
PHYSICAL REVIEW B 69, 035303 ~2004!
Magnetotransport in a two-dimensional electron gas at large filling factors
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We derive the quantum Boltzmann equation for the two-dimensional electron gas in a magnetic field such
that the filling factorn@1. This equation describes all of the effects of the external fields on the impurity
collision integral including Shubnikov–de Haas oscillations, the smooth part of the magnetoresistance, and
nonlinear transport. Furthermore, we obtain quantitative results for the effect of the external microwave
radiation on the linear and nonlinear dc transport in the system. Our findings are relevant for the description of
the oscillating resistivity discovered by Zudovet al., the zero-resistance state discovered by Maniet al. and
Zudov et al., and for the microscopic justification of the model of Andreevet al. We also present a semiclas-
sical picture for the qualitative consideration of the effects of the applied field on the collision integral.
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I. INTRODUCTION

The purpose of this paper is to construct the theory
scribing linear magnetotransport, the nonlinear effect of
electric field, and the effect of microwave on both linear a
nonlinear dc magnetotransport from a unified point of vie
Despite a long history of the systematic experimental a
theoretical study of the properties of two-dimensional el
tron and hole systems in semiclassically strong1 and quantiz-
ing magnetic field,2 the system still brings us surprises.

Recent experiments3–8 revealed the new class of phe
nomena.~In fact, such effects were first considered theore
cally by Ryzhii9,10 three decades ago but were not fully a
preciated.! Exposing the two-dimensional electron system
microwave radiation, Zudovet al.3 discovered the drastic os
cillations of the longitudinal resistivity as a function of th
magnetic field. The period of these oscillations was c
trolled only by the ratio of the microwave frequencyv to the
cyclotron frequencyvc . Moreover, the oscillations were ob
served at relatively high temperature,T, such that usua
Shubnikov–de Haas oscillations in the absence of mic
wave irradiation were not seen,T*\vc . Working with
cleaner samples, almost simultaneously, two experime
groups4,5 reported observations of a novel zero-resista
state in two-dimensional electron systems, appearing w
the oscillations of the resistivity hit zero. It is worth emph
sizing that the zero-resistance state was not connected to
significant features in the Hall resistivity in contrast to th
for the quantum Hall effect.2 Further experimental activity
consisted in analysis of the low-field part of the oscillatio
in order to understand the effect of the spin-orbit interacti6

and observation of the zero-conductance state in the Cor
disk geometry.7 Results4,5 were later confirmed by an inde
pendent experiment.8

Two recent theoretical papers11,12 are likely to explain the
main qualitative features of the data.3–8 Durst et al.11 pre-
sented a physical picture and a calculation of the effec
microwave radiation on the impurity scattering processes
a two-dimensional electron gas~see also Ref. 10!. In addition
to obtaining big oscillations of the magnetoresistance w
the right period of Ref. 3, the crucial result of Refs. 9–11
the existence of the regimes of magnetic field and app
0163-1829/2004/69~3!/035303~26!/$22.50 69 0353
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microwave power for which the longitudinal linear-respon
conductivity is negative,

sxx,0. ~1.1!

It was shown by Andreevet al.12 that Eq.~1.1! by itself
suffices to explain thezero-dc-resistancestate observed in
Refs. 4 and 5, independent of the details of the microsco
mechanism which gives rise to Eq.~1.1!. The essence of the
Andreevet al.12 result is that a negative linear-response co
ductance implies that the zero current state is intrinsica
unstable: the system spontaneously develops a nonvanis
local current density, which almost everywhere has a spec
magnitudej 0 determined by the condition that the comp
nent of electric field parallel to the local current vanishes,
also Sec. VII of the present paper. The existence of this
stability was shown to be the origin of the observed ze
resistance state. It is worth mentioning that the instability
the system13 with absolute negative conductivity is know
since the work of Zakharov.14 The important new feature o
the instability and the domain structure of Andreevet al. 12 is
that the instability occurs at large Hall angle; as a result,
domains for the current coincide with the domains of t
electric field directed perpendicular to the current. We wo
also like to point out the similarity with the model of photo
induced domains proposed by D’yakonov15 as an explana-
tion of the experiments on ruby crystals under intense la
irradiation.16

Subsequent theoretical works outlined the ideas17–19 of
Refs. 11 and 12, postulated20 the plasma drift instability, and
considered ‘‘a simple classical model for the negative
conductivity’’ due to nonparabolicity of the spectrum21 or
due to the lattice effects on ac-driven 2D electrons.22 We will
not discuss those works further in the present paper.

