinear effects on the electron distribution
sensitive to the electron distribution. We will discuss thoseésnction and electron transport will be presented elsewffere.
groups separately in the following two subsections.

A. Effects dependent on the form of the distribution function B. Effects independent of the form of distribution function

The contributions which survive the thermal or energy
averaging are only those with the same winding nuniber
=I'. Retaining only such terms in Eq2.15, we can see
that the energy dependence of the scattering cross section
vanishes, so that the energy integral can be evaluated. The

Retaining only the contributions from the amplitudes with
different winding numbers in Eq(2.15, and considering
only linear terms ing, we obtain familiar Shubnikov—de
Haas oscillationg s of the resistivityp,,(B),

Posd B, T) S oy TMpPEN - result does not depend on the distribution function anymore,

—= coy ————|, .

PERTIE AL BT D

dR
where (a) =—RC<iJ doOMy(0)[ d:L(t) - Ap]
coll
v fd of(e) i2mme 1 " _
m- 98 X hoe | (17 X{1+2 ReD, aﬁ[af]*exp(m)w
= f -’

The form factorsy,=3a, [, ,]* are determined by the = '
impurities at which scattering may occur during the circular (2.19
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Therefore, all of the nonlinear phenomena come from th iAp- (1)
effect of the external fields on the scattering cross sectio f9t§(t)eXD< —)
t

itself. f
We consider the system under the effect of the dc electric 1
field only. In this case m< 3t§(t){ 1— %[Ap g(t)]ZD (2.29
t
2l
G(t)=— =0k (2.20 o oy 2mlw
Ap é‘a‘cglnzw_ 27w ap gaémw—

In the linear responsg\pg| <7, we obtain that the scatter- ~vy| 1— > ‘- 5 =
ing rate is enhanced due to multiple returns, h @e h

It is important to emphasize that at the frequency of the ac
pxx(B) field commensurate with the cyclotron frequeneys j w.,
pxx(B=0) the ac field does not affect the dc resistivity. This result is
easy to understand by noticing that under this condition the
Postponing the estimate of the form fact@g[a;~]* >0 impurity returns to its initial position during one cyclotron
until Sec. Il C, see also Sec. IV, we notice that Eg.21)  period.
describes positive magnetoresistance. Indeed, it is intuitively The last term in Eq(2.24 represents the photovoltaic
clear that the stronger the magnetic field, the larger the prokeffect and deserves some attention. SubstitutingZEg4) in
ability for the electron to return to the same impurity. Thus,Ed. (2.19 and neglecting the second term in Eg.24), we
the contribution of the sum in E@2.21) increases. obtain
One can see that the contribution of the periodic orbit B
produces nonlinear current voltage characteristics. Indeed, pxx(B)
with the increase of the electric fieltApg |/% becomes of m~1+2 Re;l 1- .
the order of unity. The contribution of the returns with cor- (2.25
responding winding numbeémwould be suppressed; the elec-
tron afterl turns simply misses impurity. If the field is such Where x;<|&,d*. The physical meaning of the photovoltaic
that|Apg —4|/A=1, then the contribution of all returns will term is the rectification of the ac current due to the nonlinear
be suppressed. As a result, at dc fields larger than some valt@&m in the collision integral. In the absence of the dc field
Eo. the current voltage characteristics becomes linear puhere is no preferred direction, so that the rectified current
with the slope determined by the transport time in the abYanishes, whereas application of the dc voltage defines this
sence of magnetic field, see £g.10. We estimate the value direction. One can see that, due to the large factow 2w,
of E, by noticing that according to Eq(2.2), |4  >1, this term can exceed unity even|&pg,[<f. There-
=eEy/mw, and |§l|:2ﬂ.Eo/mew§_ Then, using |Ap| fore, the sign of the contribution from the returning orbits

~#/& whereé is the correlation radius of the impurity po- May be changed in comparison with the dc result, compare

=1+2 Rez1 a[a]*. (2.21)

2kmlo 2mlo)
sin——Ja[a/]",
We

tential, we obtain the characteristic field Egs. (2.2Dand (2.25. The zero-voltage dc resistivity may
become negative. Accurate results for the dc response in the
eEO:mwgg. (2.22 presence of the microwave are collected in Sec. VI.

One last comment concerns the microscopic justification

Accurate theory of nonlinear effects in the dc field is con-Of the main assumption of Ref. 12, that even if the zero
tained in Sec. V. dc-current resistivity under microwave radiation is negative,

Assume now that the ac microwave field with the fre-it becomes p'ositive at large enough applied dc current. In-
quencyw is applied together with the dc field. The velocity deed, according to the arguments before @2, the con-
of electrons due to those fieldsg(t) and the displacement tribution of the cyclotron orbits vanishes if the electric field

during| periodsg (t) = {(t—27l/w:) — (t) can be found as is large enough. On the other hand, these are the only con-
tributions affected by the microwave radiation. Thus, at ap-

(2.23 plied dc electric field exceeding, the current voltage char-
acteristics becomes linear, with the slope determined by the
transport time in the absence of magnetic field Ej10),

L(t)=— 2W|vd°—2§a§in( 77"”)CO5< ot — l “’)' and not sensitive to the effect of the microwave.

We We

(1) =v gt 0 COWt,

Cc
C. Form factors, self-consistent Born approximation,

In the linear-response regime, those two velocities give two .
and classical memory effects

independent contributions to the current, i.e., dc response is
not affected by ac radiation at all. The presence of the non- Equation(2.19 derived on quite general grounds would
linear term in the collision probability Eq2.19 results in ~ describe all of the physics quantitatively if the finding of the
the photovoltaic effect’ Indeed, expanding the exponent in form factorsa,~~ were a trivial task. Unfortunately, it is not
Eqg. (2.19 up to second order and averaging the result oveso, and the quantitative analysis of the transport requires a
time, we estimate machinery developed in the subsequent sections. The pur-
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a)

FIG. 3. (Color online (a) Pair of typical semiclassical trajecto-
ries and(b) of those contributing to the classical memory effect.

pose of the present subsection is to explain the structure of
the form factors qualitatively, and to clarify the physical
meaning and the status of the approximations to be em-
ployed.

Let us start from the contribution of the returning paths
with one turn,a;” . Those factors are disorder-specific
guantities and we have to average them over the disorder
realizations. The estimate for such averaging proceeds as fol-
lows. Let us assume that the two trajectories travel through
the different impurities as shown in Fig(8. Then, every FIG. 4. (Color onling Trajectories with(a) two and (b) three
impurity scattering will randomize the sign afa; . There- ~ Ms contributing to the form_fa}ctoasis; inset, the semiclassical
fore, the only remaining contribution originates from trajec- Path of the electron in the vicinity of the impurity.
tories which were not affected by other impurities during the

cyclotron motion at all. The amplitudes can be estimate% Or}et can stﬁe,le.g., f:ﬁm Flg(.Ba, th?f[hthe I?rggr the lr)]'limt_h ¢
from |as | 2= Po(2m/ wy), whereP,(t) = exp(~t/r,) is the er of turns, the larger the number of the returning orbits tha

L must be taken into account. To perform analytical calcula-
probability for an electron not to be scattered at an angl% - . S
during timet, and ions, we utilize the self-qon5|stent Born apprOX|mat|on

' (SCBA) (first used for the disordered electrons in the mag-
netic field by Ando and Uemuf$. This approximation en-

242
i: prup | dOM ()= Pré s i (2.26 ables us to describe the combinatorial factors and the effect
Tq h2r,  Tu of the fields on the intermediate scattering processes cor-
. . o . o rectly.
is the quantum lifetime. This gives the estimatehich is The drawback of the SCBA is that the disorder potentials
actually an exact answer acting on an electron on different semiclassical paths are

assumed to be uncorrelated with each other. The justification
of such an approximation requires that the typical distance
between trajectories, see FigaB be larger than the corre-
lation radius of the potentiaj. On the other hand, this dis-
tance can be estimated Rs=7%R./(pe&). We obtain the
inequality é<hR./(pgé) or

ay=a; =e ™%, (2.27)

One may naively try to estimate the contribution from the
paths with two turns from

iR,

which leads ta; =a, =2¢2"“c7a, However, this estimate P

is not correct. The reason is that the path which was scatteredihere is the magnetic length. The condition of the valid-
off an impurity on the first turn can be rescattered off theity of the self-consistent Born approximation was first estab-
same impurity once again and give the contribution which idished by Raikh and Shahbazydiby an explicit calculation
not random, see Fig.(8). In the absence of the external Of the first correction to the self-consistent Born approxima-

electric field or microwave illumination, it gives tion.
The case of weak magnetic field such that only single-turn

o trajectories remain ,<w.<1/7y requires additional con-

e “meet, (2.28  sjderation, even if the criteriof2.29 is satisfied. The trajec-
tories close to each other, shown in Figb)3 give the main

which differs from the naively expected value. Moreover, itcontribution to the interference of return trajectories, even
is clear that, will be affected by the motion of the impurity, though the fraction of these nontypical trajectories is small.
i.e., the form factors by itself are functions of the dc andindeed, these trajectories travel through the same disorder.
microwave field(this effect was discussed from a different The scattering off the same disorder does not randomize the
point of view in Ref. 30. sign of the product Re( a; *), and thus exponential esti-

? 2m
<12_
[aZ] P0(2w0>1

E<—=\3, (2.29

2

(,()C’Tq

<

— > —
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mate no longer holds. On the contrary, fé=#/peé, one  where the component of the matrices is linear operators in
can roughly estimate from Fig(13 time space and the one-electron Hilbert space.
The equation for the Green function is

o 27 [Ar)?
a; (#)ag (0)=ex ‘wch(? ' (i-A)G=1+36, G(io—R)=1+6%, 3.2

whereAr is the typical distance between trajectories. Esti-whereH is the one-electron Hamiltonian of the clean system,
mating|Ar|=R.6,, one finds for the angular interval of non- 1 is the short-hand notatioh=1,®1.6(t;—t;), andly . are

typical trajectories the unit matrices in the Keldysh space and the one-electron
Hilbert space, respectivel(We setfi=1 in all of the inter-
P 3 ()2 ( h )( & ) ( wcfrqpﬁgz) vz mediate formulag.For the retarded Green function we use
1= (WcTg)" =\ 2\ || 7 .2 R N oma ~
Re Pré/IRe h (io,—H)GR=48(t—t) 1 +3RGR, GR(t<ty)=0,
3.3
EATEA P (
_<pF§) ( RC)(wCT") ' and GA=[GR]". For the Keldysh Green function it is con-

I . venient to take the nondiagonal component of the difference
The contribution of the scattering process to the transporg o Egs. (3.2

scattering time(2.10), is proportional toaf and the typical
scattering angle i&/(pr¢&). Therefore, the relative contribu- [(id,— H);GK]=SRGK—GKSAL SKGA—GRSK,
tion to the nontypical trajectories to the change in all the (3.9

dissipative processes, say resistivity, is
where[ ;-] stands for the commutator. The next standard

Apy  [PeE6L\2 [ £)3 i step is to separate the time evolution of the occupation num-
O 2( 7 = (R_c (wcTy) ™" (2.30 bersf and the wave function of the system
This power-law dependence should replace exat/w.r,) GK=GR-GA-2[GRF-TGA]. (3.5

dependence in all the formulas obtained in the self-consistent . _
Born approximation for 4w >T (not containing the In ggneral,f is an operator in bo_th pne—electron space and
Shubnikov—de Haas oscillatory term the time space. In thermal equilibrium, however, one has
Finally, we notice that the product of two amplitudes for SImply
the electron propagation in the same disorder can be de- d T
scribed as the classical probability of the circular path, and  §_— f _Se*ia(trtz)fp(s): : —
all the discussion can be recast into the notion of the classical 2m 2sinhmT(t;—t+i10)
memory effect(CME). It is not accidental that the estimate (3.9
(2.30 coincides with calculation of the CME
magnetoresistante up to a numerical prefactor. Accurate
calculation of the nonlinear effect within the CME model
will not be done in the present paper. It is important to em-
phasize, however, that the fact that the self-consistent BorwhereT is the temperature in the energy units. Substituting
approximation has to be corrected by the classical memorfzd. (3.5 into Eg. (3.4), one obtains the kinetic equation
effect affects only the overall prefactors in the nonlinear ef- o
fects and does not change the basic structure of Efj9).%? [(d¢+iH);f]=Stf, (3.79

with the collision integral given by

fe(e)= Tl

IIl. QUANTUM BOLTZMANN EQUATION  (QBE)

TQH =TSR} _FVAT L IISK_SRLSA
In this section, we will derive the quantum Boltzmann ISE=[7F 2]+ 5[ 27 =27+ 27, (3.7b
equation. The purpose of this derivation is to separate the 1o next step is to write down a self-energy for the elec-

contributions remaining av>1 from _the very beginning... tron subjected to the random potenti#(r) characterized by
We use the standard Keldysh formalism for the noneqwllbn[he correlation function

rium systent >34

d?q
(2m)?

The derivation is very similar to that for the Eilenberger

equatior?®3® The matrix Green functions and the corre- FOr the sake of concreteness we will adopt the model with
sponding self-energies have the form

A. Derivation of the semiclassical transport equation (U(rpU(ry)) = f W(q)e'drr2),

W(q)=W(0)e %, (3.9

GR GK . [SR 3K where¢ is the disorder correlation length. Equatith8) is
= 0 &A 2= 0 Al 3.1 an adequate description for the potential created by remote
K K donors situated on the distané® from the plane of two-

035303-7



M. G. VAVILOV AND I. L. ALEINER PHYSICAL REVIEW B 69, 035303 (2004

a) - - W () — £s) electric field from the Hamiltonian. Instead, the disorder po-
: tential becomes time-dependent. We rewrite 9) as

i) — =i B |

S— d°q Wi —iggy iq?é —iqgr
J— 9 =] @ (q)e "*17eMGe '],

JORIES N B
‘®

o= 4(t) = {(1y). (3.12

Separating the guiding center coordinate and the cyclo-
tron motion, we write

5

0] (i) N
H=
FIG. 5. (a), (b) Self-consistent Born approximatiofSCBA). 2m,
Diagrams(c) are the most important contributions not included in . . .
the SCBA, corresponding to the logarithmically divergent secondfwrl}ere.ﬂ is the Chter?lcal plc)tfntla_l and the operators obey the
loop weak localization correctiofRef. 37, see, e.g., Ref. 38. Dia- oflowing commutation relations.
gram[c (i)] with one of the diffusongd) reduced to one impurity
line describes the first contribution to the classical memory magne-
toresistancéRef. 31).

—w, r=R+\iep, (3.13

A ) " oA i A
[RyiRsI=iNGeap, [PaiPsl=— 5 eap, [RiPI=0.

H
(3.19
dimensional electron gas. The self-consistent Born approxi- o L
mation, involving the summation of all the diagrams with The Green function§&(p;R) and the self-energies (p;R)

nonintersecting impurity lines, see Fig. 5, is can be obviously written as functions of the operat@rd4).
Using commutation relation$3.14), we obtain from Eqg.
. d’q L (3.12
E=J SW(g)[e'"Ge™"]. (3.9
(2m) o 2q o, L,
The self-consistent Born approximation is justified if two  2(p; R)=J 2le[e'q“”’MG(p; R(q))e 9P H],
conditions (2m)
£<\y, (3.109 Wi =W(q)e %2 R(q)=R+\jeq.  (3.19
2 Here we suppressed time indices.
TS = (3.10h The next step is to separate the motion in the phase space
2mh into components parallel and perpendicular to the Fermi sur-

face. For this purpose, we parametrize the cyclotron motion

hold. Hereinafter\,,=(c#/eB)Y? is the magnetic length,
operators as

andB is the applied magnetic field. The physical meaning of
the condition(3.109 was discussed in Sec. Il, see E2.29.

1/2

Condition (3.10b allows us to neglect the localization ef- IB :i N+n e+ Hc
fects shown in Fig. &). Note that the external microwave “ulo2 -
radiation further suppresses the localization correciion.
We also assume small-angle scattering o Zi[N+A\Y2
py=)\— > e'?+H.c., (3.16
Peé>1, (3.1) H
) ) ) o where the integer
wherepg is the Fermi momentum. This condition is not re-
ally essential for the physical processes but it allows for w
some technical simplificatiorfS. Moreover, based on N=intw—
Shubnikov—de Haas data, we believe that this regime is the ¢
most relevant for the experimental situation. is introduced for convenience. To preserve the commutation

We will consider the system in the classically strong mag-relations(3.14) for operators(3.16), the commutation rela-
netic field, so that the Hall angle.r, is large[ , is the  tion
transport time, see E@3.50 below]. The effects we will be
studying are proportional to the inverse Hall angle and van- [ne]=—i (3.19
ish in clean systems. Therefore, it is convenient to solve the
time-dependent problem for the clean system first, and thei$ imposed. It follows from Eqgs(3.17 and (3.1 that the
to consider the effect of the disorder on the top of this soluinteger eigenvalues= — N of the operaton have the mean-
tion. This program is easily accomplished by using the transing of the Landau-level indices. The Hamiltoniéh13 ac-
formation Egs(2.1)and(2.2). Transformation(2.1) removes quires the form
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N - 1 m Commutation relatior3.17) gives
H=wdln+d(p)], o(p)=5+N- o (3.18

¢ @ixsinga—idn_ o—idngixsin(e+6)

All the previous manipulations were valid for any mag- Thus, using definitions of Eq3.21) we obtain
netic field. Now we are going to make use of the large filling

factor 0,6(0;¢;R(@)0]
N> 1. (3.19a fzwda ST A .
. = | 5=e'""G(0,p)exp iqR[siN(¢q+ 0) —sing,]
We will assume that the characteristic valuenafontributing 0 27 ¢ a 4
to the transport quantities is such tHai|<N, i.e., all the s A o
relevant dynamics occurs in the vicinity of the Fermi level. _ Re[SiN(2¢q+20) Sln2(pq]]. (3.23
This assumption is justified provided that two conditions 4pe

The characteristic values of entering into the integral can
be estimated agR,=R./é>R./\y=2N>1. Let us call
are satisfied, withr, being the quantum elastic scattering the argument of the exponefi{ 6, ¢). BecausgR.>1, the
time, see below. Those assumptions allow for the semiclagntegrals will be determined by the saddle-point determined
sical consideration of the self-energ$.12, which is pre- by B;(6,4)=0, andB;(6,$)=0 the latter condition gives
sented below. 0=0. Thus, we write

Using Egs.(3.19, we expand Eq(3.16 as

T<Niw;, o.7q<N (3.19h

e PN ~275(0)8 By 0,H)],

N ~ 1 .-
pPyx= PeCOSp + ﬁ[ne“"nL H.c]+:---, in a sense that the saddle point integration in the LHS gives
¢ the same result as the integration in the RHS. Employing this

approximation in Eq.(3.23and taking into accounin||

A - 1 . -
pyzstingo—ﬁ[ine"PJrH.c.]Jr---, (3.20 <gR.,
C
h ~aaa o G(00) . (cos2p
wnere 0. 6(R:e)0] === et
V2N : i (3.24
Pr=" Re=V2NAy _ _ -
H where thed function has to be understood in an operator

are the Fermi momentum and the cyclotron radius, respec€nse. . .
tively. Substituting Eq(3.20) into Eq.(3.15 and keeping in We substitute Eq(3.24) into Eq.(3.2Dand use Eq(3.22

mind condition(3.11), we find to find G(#=0). With the help of the commutation relation
(3.17 and using the small-angle scattering condit{8riL1),
N n A2 QWip a n a o we obtain
E(n;so;R)=f > LUV G ¢;R(Q)IU U],
(2m) o s i [=dg .
A 2(<p,R)—27wJmﬁw(q)exp[—lqélz'slq].
. _ _~ I9°Rcsin2e, a°R,
U, =exp iqRcsingg— ap +0 > , q
F PF xg| ¢+ —:R—N2qi,|, 3.2
(3.21) g ¢ Pr Hlq (3.29
. qlne¢a—Hel] . . L ~ 9| [~ aq
UZEXP{Z—DF  Pq=¢~ g, 0= CO9 €T 3pg ) ST ope ) )

whereq= q(cospq;sing,). Matrix lAJL commutes with%, i.e., gﬁ:;ﬁg:gelpggggggg the analog of the Green function in the
in the semiclassical sense it describes the scattering of the

electron perpendicular to the Fermi surface. On the other o L L

hand, matrixU; changesg, i.e., it has the semiclassical g(l,D;R):ichk: G(n+k;¢;R). (3.26
meaning of the evolution parallel to the Fermi surface. Due

to the condition(3.193, those processes originate from para-ntice that operatolp commutes with all other operators
metrically different values ofj and that is why they can be entering into Eq(3.25), and, therefore, it can be treated as a
considered separately. We use the parametrization ¢ number.