Unfortunately, a comprehensive quantitative descript
of the data3–5 is not possible within Refs. 9–11. Moreove
the phenomenology of Ref. 12 implies a certain form of t
nonlinear dc transport in the presence of microwave rad
tion which has not been microscopically justified yet. O
paper presents a program for such a description. Howe
we will not take into account effects which depend on t
©2004 The American Physical Society03-1
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distribution function and are determined by inelastic p
cesses, see Ref. 23 and Sec. II A. These effects will be
sidered elsewhere.24

The paper is organized as follows. Qualitative discuss
based on a consideration of semiclassical periodic orbit
presented in Sec. II. The quantum Boltzmann equation ap
cable for large filling factors and small-angle scattering
the impurity potential is derived in Sec. III. This equation
later used to obtain closed analytic formulas for linear
transport, Sec. IV; nonlinear dc transport, Sec. V; and
effect of microwave radiation on the dc transport, Sec.
Section VII relates the results to the model of domains
Ref. 12. Our findings are summarized in the Conclusions

II. QUALITATIVE DISCUSSION

The qualitative discussion of the effect of microwave
diation on the dc transport was presented in Refs. 9–1
terms of quantum transitions between Landau levels.
chose to utilize the fact that only electrons with lar
Landau-level indices are important and explain the effect
terms of semiclassical periodic motion. This explanation
comes especially convenient when the Landau levels are
nificantly broadened, which means that the number of rep
tions in the periodic orbit is small.~An infinite number of
repetitions of the periodic orbit would correspond to the va
ishing width of the Landau levels.! Moreover, the qualitative
picture will enable us to separate effects into two grou
according to their sensitivity to the electron distributio
function, and understand the status and validity of the
proximation which will be made in the technical part of th
paper.

To analyze the effect of external fields on the collisi
processes, it is more convenient to switch into the mov
coordinate frame

r→r2z~ t !, ~2.1!

in which the external electric field is absent. The position
the moving framez(t) is found from

] tz~ t !5S ] t2vc«̂

] t
21vc

2 D eE~ t !

me
, ~2.2!

where E(t) is the applied spatially homogeneous elect
field, me is the electron band mass,vc5eB/mec is the cy-
clotron frequency, and«̂ is the antisymmetric tensor:«xy
52«yx51,«xx5«yy50.

If there were no disorder potential, the distribution fun
tion f («) of the electrons in this moving frame would be th
Fermi function,

f ~«!5 f F~«!5
1

11e«/T
, ~2.3!

no excitations would appear and therefore no dissipative
rent would be possible. On the classical level, an elect
experiences cyclotron motion with the position of the gu
03530
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ing centerR intact. Collision with impurities moving with
velocity ] tz causes the drift of the guiding center, so that t
current density

j(d)5eNeS dR

dt D
coll

~2.4!

arises. Here,Ne is the electron density and (dR/dt)coll sym-
bolizes the probabilistic change in the position of the guid
center, to be discussed below.

Let us consider the scattering process of the electron
one impurity. Because the size of the scattering region~cor-
relation length of the potentialj) is much smaller than the
cyclotron radius, we can still characterize the scattering p
cess by the initial directioni, and the scattering angleu as
shown in Fig. 1. We consider only small-angle scattering

u!1. ~2.5!

In this case, each scattering event causes the shift in
position of the guiding center,

DR52 iRcu, ~2.6!

whereRc5vF /vc is the cyclotron radius andvF is the Fermi
velocity, see Fig. 1.

During the collision process, the impurity moves with th
velocity 2] tz(t). Because the size of the impurity is sma
and we assume thatu] tz(t)u!vF , this motion can be ne-
glected in the calculation of the scattering amplitude bu
has to be taken into account in the conservation of ene
Indeed, during the scattering event the moving impur
transfers the energyD«52] tz(t)•Dp, where the change o
the electron momentum is given by

FIG. 1. ~Color online! Scattering process off a single impurity
The inset shows the semiclassical trajectory in the vicinity of
impurity.
3-2
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Dp52 «̂ ipFu ~2.7!

for u!1, andpF5mevF is the Fermi momentum.
Taking this energy change into account, we write for t

displacement of the center of the orbit

1

Rc
S dR

dt D
coll

5 K E du
DR

Rc
E d«$ f ~«!2 f ~«1D«!%ML

i

5 K iE du uE d«
] f ~«!

]«
@] tz~ t !•Dp#ML

i

,

~2.8!

where the functionM(u) is proportional to the scatterin
cross section and is determined by the impurity potential.
will assume thatM(u) vanishes rapidly atu;\/(pFj)
!1, i.e., Eq.~2.5! holds. In Eq.~2.8!, ^•••& i stands for the
averaging over the direction of the momentum of the el
tron incoming on the impurity.

Substituting Eq.~2.7! into Eq. ~2.8!, one finds

S dR

dt D
coll

52S Rc

t tr
D S «̂] tz

vF
D , ~2.9!

where

1

t tr
5

pFvF

2 E du u2M~u! ~2.10!

is the transport scattering time at zero magnetic field.
gether with Eq.~2.4! this gives the Drude formulasxx

5e2Ne /mvc
2t tr for the large Hall anglevct tr@1.

It is not the end of the story though. Considering o
scattering event as a complete real process, we imply
there are no returns of an electron to the same impurity, o
be more precise, the possible returns are not correlated
original scattering. However, in magnetic field an electr
moves along a circle of the cyclotron radiusRc between
shattering processes. This circular motion results in co
lated returns of the electron to the same impurity.~To the
best of our knowledge, the first discussion of the magneto
sistance in terms of returning semiclassical orbits was p
formed in Ref. 25.!

Such returns do not change the structure of Eq.~2.8!, but
they do change the scattering cross sectionM(u) in com-
parison with its value in zero magnetic field. Indeed, one
see from Fig. 2 that several semiclassical paths characte
by a different number of rotations and different instances
the impurity scattering contribute to the same final state; a
plitudes for such processesAl

a(u) sum up coherently,

M~u!}U(
l ,a

Al
a~u!U2

5uA0~u!u212 Re (
l ,l 8, aÞa8

Al 8
a8~u!@Al

a~u!#* , ~2.11!

where indexl labels the number of rotations anda labels
semiclassical paths; Fig. 2 shows the paths forl 51,2, while
03530
e

e

-

-

at
to
ith

e-

e-
r-

n
ed
f
-

Fig. 1 depicts the path forl 50. Equation~2.8! takes into
account the contribution from the shortest trajectory~first
term in the second line! of Eq. ~2.11! and misses the inter
ference contributions.

To assess the role of the interference contributions, le
employ the Born approximation of the impurity scatterin
Then, each semiclassical path may involve only one sca
ing off an impurity, and all the paths are classified by~i! the
scattering angleu and ~ii ! whether the impurity affects the
electron in the beginning or in the end of the path; we w
call the corresponding amplitudesAl

.(u) and Al
,(u), see

Fig. 2. Factorizing the impurity scattering potential into t
scattering cross section at zero magnetic fieldM0(u), we
obtain

M~u!5M0~u!H 112 Re(
l ,l 8

Al 8
.

~u!@Al
,~u!#* J .

~2.12!

Equation~2.12! neglects the motion of the impurity dur
ing the whole collision process. Apparently, it is consiste
with the derivation of Eq.~2.8! where the effect of the im-
purity motion on the matrix elements was also neglect
Indeed, for the process in Fig. 1,l 50, the characteristic
scattering time can be estimated asDt5j/vF . The displace-
ment of the impurity is then uDru5u] tzu•(j/vF)!j
for u] tzu!vF , and could be neglected. However, for th
scattering shown in Fig. 2 the interfering processes
separated in time by the intervalDt52p l /vc . Displace-
ment during such an interval isDuru.u] tzu•(2p l /vc)
5u] tzu(j/vF)(2p lRc /j). BecauseRc@j, the displacement
may easily become comparable with the impurity sizej even
for u] tzu!vF . Therefore, the displacement must be tak
into account in the interference terms in Eq.~2.12!. Due to
the impurity motion, the scattering off impurity occurs
different points, see the inset in Fig. 2. In this respect,
scattering off a moving impurity is analogous to the interfe
ence in a grate interferometer with the distance between

FIG. 2. ~Color online! Different amplitude giving coherent con
tributions into the impurity scattering cross sections. The in
shows the shift of the impurity between the scattering events
moving coordinate frame.
3-3
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equal tozl(t)5z@ t2(2p l /vc)#2z(t). By analogy with the
grate interferometer, we find that Eq.~2.12! has to be modi-
fied as

M5M0~u!H 112 Re(
l ,l 8

Al 8
.