Equation(3.25 also can be rewritten in a different form,

A 2nd@ . .
G(n,cp)Zf Zef'enG(ﬁ,(p). (3.22

0 St,t': _ikt,tfé(t.t';%ﬁ), (3.27
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where the kernek’; ; is o (§125—i)\ﬁVR)'i(QD) R &:R]
iXR(p;R)=h, )
W(q) qd qd § q
ICt t/:f —ex;{_w:|e|qpl(¢)exp{_¢:|dq1 (333
' 4y 2Pk 2P Here
(3.28
. 1 1 dq
with R i
q 2770,:] ZWW(q) (333
P= gvt,é—i)\ﬁVR. (3.29 is merely the standard Born approximation for the quantum

scattering time for small-angle scatterers, and the dimension-
This form is more convenient for the further expansion inless function
1/épe, as we show later.
Closing this subsection, we write down the expressions f dgqW(q) e
for the variation of the electron densit§\., and the current qvia
density, j. Representing the coordinate operators by Eq. hy(x)=
(3.13 and approximating the operators with the help of Eq. f dgWa)
(3.20 we obtain

T 1+x (3:39

characterizes the effect of the external electric field during
the cyclotron motion between electron returns to the same

27Td()p
ONg(r,t)=— mef %59K[t,t; ®.rql, impurity.
0 We will look for the self-energy in the form

oo

= —R oi —_ . 5 t_t ~ ~
I’g r (;8'(@) g(t), (3 Soa |ER(t,tl): (ZT 1)+Z )\lis(/]—lt)a(,]—it—tl),
and8gX denotes the deviation of the Keldysh Green function a
? g ; (3.3
from its equilibrium value in the absence of the external
fields. The coordinaté(t) is defined in Eq(2.2). where the coherence factardescribes the phase accumula-
For the full electric current we have tion during one period and it is defined as
i(r,t)=eNe(r,0)a+j O (r,1), (3.30h x=exp< ————i2ms(w |, (3.36
cTq

where the first term in the current is dissipationless. At con- R . . .
stant electric field it is merely the Hall current. The secondands' are to be found self-consistently. The time shift op-

term is given by erator is defined as

27d Tt=t— 2! (3.37
J(d’(r,t)=—eppfo %i((p)g'([t,t;@;rg]. (3.300 wc '

We look for the solution of Eq(3.31) in the form

The numerical coefficients in Eq$3.30a and (3.300are

written with account of the spin degeneracy, agdis the e loedlm(t-t) g™ (t-t)/27g

iR Aoy —
total electron density. IGT(tL,tn, @)= 27
B. Equation for the spectrum X Z {[e—iwcﬁtg F(Tt,tl,;o)ei wcﬁtl]

In this subsection we solve E(.3) with the Hamiltonian
(3.18 and the semiclassical self-ener:25, X O(T't—ty) 0(t,— T 1)) (3.39

{id— w [N+ () [}GR(L,ty:0) Substituting Eqs(3.39 and (3.39 into Eq. (3.31), and

St-t) [t usinge'?™"=1, e*"pe "= +x, we obtain the chain of
= - +f dt3R(tt)GR(t, ty5n).  (3.3p  eaquations
2 ty |
. gR(tt .A): R(t .A)_ tdt 2 SR[Tm_It O

Hereafter, we suppregsandR arguments in the Green func- (Ll o) =0 (e 2 Om 2:¢
tion and the self-energy whenever they are the same in both !
sides of the equations. Our purpose is to represenGthin +out,—t)1GR (to,t1;0), (3.39
terms of the Green function$.26) only.

For the calculation of the spectrum it is sufficient to keepwhere
the terms only to the zeroth order in small paramefgy: . R~ oA R .
Equations(3.25 and(3.27) then simplify to g/ (t;e,R=G(t,t;¢,R), (3.40

035303-10
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GR(t,t) =GR (Tt,ty),

with the initial conditiong}=1.

The final step is the self-consistency procedure which

amounts to a substitution of E¢3.38 into Eq. (3.26. It
gives!

o(t—ty)
gR(tty)= 5 :

+|21 NgR(t) 8(T't—ty), (3.41)

where \ is defined in Eq.(3.36. Using Eq.(3.41) in Eq.
(3.32 and extractings, of Eq. (3.35, we find

[4(De—iNEVR]-i(@) |gf(t @)

R _
Sf(t.e)=h, ; -
(3.42
We use the short-hand notation
LO=UT'"H)-qv), (3.43

where the finite time shift operator is defined in Eg§.37).

Equations(3.39—(3.42constitute a complete system for
the spectrum averaged over disorder. Note that the Green

function G, is expressed in terms @f,, with m<| only.

C. Equation for the distribution function

In this subsection, we will reduce E(d8.7) to the canoni-

cal Boltzmann form. According to Eq(3.25, the self-

energies, do not depend on. It suggests that the distribu-
tion functionf does not depend ameither. This observation

enables us to substitute E8.5) into Eq.(3.26) and perform
the summation ovek with the help of Eq.(3.41) and rela-
tionsg”*=—[gR]", f=f". We find

1
51070~ e
=f(t,t’;<p,R)+|Zl NgR(T't o, R (T, o,R)

+|21 (A* (6,7, ¢, RIgR(T't;0,R)]T,

(3.49

where the coherence factworis defined in Eq(3.36), and the
time shift operator is given by E¢3.37).

Substitution of Eq.(3.44) into Egs.(3.303 and (3.300
yields the connection between the distribution functi@md
the observables,

Ng(r,H)=2 fzwd@ S(LL:
e(ry )_ me 0 Z ( ’ 1(P1rg)

+2ReX, Ngf(Th e, f(T G erg) 1,
=1

(3.453

PHYSICAL REVIEW B 69, 035303 (2004
27rd(P

@ (r )= — :

() 2eppf0 27TI(<p)[f(t.t,<p,rg,)

+2 Rezl N7 e, r) H(T' G o,y 1

(3.45b

where we used the short-hand notatiog=r—R.i(¢)
—{1).

To derive the kinetic equation, we substitdtinto Egs.
(3.7). Equation(3.73 gives

o f(t,t';0,R)=SH fly.

Jd J J
—+ —+ a)(;%
(3.463

According to Eq.(3.7b), the collision integral is defined in
terms of the electron self-energy; the latter is given by Eg.
(3.27. Substituting Eq(3.27) into Eq.(3.7b and using the
relation Eq.(3.44), we obtain the following expression for
the collision integral:

SHf} v =—{K(tt)f(t,t")}
+|§1 MK, THgRT) 1 (T',t)
~[REHF T gRTH 1}
—ﬁl O TOR(TY 1) g T')]

—[K(tt)f(t, 7't gNT't)]}. (3.46h

In Eq. (3.46b, kernel K is given by Eq.(3.28, functions
gl# are defined in the previous subsection by Eql), the
coherence factox is defined in Eq(3.36), and the time shift
operator is defined in Eq3.37). Note that we suppressed

and R arguments in the entries of Eg&8.460 for brevity.

The first line in Eq.(3.46H corresponds to the classical scat-
tering off an impurity; the second and the third lines describe
the retarded interference corrections due to the returning
orbits.

One property of the kinetic equatidB.46) is worth em-
phasizing because it is a crucial check of the consistency of
the approximation we made. Consider the constant electric
field E, so that

sE

{(t)=—ct B (3.47)

Then the distribution function

f(t't/)zfF(t_tr)efieEFAi(tft'),

where the equilibrium distribution function is given by Eq.
(3.6), null both the collision integral and the left-hand side of
Eq. (3.46a3. In the energy representatiorf,(¢)="fg(e
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+eER) corresponds to the thermodynamic equilibrium of theof the collision integral Eq(3.460 with the full kernel K

system in the moving coordinate frame. replaced by, . The linear ind, term in Eq.(3.490 may be
For the small-angle scattering, see E811), we expand  g4fely omitted since it does not give rise to any effects rel-

the rotation operator ex@{,/2p;) in the powers ofi/pe and  eyant for future consideration. We kept it in EG.49 to

obtain the following expression for the kemel B§.28: display explicitly that the operatd%j is Hermitian as guar-
anteed by the relation

K=K, +Kj+K,+ko, (3.48
where the first term contains only even angular harmonics, dhs(x) .
Ix =2ixh,(x).
o _([Pebive—IRVRl-)® ((gt,t/s—ixavpa-i
1 1 ’ ~
Tir § 349 Finally, the first termiC, of the kernel Eq(3.48, see Eq.
(3.493 (3.493, is responsible for the evolution of the distribution
the second term contains odd angular harmonics, function perpendicular to the Fermi surface, which does not
mix angular harmonics of the distribution function with dif-
© _[RcVRS—iPFQ,t']'ih (Loe—INEVR)-i ferent parity. Similarly to’%i , in the first line of the collision
- Tir 2 3 integral Eq.(3.460, K, describes the classical effect of the
A, _ electric field on the electron distribution — Joule heating.
PF§h (Gre—iNGVR)-i The other terms in Eq(3.46h describe the returns of the
T s : Y (349D ¢yciotron trajectories, which may result in oscillating com-