@Al
,#* expF iDp•zl~ t !

\ G J ,

~2.13!

where Dp is given by Eq. ~2.7!. Finally, the quantum-
mechanical amplitudesAl

.,,(u) can be decomposed into th
smooth prefactora and the rapidly oscillating exponent in
volving the reduced action along a semiclassical cyclot
trajectory,

Al
.,,5al

.,,expF i l S ppF
2lH

2

\2
1

2p«

\vc
D G , ~2.14!

with lH5(\c/eB)1/2 being the magnetic length.
Having investigated the effect of the returning paths

the scattering process, we are ready to write an expres
for the dissipative current. Substituting Eqs.~2.13! and
~2.14! into Eq. ~2.8!, we find

S dR

dt D
coll

5RcK iE duuM0~u!E d«
] f ~«!

]«
@] tz~ t !•Dp#

3H 112 Re(
l ,l 8

al 8
.

@al
,#* expS iDp•zl~ t !

\

1
ip~ l 82 l !pF

2lH
2

\2
1

ip~ l 82 l !«

\vc
D J L

i

. ~2.15!

Equation ~2.15! is the main qualitative result of thi
section.26 It shows that due to the presence of the return
orbits on one hand, and the largeness of the period on
other hand, the scattering process is extremely sensitiv
external fields applied to the system. As a result, a rich v
ety of effects arise. The effects can be separated into
groups:~i! sensitive to the distribution function; and~ii ! non-
sensitive to the electron distribution. We will discuss tho
groups separately in the following two subsections.

A. Effects dependent on the form of the distribution function

Retaining only the contributions from the amplitudes w
different winding numbers in Eq.~2.15!, and considering
only linear terms inz, we obtain familiar Shubnikov–de
Haas oscillationsrosc of the resistivityrxx(B),

rosc~B,T!

rxx~B50!
5 (

m51
hmYmcosS pmpF

2lH
2

\2 D , ~2.16!

where

Ym52E d«
] f ~«!

]«
expF i2pm«

\vc
G . ~2.17!

The form factorshm.( lal
,@al 1m

. #* are determined by the
impurities at which scattering may occur during the circu
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motion of the electron, see Sec. II C for a more detai
discussion. The accurate expression for the factorshm is
written in Sec. IV B.

Neglecting the effect of the applied electric field on t
electron distribution functionf («), i.e., f («)5 f F(«), see
Eq. ~2.3!, we obtain

Ym5
2p2mT

\vcsinhS 2p2mT

\vc
D . ~2.18!

Therefore, the Shubnikov–de Haas oscillations are expon
tially suppressed at high temperatureT*vc /p2.

The consideration of nonlinear effects in the applied el
tric field is a more complicated task. Indeed, electric fie
may significantly change the distribution functionf («). In
particular, the shape of the distribution function in a stro
electric field may have nothing to do with the Fermi dist
bution. Because these effects are extremely sensitive to
form of the distribution function, their description require
specifying the microscopic mechanism of the energy rel
ation.

We notice, however, that the smooth part of the elect
distribution function with the characteristic widthTeff*T
much larger thanvc results in an exponentially small contr
bution to the resistivity. Therefore, we focus our discuss
on the high-temperature limitT@\vc and neglect the
Shubnikov–de Haas contribution to the nonlinear effects
further consideration. Unfortunately, the latter restricti
does not allow us to avoid consideration of nonlinear effe
of the electric field on the electron distribution function. I
deed, the nonequilibrium component of the electron distri
tion function produced by the impurity scattering oscillat
with period\vc .23 Substitution of such as oscillating func
tion into Eq. ~2.17! results in a contribution which is no
exponentially small. An estimate23 shows that this contribu-
tion dominates the effects discussed below if the inela
relaxation processes are not too strong. A more deta
analysis of the nonlinear effects on the electron distribut
function and electron transport will be presented elsewher24

B. Effects independent of the form of distribution function

The contributions which survive the thermal or ener
averaging are only those with the same winding numbel
5 l 8. Retaining only such terms in Eq.~2.15!, we can see
that the energy dependence of the scattering cross se
vanishes, so that the energy integral can be evaluated.
result does not depend on the distribution function anymo

S dR

dt D
coll

52RcK iE duuM0~u!@] tz~ t !•Dp#

3H 112 Re(
l 51

`

al
.@al

,#* expS iDp•zl~ t !

\ D J L
i

.

~2.19!
3-4
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Therefore, all of the nonlinear phenomena come from
effect of the external fields on the scattering cross sec
itself.

We consider the system under the effect of the dc elec
field only. In this case

zl~ t !52
2p l

vc
] tz. ~2.20!

In the linear responseuDpzl u!\, we obtain that the scatter
ing rate is enhanced due to multiple returns,

rxx~B!

rxx~B50!
5112 Re(

l 51

`

al
.@al

,#* . ~2.21!

Postponing the estimate of the form factorsal
.@al

,#* .0
until Sec. II C, see also Sec. IV, we notice that Eq.~2.21!
describes positive magnetoresistance. Indeed, it is intuitiv
clear that the stronger the magnetic field, the larger the p
ability for the electron to return to the same impurity. Thu
the contribution of the sum in Eq.~2.21! increases.

One can see that the contribution of the periodic or
produces nonlinear current voltage characteristics. Ind
with the increase of the electric field,uDpzl u/\ becomes of
the order of unity. The contribution of the returns with co
responding winding numberl would be suppressed; the ele
tron afterl turns simply misses impurity. If the field is suc
that uDpzl 51u/\.1, then the contribution of all returns wil
be suppressed. As a result, at dc fields larger than some v
E0, the current voltage characteristics becomes linear
with the slope determined by the transport time in the
sence of magnetic field, see Eq.~2.10!. We estimate the value
of E0 by noticing that according to Eq.~2.2!, u] tzu
5eE0 /mvc and uz1u52pE0 /mevc

2 . Then, using uDpu
.\/j, wherej is the correlation radius of the impurity po
tential, we obtain the characteristic field

eE0.mvc
2j. ~2.22!

Accurate theory of nonlinear effects in the dc field is co
tained in Sec. V.

Assume now that the ac microwave field with the fr
quencyv is applied together with the dc field. The veloci
of electrons due to those fields] tz(t) and the displacemen
during l periodszl(t)5z(t22p l /vc)2z(t) can be found as

] tz~ t !5vdc1vzaccosvt, ~2.23!

zl~ t !52
2p lvdc

vc
22zacsinS p lv

vc
D cosS vt2

p lv

vc
D .

In the linear-response regime, those two velocities give
independent contributions to the current, i.e., dc respons
not affected by ac radiation at all. The presence of the n
linear term in the collision probability Eq.~2.19! results in
the photovoltaic effect.27 Indeed, expanding the exponent
Eq. ~2.19! up to second order and averaging the result o
time, we estimate
03530
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K ] tz~ t !expS iDp•zl~ t !

\ D L
t

'K ] tz~ t !F12
1

2\2
@Dp•zl~ t !#2G L

t

~2.24!

'vd
F 12

Dp2zac
2 sin2

p lv

vc

\2
2

2p lv

vc

Dp2zac
2 sin

2p lv

vc

\2
G .

It is important to emphasize that at the frequency of the
field commensurate with the cyclotron frequency,v5 j vc ,
the ac field does not affect the dc resistivity. This result
easy to understand by noticing that under this condition
impurity returns to its initial position during one cyclotro
period.

The last term in Eq.~2.24! represents the photovoltai
effect and deserves some attention. Substituting Eq.~2.24! in
Eq. ~2.19! and neglecting the second term in Eq.~2.24!, we
obtain

rxx~B!

rxx~0!
'112 Re(

l 51

` S 12
2k lp lv

vc
sin

2p lv

vc
Dal

.@al
,#* ,

~2.25!

wherek l}uzacu2. The physical meaning of the photovolta
term is the rectification of the ac current due to the nonlin
term in the collision integral. In the absence of the dc fie
there is no preferred direction, so that the rectified curr
vanishes, whereas application of the dc voltage defines
direction. One can see that, due to the large factor 2pv/vc
@1, this term can exceed unity even ifuDpzau&\. There-
fore, the sign of the contribution from the returning orb
may be changed in comparison with the dc result, comp
Eqs. ~2.21!and ~2.25!. The zero-voltage dc resistivity ma
become negative. Accurate results for the dc response in
presence of the microwave are collected in Sec. VI.