_ o ponents of the distribution function with peridido, .%>?*We
and the third term represents the angular diffusion, remark that term Eq(3.493 of the collision integral cannot
~ ] be considered separately from inelastic processes such as the
© __ia h ((gt,t’b‘—l)\HVR)'|>a (3.490 electron-electron and electron-phonon interactions. Indeed,

e £ ¢ ' taking the zeroth angular harmonics of Eq8.463 and

R (3.493, one finds the correction to the distribution function,
The remaining ternky describes contributions which are of which grows infinitely in time. This is just a signature of the
the order of 1/pc£)? smaller. In Egs(3.49 we introduced  energy absorbed by the system from the external field. Elas-

the transport mean free time tic impurities alone cannot stabilize the distribution function.
The electron-electron interaction suppresses large deviations
1 1 dqg ) 1 1 from the Fermi distribution with some effectivd o,
. o W)=— (350 wh he el -phonon i i f
T 2| 247 T 2 whereas the electron-phonon interaction prevéigsfrom
tr ATUEPE a (peé) PR
an infinite increase.
and the dimensionless function In the remainder of the paper, we will consider only the
phenomena associated Wif[] that are not sensitive to ef-
dqePW(q)eidxé ) fects of the external field on the distribution function. There-
h _ ~1-3x (3.5 fore, we neglect the contribution to the collision integral Eq.
2(X)= ) _(1+x2)3' : (3.46h originating from the term Eq(3.493 of the kernel
f dag"W(q) Eq. (3.49. This contribution may be neglected if the energy
relaxation time is small, a condition which is generally not
Function h;(x) is defined by Eq. (3.34, and i valid. In a recent work® an estimate of the contribution to
= (cosp,sing). the dc resistivity from the oscillating component of the dis-

Let us discuss in more detail the meaning of the compotribution function was presented. When inelastic processes
nents of the kernel E¢3.48. The third term in Eq(3.48,  are weak, this contribution is larger than the contributions
given by Eq.(3.499, describes the angular diffusion. Its con- studied in the present paper. Nevertheless, the effects consid-
tribution to the collision integral suppresses angular harmonered here are robust and are described by different system
ics of the distribution function rather than the zeroth harmonparameters, therefore they deserve separate consideration.
ics. The contribution which depends on the form of the electron

The second terrfCJ- in Eq. (3.48, see Eq(3.49D, repre-  distribution function will be presented elsewhéfelhe im-
sents the scattering process accompanied by simultaneopkicit assumption everywhere will also b& (Te) <p, i.e.,
creation of odd-angular harmonics and energy shift. It is thighe electron system is degenerate.
term that is responsible for the dissipative current. When it is
sybstituted int'o'the. collision integral E@AGD, the first IV LINEAR TRANSPORT
line of the collision integral describes an instantaneous scat-
tering and gives the classical conductivity. The second and The purpose of this section is twofold) to demonstrate
third lines describe the interference due to the returns of thbow the solution of the QBE is obtained for the simplest case
cyclotron trajectories. All nonlinear effects considered in theand to reproduce relatively known resul(s) to derive for-
following sections originate from the second and third linesmulas for the spectrum which can be used as building blocks
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for consideration of more elaborate effects in the later sec- A. ac and dc transport at high temperatures
tions.

We begin with the solution of E43.39 for the spectrum.
In the linear regime, we can pbt =1 in Eq. (3.42. After
this simplification, the entries of Eq$3.39 become inde-
pendent of the angle and timet;. We find with the help of
Egs.(3.40 and(3.42

At T> w,, only the first term in Eq(4.3) remains and all
other terms are exponentially suppressed. Introduding
=p2/(27) and substituting Eqs(4.2 and (4.3) into Eq.
(3.45b, we find with the help of Eq(3.36

@y :(éat+wc)2(e2Ne)
1 2 (024 02)? \ MeTy
GRo=gf-= > | dtugRGR (1), 2l
Tqm=1 Jo C e e 27\ 2 .
X{E(t)+2> — L|11< ) E(T't)(,
o =1 |2 WcTq
gf‘=gf‘(0)=gf*1(w—c), (4.9 4.9

where the time finite shift operator is given by H8.37).

The first term in Eq(4.4) describes the usual scattering con-
tribution and the subsequent terms result from the multiple
returns to the same impurity. In the frequency representation,
Eq. (4.4 may be written as

with the initial conditionsgi=1, g*,=0.
Nonlinear recursion relation&4.1) can be resolved ex-
actly with the result

_L|l[(x+l)a] a(1=x) L2 [(x+])a]

Gi(x)= +1 + I+1 ' j@=59(w)E,,
LY (la) ot o where (¥ (w) is the conductivity tensor,
-1
= X=oo, a=——, (42 e
T WcTy () (—iwe+ wy) (e Ne
g w)=
whereL["(x) is the Laguerre polynomi&? (05— w?)? |\ MeTy
The next step is to find the distribution function. To do so, © (omllour) +i (2molley)
we use Eq(3.6) for equilibrium distribution and solve Eq. wl1+23 e e §
(3.463 to the leading order in 14.7,) <1 and in the first =1 |2
order ing(t), see Eq(3.47). In this approximation, only the
collision term (3.49H contributes. Taking the limits,—t; L (27 ]?
— (27l wy) for integerl, we find L aor | [ (4.9
275f(T't,t ) At =0, Eq. (4.5 gives the nonoscillating correction to
P the diagonal dc resistivity,,. Using w.m,>1, one writes
ToTw . = = 2 i
:—T (524_ :)2;) [prdiL(t)- I(QD)])\I*QIR Pxx= Txx(@ 0)[pxy] and Eq.(4.9) yields
tr\ ¢t c o
P B)=po 10| —— 1. (4.9
o cTq
[PEG-m(D)-iI(@)JINT)* 7T
h
Foln  2Ti-m) 9 nnere
sin
We Mg @7
- Pbp= .
n Z [PEG+m()-i(@) N7 T R 4.3 e2Ne7'tr
= 2mT(1+m) et ' is the Drude resistivity, and
We
* —al
e
where(t) is defined in Eq(3.43). no(a) =1+ 221 2 [Liq(a)]?. (4.9

Equations(4.2) and (4.3) are sufficient to calculate the
linear response of the electric current £8.45b to the ap-  The asymptotic behavior of E¢4.9) is
plied electric field within the self-consistent Born approxi-
mation at arbitrary temperatures and magnetic fields. First no(a)=1+2[e “+e 2%(1—a)?]+0(e %) (4.9
we discuss the high temperature limit>7%w., when the o
conductance is a smooth function of the applied magneti@t @>1 (weak magnetic field and
field. Then we take into accountd{ oscillations of the con- 16 fA
ductivity which appear af/w.>1 (Shubnikov—de Haas os- __\/:
cillations. : mo(e) =3\ +O(a), (4.10
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4

e '*cos2mlw

2 [Liadl))

—E fl(w,a):1+22,l

==+ Eq.(4.10)

(4.19

At weak field,a>1, functionF;(w,«) is well described by
the first few terms,

no(a)

Fi(w,a)~1+2e “cos2mw

7 1 == Fil.A9 +2e72%(1—a)?cosdmw+ ... . (4.15
] 0 1 1o 2 L .
0 At strong magnetic fieldpe<<1, we use the asymptotic ex-
0 1 2 1/a3 4 5 pression of the Laguerre polynomials in terms of the Bessel

functionsJ,(y) (Ref. 42 and obtain
FIG. 6. (Color online The solid line represents the high-

temperature magnetoresistance curve EH6), a=2m/(w.7y). o Ix/2 3,21 ’_x) 1
The dashed curve in the main panel is the high-field approximation R VAP L A P 4.1

| I—:L( X) ) . ( . @
(4.10. The dashed curve in the inset is the low-field asymptotic | VX X

expression4.9).
Substituting Eq(4.16) in Eq. (4.15 and employing the Pois-

at <1 (strong magnetic field Function 7,(«) together ~Son summation formula, we obtain far<1
with its asymptotes is plotted in Fig. 6.

Equation (4.10 was written to the leading order in 16 * m|lw—k|
1/(w. 7). To obtain the correction to the Hall coefficient one Fiw,a)=—— > M| ———|, (417
has to solve Eq(3.463 and take into account the term 3mya k== Va
(3.499 in the first-order perturbation theory. The Hall coef-
ficient can be expressed in terms of the third powers of th(¥vhere
coefficients(4.2). The final result, however, will have the )
smallness 1. 7,)? and that is why we will not write down " (X):3779(2—|X|)J'°°d o J1(X)
the explicit form of those corrections. The Hall coefficient in ! 4 0 y Y X
this approximation is

(2+x)0(2—|x])
B FulweT 8
pr:eCNe H(2c2 q)‘|1 (41])
0o Ty 2 E(Z—_X a2
x| (49 2+X 2+x) |

where F(x) vanishes exponentially at—0.

At finite frequencyw, Eq. (4.4) gives, in particular, the  rynctionsk (x) and E(x) are complete elliptic integrals of
oscillatory dependence of the absorption of microwave radiag,« first and second kind respectively, and functigg(x)

tion with field E(t) =ReE,e”'*" on frequencyw. We find can also be obtained as a convolution of two semicircle den-
. sities of states. Equatiad.12 and its asymptote@t.15 and
ReE, o 0)E,, (4.17) are consistent afo— o |7,>1 with the result of
, s 2 Ref. 23.
:(e Ne|E,|*) wct 0~ 2ww.cos2s (ﬂ 2m ) According to Eq.(4.17), at sufficiently strong magnetic
Me Ty (02— 0?)? N werg)’ field the absorption coefficienf;(w,a) vanishes at fre-

quency intervals such thaw—k|>2\/a/ 7 with integerk, as
(4.12 one may expect for the case when the density of states has
where paramete$ describes the polarization of the field by 9aPS between Landau levels, see e.g. Ref. 28. Numerical
parametrization oE,, as investigation of Fi(w, ) at intermediate vaIues_caf_~1 al-
lows us to find the threshold value of magnetic field, when
J2E the gap appears in the two-level correla}tion function within
o =e, cos3+e._sing, ei=etiée, 4.13 the SCBA; .th|s value of the magnetic field corresponds to
a~0.65. Figure 7 showsF;(w,«) for three values ofx,
including the threshold value~0.65. We note that the van-
wheree s the unit vector. For the circular polarization of the ishing of the two-level correlation function at some energy
microwave B=0,= /2. For the linear polarization along interval is an artifact of the SCBA. However, the correction
e, B=mlA4. to this resulttails in the density of statgss knowrf* to drop
The dimensionless functiofi;(w,a) =F(w+1,«) rep-  exponentially with the increase of the Landau-level index
resents the normalized coefficient of microwave absorptionand we disregard such tales in our study.

E. EX

w w
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FIG. 7. (Color onling Dependence of normalized microwave
absorption coefficientF;(w,a), see Eq.(4.14), on frequencyw
= ol o at three values ofr=2m/w.7,. The functionF;(w,«) is
periodic inw with the period 1. Note that at strong magnetic field
(«=0.3) the function vanishes at intervals arowmet k+ 1/2 with
integerk.

B. dc transport at low temperature

At low temperature, terms in the second and third lines of
Eq. (4.3 become important. Substitution of these terms into

Eq. (3.45h yields for the resistivity atw.7,>1, compare
2

with Eq. (4.6),
COS( ) 77|( ) ,
WeTy

(4.18
wherepp, is the Drude resistivity, Eq4.7), and

mpEN,
h2

c

22X

X Zm, Y(O):l.

The disorder-dependent coefficientg(a)=7n_,(a) are
given by

a([1+ K[ +k])
% |9k(@gpk(a),
(4.19
with g,(«) defined in terms of the Laguerre polynomials by
Eqg. (4.2.
The term withl=0 in Eq. (4.18 reproduces the smooth
part of the magnetoresistan¢é.6) and |=1 represent the

77|(a)=k:2w ex

Shubnikov—de Haas oscillations. The asymptotic behavior o

function 7, («) is the following. At low fields,a>1 only the
first few terms are relevant,

7]1:2970[/2"‘ 2(1_ a)e73a/2+ O(e75a/2),
7,=(3—2a)e” *+0(e 29), (4.20
73=(4—8a+3a?)e 32+ 0(e 5*?),

7]|=O(a|_1e_|a/2).
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FIG. 8. (Color onling The harmonicsy, of Shubnikov—de Haas
oscillations, Eq(4.18), as functions of magnetic field and the quan-
tum scattering timeq =27/ w7y .

At high magnetic fielde<<1, we use Eq(4.16 and obtain
for IJa<1

I
1- T+O(|4a2) .

16
e

Coefficients(«) obtained from Eqs(4.19 and Eq.(4.2)
are plotted in Fig. 8.

Below in this paper we assume that temperature is suffi-
ciently high,T> w.. This assumption allows us to disregard
the Shubnikov—de Haas oscillations in transport quantities.

In this section, we applied the quantum Boltzmann equa-
tion to calculate the linear response of electron system on the
applied electric field. The approach developed here enabled
us to describe the resistivity at arbitrary values of the param-
eter w.7y. Our findings are in accord with the results of
Refs. 1, 28, and 44 and differ by an overall numerical factor
from the corresponding result of Ref. 45. Particularly, the
strong magnetic field asymptote for the smooth part of the
magnetoresistance matches the result of Ref. 28. The ampli-
tude of the Shubnikov—de Haas oscillations calculated in this
section is consistent with the previous analysis of magnetore-
sistance oscillations in Refs. 44 and 45. We also derived an
expression for the absorption rate of microwave radiation,
Eq. (4.12. Asymptotes of our expression in weak and strong
magnetic fields coincide with the results presented in Ref.
23. Having made sure that the consequences of the quantum
Boltzmann equation are consistent with the results obtained
by different methods, we will proceed with the description of
glectron transport beyond the linear response.

77|(C¥):3 (4.2

V. NONLINEAR DC EFFECTS

A strong dc electric field produces nonlinear effectsign
the even harmonics of the distribution function, see Eq.
(3.493; and (ii) the elastic scattering processaspectrum,
see nonlinear terms in Eq3.49H. The first mechanism
roughly corresponds to the heating and it strongly affects
system properties determined directly by the electron distri-
bution function, such as Shubnikov—de Haas oscillations of
the conductivity, see Sec. IV B. As we have already noticed

035303-15



M. G. VAVILOV AND I. L. ALEINER

in Sec. lll C, the distribution function is very sensitive to the
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At weak magnetic fieldw.7,<1 we can keep only the

detalls of inelastic processes. If, however, the temperature st two nontrivial terms in Eq(5.3). Solutions of Eq(5.4)

large,

T>fiwe, (5.1

from the very beginning we can restrict our consideration to

the nonlinear effects on the electron scattering process. In t

temperature limit Eq(5.1).

Similarly to Eq.(4.3), we take into account only collision
term (3.49h. Neglecting exponentially small terms and as-
sumingw.7,>1, we solve Eq(3.46a and obtain

-1

J
2o (Tl tig) = D f(e (Tt o))
9 &
c<t1,t2;¢>=E{gzi(cp)hz(ﬁz‘z(‘p) (5.2

We notice that the distribution functioff (7't,t; ¢) does not

depend on timd. In the linear-response reginite=1, see

Eqg.(3.51), and Eq.(5.2) reduces to the first term in E.3).
Using Eq.(3.45h andN.= p2/27 we find

2rdg.
fo EI(QD)

+2|§l lez'gf*(?*t;cp)%1[gf*<?*t;so)c:<7't,t;go>]].

2eN,

j(d) =
W Ty

{&;1C(t,t;<p)

(5.3

~R —
Equation(5.3) is more complicated than its linear-response 91 (X, @)=

counterpart, because the spectrum, determinegﬁéy, ),
depends on the applied dc field. It prevents one from usin
Eq. (4.2); therefore Eq(3.39 should be solved again. Using
Eq.(3.42, and Eq.(2.2) for the ;E=0, we obtain instead of
Eq. (4.0

|
1 t
Gr(te)=gr(e)—— > fdtlgﬁhl
qm=1Jo
X(

2
g.R=g.R<o>=gF_1( "),

W¢

mE-i(¢+tiw)

EO )gﬁ—m(tl!@)y

(5.9

whereh, is defined in Eq(3.34), and we introduced a scale
for electric field

2
_mewcé
0" 2me

(5.9

Explicit angular dependence in E¢.4) makes the solution
for an arbitrary magnetic field difficult. We consider only
limiting cases of weakp.74<1, and stronge.7,>1, mag-
netic fields.

for |=1,2 are angular-independent,

|

B
E2+E3

2

wCTq

0:=00=1, g,=1-

) 1/2

remainder of the paper we consider only the hight@ubsututmg these functions into E.3) we obtain the so-

lution in the form

L E
O

|El

e’NEq

2
Mew¢ Ty

E 27

Eo WcTy

(5.6

&)

where the dimensionless functidf(x, «) in the weak mag-
netic field can be expanded as

2(1-2x%)e @
(1+ X2)5/2

2(1—8x%)e 2@
(1+4x2)52

J—'z(x,a>1)=x| 1+

X +O[e‘3“]}. (5.7

2
P

(1 +x2)1’2)
For the weak dc field§E|<E,, Eq.(5.7) matches Eq(4.9).

At strong magnetic fieldo.7,>1 the second angular har-
monics in the solution of E(5.4) is suppressed by a factor
of a=2m/(w.7,) in comparison with the zero angular har-
monics. Neglecting this correction and introducing

OR(E/Eq, ) =0[\(E/Eq,a)e ! (5.8
we obtain from Eq(5.4)

>

IR, @) R (X, @)

1- %}E}F(X,a) —a

m=1 (1+m2X2)1/2
(5.9
%quation(S.S) simplifies to
o (1-2%3) .,
For(X,a<<1l)=x 1+2|Z:1 mg|(x,a) .
(5.10

If the electric field is weak|E|<Eq/(w.7q)"2 one can
find a solution of Eq(5.9) as a correction to Eq4.2) and
use an approximation similar to EGt.16),

(X, )= \ /%Jl(Z\/W)Fl(IX;alz),
o

1, y<1
Fi(x,y)= V1+x2 (5.1
—— = y>1
2J1+x2-1

Substituting this expression into EG.10, we find with the
logarithmic accuracy fok<1
| ( ‘
n P—
X2

X

ma

16 11x?

3 4a

]:2()(,6(): 3

. (5.12
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2.0

Faolz, a)

1.5

0 0.5 1.0 2.0

X

FIG. 9. (Color online Nonlinear dependence of the dissipative

current on the applied electric fielk=E/E, at high-temperature
hw<T, for different values of the magnetic fieldsq
=27 w7y

The second term in Eq5.12) represents the suppression of
the renormalized transport time due to the applied electric

field, compare to Eq(4.10.
At strong electric field|E|>Eq/(w.7q) Y2 Eg. (5.9 can
be solved by perturbation theory in &/f7,),

NR(X ):1_ _+|_l ﬂ (5 13)
g N27= o)
This gives with the help of Eq5.10 and the Poisson sum-
mation formula

2ma 87°  2a

fz(x,a)=—2+ﬁe_7, \/;<X<1
X X

(5.19

For the strongest field€|>E, the main contribution to the
current becomes linear in field,

{(3)—2al(2)

For(X,a)=x—4 5 , x>1, (5.19

X

where(x) is the ¢ function.

Dependence aof,(X,«) onx is plotted in Fig. 9 for sev-
eral values ofa. FunctionF,(x,«) is calculated according
to Eq. (5.10 with functionsg,(x,a) obtained from the re-
cursive equation5.9). At strong magnetic field,F»(x, @)
exhibits a nonmonotonic behavior with a minimum &t
~E,. At strong electric fieldE>E,, all curves approach the
zero-magnetic-field resultF,(X,a)=x, since the strong

electric field destroys the interference effect of electron mo-

tion along cyclotron orbits.
Figure 10 shows the asymptotes of functidp(x,«) for

PHYSICAL REVIEW B 69, 035303 (2004

3
==+ Eq. (5.12) o
— Eq. (5.14) .,.t',
== Eq. (5.15) Pl
—~ e .0’.'/!
dh ‘.". ,~I
& 1 ..'. 7
o, U
1 : ’
!
»%%,
1 %
0
0 1 2 3

iy

FIG. 10. (Color online The plot shows three asymptotes of
function F,(x,a) for a=1/40: (i) for small x<1 [Eq. (5.12,
dashed ling (i) for Ja<x<1 [Eq. (5.14, solid lin€]; (i) for
largex>1 [Eq. (5.19, dot-dashed link The dotted line represents
function F,(x,a) at a= 15 calculated directly from Eq(5.10.

VI. EFFECT OF MICROWAVE RADIATION
ON DC TRANSPORT

Consider the two-dimensional electron gas in a magnetic
field w.7y>1, subjected to a monochromatic microwave ra-
diation together with the dc field

E(t)=E+ReE_e 't (6.1

where E, is a complex vector in the plane of two-
dimensional electron gas.

For the strong magnetic field when the filling factor is
small, v=1, the effect of microwave radiation was consid-
ered in detail in Ref. 9, and the linear response for the short-
range disordered was analyzed in Ref. 11. Our goal is to
extend these studies to the small-angle impurity scattering
and to the nonlinear dc response. The first direction will
make the theory more adequate for the description of the
experiments; > whereas the second development provides
the microscopic grounds of the theory of the zero-resistance
state!? The latter issue is analyzed in further detail in the
subsequent section.

To characterize the microwave power in dimensionless
units, we introduce

_wg(wg-f- w2—2waCOS2ﬂ)( wc)zEw- EX 62
2(0" =)’ mol E§ T

where the characteristic fiel&,, is defined in Eq(5.5).

The polarization of the microwave is described by the
angleB and the unit vectoe as prescribed by Eq4.13. We
will introduce also the parameter

w

+ w¢
y(w)= arcta76 - wctanB , (6.3

which describes an elliptic trajectory of a classical electron

three intervals of the strength of electric field, see Egsin the magnetic and microwave fields.

(5.12, (5.14, and (5.195. For comparison, we also show

F,(x,) calculated directly from Eq(5.10 for a= 5.

The only difference of Eq6.4) from Eq.(5.2) is the time
dependence of the distribution function and the spectrum due
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to the oscillating microwave field. Working in the approxi- both in the microwave poweP and dc electric fieldE/Eq.
mation of large Hall anglev.7,>1 and large temperature We remind that our consideration is valid for large filling
T>ho., we once again solve E¢3.46a with the collision  factorsv>1, large Hall anglew,7,>1, large temperatures

term (3.49h. We obtain T>%o, and under the conditions of the applicability of
De(27m) L self-consistent Born approximatiai3.10. Further simplifi-
STH(T't,t;0)= —"[ A OR(Le)C(T't )], cations are possible for certain limiting cases, which will be
(9 + wcd,) considered below.

Clty,th; )= , A. Weak magnetic field, w.7,<1

(6.4) In this case we can limit ourselves with only the first
nontrivial term in Eq.(6.6). Becausey, =1, further calcula-

where {(t;,t2) ={(t;) — {(tz) with vector { defined in EqQ. tion is reduced to straightforward angular and time integra-

(2.2, and\ is introduced in Eq(3.36). Explicitly, tion in Eq. (6.6). The regimes where the compact analytic

results are available are listed below.

ﬁhiﬂéK@)
£

|(§D)§(tla 2)hy (

{ty,tp) w(t,—ty)eE + [Psi w(ta—1y)

& 2mE, 2 1. Circular polarized microwave radiation
X R &(e, cosy+e_siny)e i@(tit12)/2) For the linear response in dc electric fidtd we find
+ — .
The spectrum of the system depends both on the microwave 2NLE © 2
radiation and the applied electric field. From E¢3.39, ](Cd)—( ) a3l P—, ) (6.7)
(3.40, and(3.42 we find similarly to Eq.(5.4) Mg Ty We WcTq
gf()=GRt,t=G¢R (T ,1), where dimensionless microwave power is defined in Eq.
(6.2 and
[
R R 1 =t R
gritte)=gr(te)— — 2:1 fo dtgm(tz, ¢ +ta00) e “(2—Psir’ww)
an Fa(Pw,@) =14~ oo
S
XGR n(tz L @) Z) m(tz 1), (1+Psitarw)
3’7TWP ~ging (4— Psirtmw)
mE TMw — ——Pe” *sin27w -
Z m(ty,t 1)—|(<P+t2wc) + \/7—35|n— 2 (1+ Psirtmw)?
+0(e™%). (6.8

X Re(e, cosy+e_siny)
At P=0, Eq.(6.8) matches Eq(4.9).

(6.5 The structure of Eq(6.8) deserves some additional dis-
cussion. The second term in brackets describes the effect of

whereh, is defined in Eq(3.34), time shift operator is given the microwa}ve on the elastic scattering process. In the region
by Eq. (3.3, field E, is defined in Eq(5.5), dimensionless ©f the applicability of the theoryw.74<1, its value can
power of the microwave radiatio® is given by Eq.(6.2,  hever bec_qme Iarger than the first term and their sum |s_al-
and the angley is given by Eq.(6.3). ways positive. Thls_foll_ows fr_o_m the fact that_ the elastic
We substitute the electron distribution function E6.4)  ransport cross section is positive by construction no matter
into Eq. (3.45h and obtain the following expression for the what kind of rgnormahzgtlon it acquires. The th_|rd term is
dc component of the electric current in termsgﬁ(t,go), the photovoltaic effect dlscqsged in Sec. Il. Its sign depends
compare to Eq(5.3), on the frequen(_:y of the radlatlfm and_, remarkably, on the_
power of the microwave radiation. It is noteworthy that this
2eN, (27dg term may make the current flow opposite to the electric field
j@=—— f —|(<p){ o, HC(t,t;0)) even at small magnetic field due to the presence of possibly
@WeTwr Jo large factor Grw/w, in front. Finally, we emphasize non-
o monotonic dependence of the photovoltaic effect on the mi-
+22 IN(GRT't @) (0t wedy) * crowave powef® The frequency dependence of the dc resis-
=1 tivity at weak field is plotted in Fig. 11. The corrections to
the Hall coefficient are small as 1(7,)? and will net con-

R A+, It ¢ sidered here explicitly.
X[9}(T't;)C(T LL(P)]%J, ©9 If the microwave power is small,

X e*iw(tlﬂz)ei m(Mm—2l)w/wg

and(---); stand for the time averaging over the period of the
microwave field. Equatiori6.6) together with the recursion
relation Eq.(6.5) determines the electric current to all orders Wc

035303-18



MAGNETOTRANSPORT IN A TWO-DIMENSIONA. . .. PHYSICAL REVIEW B 69, 035303 (2004

4 1.0
2 il —— P =0.00
o ili i 08— P=0.03
2 NP R R —— P =007
S - g 5
gl N _\,“ LW X /" !“ l" v/ b 06} =+ P=012
s ‘_\ ‘ ‘.“j ;~?‘ "‘.:'
0 —— 704
[y _‘! l]_," H\
' 0.2
-2
10 == P =05 0.08%& b
— P=40
===P = 0.1
-0.2
e J | 0 02 04 _ 06 08 1
N A ‘\ P K , ; €T
€ = V V ¢ FIG. 12. (Color onling Nonlinear dependence &,(x,P,w, )
on the strengthx=|E|/E, of the dc field for different values of
-5 power parameteP and forw=7.250.. Compare with Figs. 9 and
0 1 2 fu 4 5 6 11. Curves are plotted for the regime of weak magnetic field,

= and for circularly polarized microwave.
FIG. 11. (Color onling Frequency W= w/w.:) dependence of

F3(P,w,a) at fixed value of the microwave power paramefer

from Eg. (6.2 (notice that it corresponds to the actual microwave

power dependent on the frequeney in the weak magnetic field jgd):

w.7q=0.87. The upper panel presents curves corresponding to the

weak microwave fieldP<1, whereas the solid curve in the lower

panel corresponds to the strong microwave radiafierd. Curves 27w

. . . TwSI——
are calculated for the circularly polarized microwave.

e°NGE 2
— 1+2e wcTq
Mew Tty

Tw w
_67je—27'r/wc7'q Sin2—+ ¢
We We
one can expand Ed6.2) up to the first order ifP. In this 6.11)
case, the whole nonlinear dc response affected by the micro- '
wave can be found, compare with £§.6), It coincides with the corresponding expansion in E&8).
) 2. Arbitrary polarization of the microwave radiation
-gd):E %;4(@1 ,ﬂ, 2m ) (6.9 The compact results can be obtained for the first-order
|El Mewir, | Eo' '@c @cTq expansion inPsirfrolw.<1. Polarization of the microwave
is characterized by the parametefrom Eq. (6.3). We find
where . . .
D)=+ dasin2y, (6.12
FaX, P, a>1) where ¢ _repres_ents the isotropic component_ of the current
and coincides with the current produced by circularly polar-
2(1-2x%)e @ 4— 272+ 7x% ized microwave field, Eq(6.9). The anisotropic component
=X 1+ —————3Pe “sifmw——F—— is given by
(1+X2)5/2 2(1+X2)9/2
A2 s e?N.E, | E—2¢(€E) d(|E| w 2 )
—3m7wPe SI[127TW2(1+—X2)7/2 Ja mewgrt, |E| 5 an ,a)c,wch
, , E E2-2(eE)? q( [E] o 27 )
+0O(Pe %)+0(e )| (6.10 |E| |E|2 5 EO, ’wc’wch )
(6.13

FunctionZ,(x,P,w, @) is plotted in Fig. 12. One can see that \here functions for the dipole and quadruple angular har-
at large electric field>1 the Ohm law is restored and the ., nics are given by

microwave radiation becomes irrelevant in accord with the
conjecture of Ref. 12. We will discuss consequences of nega- . o\
tive values of7, in Sec. VII. Fdx,Pw a):37TWS'n27TW L 34X )it T

At weak dc field|E|<E, one can keep only terms linear (1+x2)52 (1+x2)72
in dc field in Eq.(6.9), (6.14a
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2.0 frequencyw can be taken into account perturbatively. Thus,
MagE for the redefined spectral functions according E58), we
1.5 @ obtain analogously to Eq5.9)

9R(t, @) =gf+Redg,(p)e tet-i2meloe (6,16

where the angle independent compor@'ﬁlsatisfies the fol-
lowing recursion relation:

+(d)  +(d)
Ji JH
o o =
o 3 o
>
- |
=
B
&
—~'

w
I R e
[8)]
(]

<
<

a
1—

9 1=0r

wCTq

|
o
[9)]
~
~

I ~ ~
2w EoglRfmgg

-1.0 —
WcTg m=1 (ES-F I"ﬂzEz)l/2

{1-PE(m)}, (6.17)
w/w,
and the angle-dependent componégfﬂ((p) can be found

FIG. 13. (Color onling Dependence on microwave frequency of from

the electric current for a linear polarization of the microwave field:
(i) €|[E (dashed lingand (ii) eL E (solid line). The curves are cal-

iwelw, |
culated for weak magnetic field.r,= 7 and weak power of mi- 5gR (¢)= 5gR( )+ 277\/7—)e2m olwg E = (m)gR gR
crowaveP=0.2. The strength of the electric field E|=0.5,. REAL e WeTq =y T2 I=mYm:
The plot shows that the possibility to form a current in the direction (6.18
opposite to the electric field depends on the polarization of the
microwave field. The initial conditions for the recursion relations agé

=1, 6g8=0. Above we introduced the short-hand notations
15| wwsin2arw  (3—4x?)sifrw

q _ — TMw
FxPw,a)=— (1+x2)72 + (1+x2)92 E,(m)=sir? - E2
(6.14b ¢
for P<1, a>1. 2E§—m?E?—3m?sin2y[ 2(eE)?— E?]
For the current linear in the dc field and bilinear in the X 2 Mm2E2)\2
. : = 4(Eg+mE?)
microwave field, Eq(6.12 simplifies to
(6.19
3eZN Pe*Zﬂ/wch
Sja=—— 5 [E—2e(e-B)] and
Mew Ty .
_ Mo _, (27dé 2miwg
Tw  2Tw | T® E,(m)=sin——E; —€exp —
X | —sin—— +sif—|. (6.15 We o 7 Wc
We We We
mE- i e, cosy+e_siny)-i
We emphasize that the anisotropy of the electric current ver- ><[ (¢)][2( i _Sy 5 2)/) ()]
sus the applied electric field appears both in the linear and [Eo+(mi(é)-E)]
nonlinear dc transport. (6.20

In Fig. 13, we plot the dc resistivity for the linear polar-
ization, 8= /4, of microwave field for the casds|e and  Wherey is given by Eq.(6.3). .
Ele One can see from Fig. 13 that the condition for the ~One can see that due to the oscillating fa@®t ¢/ < in
electric current to flow against the applied electric fi@ld EQ. (6.18 the contribution of this term is suppressed by ad-
depends on the polarization of the microwave field with re-ditional factor ofw./w in comparison with contribution of

spect to the direction dE. E,in Eq.(6.17). Nevertheless, eves ;, which describes the
effect of the microwave radiation on the density of states, is
B. Strong magnetic field, w1 suppressed in comparison with the photovoltaic effect by a

) o o factor of w./w. Thus, in the consideration of the transport at
In this case, Eq(6.5) can also be significantly simplified.

We will limit ourselves with the first-order expansion in mi- PE (6.20)
crowave powerP.

First we analyze the first-order correction # to the  we rep|ace§|R(t,(p), defined by Eq.(6.17), with 6|R(t,(p)
spectral functionxgjlR in Eqg. (6.5). By inspection, one can see obtained from Eq(5.9). All the further formulas of this sec-
that this equation contains terms either slowly changing durtion are valid in this high-frequency limit only.
ing the cyclotron period or oscillating with frequencies. We present the dc current in the form of £6.12), where
The term oscillating with frequency«2 does not contribute the polarization dependence is characterized by fagtdtq.
at all to the final answer, whereas the term oscillating with(6.3). Keeping in mind conditiori6.21), we obtain from Eqgs.
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FIG. 14. (Color onling Nonlinear dependence &, Eq.(6.22,
on the strengthx=|E|/E, of the dc electric field at several values of
the microwave frequencw= w/w. in strong magnetic fieldo.7,

=407 at P=0.05. i
(6.4 and (6.6) the following expressions for the functions  FIG. 15. (Color onling Dependence otFs(P,w,a) on fre-
defined in Eqs(6.9) and (6.13: quencyw= w/w, for several values of. The upper panel repre-
sents the curves calculated f@er=0.65, and the lower panel shows
FaX,P<lw>1,a<1) the curves fore=0.30; cf. Fig. 7.
3TXWP
= Fy(x,a)— > where
5 (4-133)sin(27lw) Fo(Pw,a)=li Falx. . ) ( )+3WP O Fiw.a)
- mIW)~ W, a) = lIm————=no(a) + —— —F1(W, ),
x> 92, a), (6.22 6 o x 0 2 ow’ !
=1 (1+|2X2)7/2
(6.295

and and functionsyy(a) and Fy(w,«) are defined by Eq44.8)

. and (4.14), respectively. Relation between the absorption
M’& X, ) spectrum and the microwave frequency dependence of the
S1(14+12x2)527 photovoltaic effec(6.25 was argued recently in Ref. 18 on
(6.233  the basis of a “toy model.” Dependence G(P,w,a) on
frequencyw = w/ w is shown in Fig. 15 for several values of
157w < I3sin2wlw ~> P. [Note that fixedP corresponds to the frequency depen-
5 P|=1 (1+I2x2)7’29| (X, a) dence of the actual microwave power, see @&R).]
(6.23H At strong magnetic field we use Eq4.10 and(4.17) to
' find the asymptotic form of functiotFg(P,w, @) at a<<1,

FIx,Pw,a)=37WP

fg(xyP,W,a) =

for P<1, ws>1,a<1 Here, the spectral functiony are so-

lutions of Eq.(5.9). 37 Pw m|w—K|
In Fig. 14 we presenf,(x,P,w,«) as a function of the  Fe(P.W,a)= 3nva 1+ 2 a ; Z(T

strength of the electric field=|E|/E, for several values of e “« “ 6.26

frequencyw=w/w, at strong magnetic fieldo 74=407. '

We_obggrve that t.he effect qf microwave field on dc currentyere for|x| <2

is significant only in the nonlinear regioft| <E,. At stron-

ger electric field$E|>E,, the effect of microwave on the dc 3x

current disappears, see Sec. Il for a discussion. Ho(X) = —
We also calculate the dc current linear in the dc fiEld 8

and bilinear in the microwave field. For simplicity we con- . . o

sider only the isotropic component of the current, which surand7;(x) =0 otherwise, see also discussion in the last para-

vives aty=0 in Eq. (6.12 and corresponds to the current 9raph of Sec. IV A. Functiort{,(x) has the minimum at

produced by the circular polarization. In this case we use th&min~0.834, where Hy(Xnin)~0.726.  Correspondingly,

2—X
2+X

o+ 0E| 2%~ ak
(2+x) 2+x) '

spectral functiorg,(x, ), given by Eq.(4.2) and obtain function Fg(P,w,a) becomes negative if the microwave
power P exceedsP,,iy~0.29%/a/w (herea<1 andw=1).
e2N.E This expression demonstrates that at strong magnetic fields,
(@)= ; Fe(P.W, ), (6.29 a=<1, already a weak microwave is sufficient to create a
Mew Ty state with zero-bias negative resistance.
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(6.9, and(6.13. [Tensor structure appears due to the micro-
wave radiation with polarization other than circular, see Egs.
(6.12—(6.195 and(6.23.] Microwave power is characterized
by Eq.(6.2and the fieldg, is given by Eq.(5.5). This rela-
tion is convenient to use for the Corbino disk measurement
scheme. For the Hall bar geometry E@.19 can be easily
inverted,
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g

el (71D

L
a)
£ ) A}_(J » w 2
I 4 = € ST T .
| JoPo Jo We WcTq |J|
)

where e2=—1, pp is the classical Drude resistivity.7),
G ’ =y I and

d)
i _Bo_ e
FIG. 16. (Color onlin@ Domain structure(Ref. 12 for the Jo Pxy €2

Corbino(a) and Hall bar(b) geometries. For the Hall geometry, the . . . .
applied current <L is accommodated by the shift of the domain IS the electric current scale for nonlinear effects. Equations

wall without any voltage dropy,=0. At 1>j,L (V>Ey) for the (7.1) shows that both Hall bar and Corbino measurements

Hall bar (Corbing geometry domain structure is destroyed and theShould exhibit the similar nonlinear properties, as will be
state with finite dissipation is stable). Note that the construction discussed below.

(7.2

(b) does not describe the current pattern near the leads. ~ We mainly focus our consideration on the circular polar-
ization of microwave radiation; noncircular polarization is

VIl. FORMATION OF INHOMOGENEOUS PHASES briefly discussed in the end of this section. Then, teror
AND CURRENT IN DOMAINS from Eqgs.(7.1) is reduced to scalar and the condition of the

. . . .___local stability of the state takes the fotfn
Results of the previous section qualitatively consistent

with the conclusions of Refs. 9-11 indicate that there is a ja=Xjo, E4=xEo, (7.33
region in the parameter space where the linear dissipative . )
conductivity becomes negative. According to Ref. 12, spa'vherex s the solution of
tially homogeneous state of such system is unstable and 2 2
f( © T ) 0 axf( © T )>o

break itself into the domains characterized by zero dissipa- X, P, —, X, P, —,

tive resistivity and conductivity and by the classical Hall We WcTq We WcTq

resistivity, see Fig. 16. In the analysis of such state one can (7.3

ask two main questionsi) what the spatial structure of the All the further analysis is reduced to the substituting of the

domain wall and the boundary conditions fixing the positionappropriate limit of the functiori6.9) into the stability con-

and the size of the domains ai@; what the values of the dition (7.3).

current and the electric field inside domains are; the value of The regime of the weak magnetic field= 27l weTg>1

electric field can be found by the local probe measurementis simplest. According to E(6.7), the zero current state is
The first question has to be answered by analyzing spastable if 73>0, thus the equation

tially inhomogeneous problem by taking into account the

gradient term in Eq(3.49h and the Poisson equation; this

question is left for future study. Here, we use the results of F3

Sec. VI to address the second quesfibn. _ o _
To clarify further consideration, let us discuss the relationdives the boundary between dissipative and zero resistance

between applied current and voltage in more details. In all oftate(ZRS for the Hall bar geometry or the zero conduc-

the above analysis we assumed that the electric field ~ tance state(ZCS for the Corbino disk geometry in the

applied and the currerjtis measured, the current has both P~ @ plane, whereF3(P, o/ wc,a>1) is given by Eq(6.8).

the dissipative and Hall components; the corrections to thd he curve given by Eq(7.4) is plotted in the upper panel of

Hall coefficient are small as 1¢72). Restoring the Hall Fig- 17. Forw=w/w>1, the analytic estimates for the

current, we write the expression for the total dc current up to Phase boundary” lines are

the termsO(w_ %7y 2) o2

P,ﬁ,a) -0 (7.4
wWe

2 7)'2671'Wsin271-w’ A<l (7.5
e“NgEg | -/ E w 27\ E 1.
= 2 _17)1_1_ ___SE,
MewE Ty Eo' "wc'wc7q) [El  pxy 4 »
(7.1a Py= sianTw_S P, P21 (7.5b

wherepy, is the classical Hall coefficient, see H4.11), and  The zero resistance state is impossible not only at too low
F is the tensor defined for different situations in E¢s6), microwave power but also at excessive microwave power
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lined in Sec. VI A 1 beyond the bilinear response in the mi-
A crowave field, which was not done in the present paper.
(Based on the results presented in Sec. VI A 1, only point 3
of this segment is knowpHowever, there is no reason to
expect any singular behavior of this curve.

The lower panel of Fig. 17 may be also used as a phase
diagram in theP-1 plane, wherd =jL is the total current
4.3 through the Hall bar of width. or in the -V plane for the
Corbino geometry, see Fig. 16.

We now turn to the discussion of the strong magnetic field
regimew.74>1. Naively, one would expect that increase of
the magnetic field would change the phase diagram of Fig.
17 only quantitatively by rearranging the boundary line.
However, this expectation is not correct. We start from the
phase diagram on thB-w plane, Fig. 188). The condition
2 for the boundary between the dissipative and ZZES
(7.4) is modified as

I/joL (V/EoL)

FIG. 17. (Color onling Upper panel: Phase diagram of a 2DEG w
in weak magnetic field¢=2) in P—w=w/w. coordinate§|=0 ]-"6( P,—, «a
(V=0) for the Hall bar(Corbing geometrieg Region @) is the We

dissipative state; regionB{) is the zero resistanc&onductance . .
state. Lower panel: Phase diagram éor 4.3w. (dashed line on the where F is given by Eqs(6.25 and(6.26). Solution of Eq.

upper panglin P—I coordinates for the Hall barR—V for the ~ (7.8) gives the line +-2—3 in Fig. 18a). On can see that
Corbing geometries. The zero resistaricenductancestate exists ~ the region of the instability shrinks with increasing of the
if the current through the Hall bawoltage drop between edges of Mmagnetic field. It is not the end of the story though. Accord-
the Corbino disk does not exceed the critical valuig (V). The  ing to Fig. 14, see curves fov=>5.15 andw=5.25, the state
same curve defines the value of the spontaneous cugerit,/L  with positive zero-field resistance but with dissipative elec-
(electric fieldE4q=V,./L) in domains. The line labeled by+" is tric field antiparallel to the electric current at some finite
the numerical solution of E¢(7.6) and the line “2-3" is a sche- current is possible. The boundary lipeurve 3-2—4-5 in
matic interpolation beyond the linear expansion in microwaveFig. 18a)] for such a state is given by, see also Ef3b),
power. PointsP, | are the same as in the upper panel.

=0, (7.8

2
(reentrance transitignindeed, a weak microwave radiation ]—"4<x* P, —, ) =0,
does not produce strong enough photovoltaic current to com- @e @eTq
pensate the dissipative current. On the other hand, as we
discussed in Sec. Il, strong microwave radiation suppresses OT (x D w 2w ):0 (7.9
the electron returns to the same impurity and thus destroys X7 4| T "o 0Ty ' '

the nonlinear effects.
At microwave power within the zero-resistance region,wheref, is given by Eq.(6.22. The solution of Eq(7.9) is

Eq. (7.3b has the solution at#0 shown as the line 24—5 in Fig. 18a). Therefore, the
phase diagram becomes more complicated. The region of the
w 2 ZRS (ZCS9) has the same properties as its counterpart for the

Fa| %P, w_c’wch) =0 (7.6 weak field. On the other hand, in the coexistence re¢@n

see Figs. 1&) and 18c), both the homogeneous dissipative
For the low microwave power respongg is given by Eq. state with zero current and the domain structure of the ZRS
(6.9. (ZC9 are locally stable. We believe that such bistability can

The phase boundary given by E{.6) is shown on the cause the hysteretic behavior of th&/ characteristic of the
lower panel of Fig. 17 by the42—3 curve. In the vicinity =~ sample, see Fig. 18).

of the lower boundarysegment +2) and atw> o, we The aforementioned complication translates into the
have gualitative change in the phase diagramsPiV (P-1) co-
ordinates, see Figs. (1® and 18&c) in comparison with the

Jd Jo 4(P—P) lower panel of Fig. 17. Equations for the lines on Figs(hl8
e, " \g,) V188 (7.7 and 18c) are

whereP, is given by Eq.(7.53. As the power increases, the w 27| i

current in domains reaches maximum and then decreases. 974 X’P’w_c’wch =0, lines Vi, (11

This nonmonotonic behavior is schematically shown by the 5

1-2-3 line in the lower panel of Fig. 17. The correspond- H(x,P,ﬂ, Tr >=0, line Vi (Is),

ing segment (2 3) may be obtained from calculations out- We WcTy
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w = W

Va(I3)

FIG. 18. (Color online (a) Phase diagram of a 2DEG in strong magnetic field(l) in P-w= w/ w. coordinateg| =0 (V=0) for the
Hall bar(Corbing geometrie§ The dissipativeA), the zero resistangeonductancestate 8), and the coexistence regionS) are shown.
(b,0 Phase diagrams fav/ w.=w; and o/ w,=Ww, (vertical dashed lines on the upper plaieP-1 coordinates for the Hall barR-V for
the Corbing geometries. Line¥;(13) also describe the current in domains as functions of the microwave power. The dissipative instability
region is denoted by Od,e Thel-V (V-1) characteristics for the Hall b&€Corbino disk geometries aP= P, andP=P,, respectively(f)
Relation of the position of the border lines to the results of Fig. 14.

and V=XLE, (I=xLjy). The physical meaning of those Finally, let us discuss the role of the anisotropy of the
lines is illustrated in Fig. 18). dissipative conductivity tensor in the formation of zero-

The region D in Figs. 1&®) and 18c) represents the state resistancgconductancestate for the linear polarization of
with negative differential conductandéor Corbino geom- microwave. Here, two situations are possikig;both main
etry). In this case, the homogeneous state is unstableomponents of the linear resistivity tensor are negative
whereas the zero-resistance state is not possible. The instdtough different;(ii) the main components of the linear re-
bility of the homogeneous statsee Fig. 19 leads to the sistivity tensor are of different signs, see Fig. 13. Study of
formation of the domain structure with the charge distribu-the regime(i) can be reduced to the previously studied case
tion similar to the Gunn domait?. This structure will be by rescaling of the coordinate, currents and field, such that
moving from the boundary to the boundary with the velocityequationsV-j=0, VXE=0 are kept intact. It does not
(w JF*1(2), thus the domain will be annihilated on the change the state of Ref. 12 qualitatively, though extra singu-
contact with the other one formed on the opposite contact; starities may be needed to accommodate the change in the
that the current pattern will be oscillating in time rather thanboundary conditions. For cadé), the homogeneous state
stationary. can be shown to be unstable, whereas the domain structure
with closed current loops would violate the conditigie
-dl=0, because on such contour there must be regions of
positive resistance. The details of current pattern for this case
requires further investigation; we believe, however, that the
stationary solution for this case is not possible and domains
oscillating in time will be formed.

VIIl. CONCLUSIONS

In this paper, we derived the kinetic equation within the

F self-consistent Born approximation for large filling factors.
The obtained equations are written in terms of the Green
functions integrated in the phase space in the direction per-

f*

pendicular to the Fermi surface similarly to the Eilenberger
equation for normal metals and superconductors. Our system
of equations takes into account the effect of electric and
magnetic fields on the elastic scattering process, i.e., on both
the spectral function and the electron distribution function.
FIG. 19. The schematic picture of the current distribution in the ~ Armed with the quantum kinetic equation for the limit of
instability region D for the Corbino geometry. large Hall angle, we described the following phenomeia:

E; Es
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dc and ac magnetoresistance in the linear respdging&on-  independent. Consequently, this statistical independence of
linear dc current-voltage characteristic; afiid) influence of  two processes may be revealed through the current noise in
oscillating microwave electric field on dc current. It is im- the ZRS or ZCS, which is not expected to have any singu-
portant to emphasize that the nontrivial effects of the theoryarity in this regime. The analysis of this noise can be per-
are described in terms of only two free parameters, the timéormed by a slight modification of the equations derived in
74 Which can be extracted for the Shubnikov—de Haas oscilthe present paper in the spirit of, e.g., Ref. 48 and is left as a
lations, and the characteristic electric figlg from Eq.(5.5).  subject for future research.
The major problem of the presented paper is the lack of the
consideration of the inelastic processes ar)d,.consequently, ACKNOWLEDGMENTS
effects related to the form of the electron distribution func-
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