One last comment concerns the microscopic justificat
of the main assumption of Ref. 12, that even if the ze
dc-current resistivity under microwave radiation is negati
it becomes positive at large enough applied dc current.
deed, according to the arguments before Eq.~2.22!, the con-
tribution of the cyclotron orbits vanishes if the electric fie
is large enough. On the other hand, these are the only
tributions affected by the microwave radiation. Thus, at a
plied dc electric field exceedingE0 the current voltage char
acteristics becomes linear, with the slope determined by
transport time in the absence of magnetic field Eq.~2.10!,
and not sensitive to the effect of the microwave.

C. Form factors, self-consistent Born approximation,
and classical memory effects

Equation~2.19! derived on quite general grounds wou
describe all of the physics quantitatively if the finding of th
form factorsal

,,. were a trivial task. Unfortunately, it is no
so, and the quantitative analysis of the transport require
machinery developed in the subsequent sections. The
3-5
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pose of the present subsection is to explain the structur
the form factors qualitatively, and to clarify the physic
meaning and the status of the approximations to be
ployed.

Let us start from the contribution of the returning pat
with one turn, a1

,,. . Those factors are disorder-specifi
quantities and we have to average them over the diso
realizations. The estimate for such averaging proceeds as
lows. Let us assume that the two trajectories travel thro
the different impurities as shown in Fig. 3~a!. Then, every
impurity scattering will randomize the sign ofa1

,a1
. . There-

fore, the only remaining contribution originates from traje
tories which were not affected by other impurities during t
cyclotron motion at all. The amplitudes can be estima
from ua1

,,.u25P0(2p/vc), whereP0(t)5exp(2t/tq) is the
probability for an electron not to be scattered at an an
during timet, and

1

tq
5pFvFE duM ~u!.

pF
2j2

\2t tr

@
1

t tr
~2.26!

is the quantum lifetime. This gives the estimate~which is
actually an exact answer!

a1
,5a1

.5e2p/vctq. ~2.27!

One may naively try to estimate the contribution from t
paths with two turns from

@a2
,#25

?

P0S 2
2p

vc
D ,

which leads toa2
,5a2

.5?e22p/vctq. However, this estimate
is not correct. The reason is that the path which was scatt
off an impurity on the first turn can be rescattered off t
same impurity once again and give the contribution which
not random, see Fig. 3~a!. In the absence of the extern
electric field or microwave illumination, it gives

a2
,5a2

.5S 12
2p

vctq
De22p/vctq, ~2.28!

which differs from the naively expected value. Moreover
is clear thata2 will be affected by the motion of the impurity
i.e., the form factors by itself are functions of the dc a
microwave field~this effect was discussed from a differe
point of view in Ref. 30!.

FIG. 3. ~Color online! ~a! Pair of typical semiclassical trajecto
ries and~b! of those contributing to the classical memory effect.
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One can see, e.g., from Fig. 4~b!, that the larger the num
ber of turns, the larger the number of the returning orbits t
must be taken into account. To perform analytical calcu
tions, we utilize the self-consistent Born approximati
~SCBA! ~first used for the disordered electrons in the ma
netic field by Ando and Uemura28!. This approximation en-
ables us to describe the combinatorial factors and the ef
of the fields on the intermediate scattering processes
rectly.

The drawback of the SCBA is that the disorder potenti
acting on an electron on different semiclassical paths
assumed to be uncorrelated with each other. The justifica
of such an approximation requires that the typical dista
between trajectories, see Fig. 3~a!, be larger than the corre
lation radius of the potentialj. On the other hand, this dis
tance can be estimated asRcu.\Rc /(pFj). We obtain the
inequalityj!\Rc /(pFj) or

j2!
\Rc

pF
5lH

2 , ~2.29!

wherelH is the magnetic length. The condition of the vali
ity of the self-consistent Born approximation was first esta
lished by Raikh and Shahbazyan29 by an explicit calculation
of the first correction to the self-consistent Born approxim
tion.

The case of weak magnetic field such that only single-t
trajectories remain 1/t tr!vc!1/tq requires additional con-
sideration, even if the criterion~2.29! is satisfied. The trajec-
tories close to each other, shown in Fig. 3~b!, give the main
contribution to the interference of return trajectories, ev
though the fraction of these nontypical trajectories is sm
Indeed, these trajectories travel through the same diso
The scattering off the same disorder does not randomize
sign of the product Re(a1

,a1
.* ), and thus exponential esti

FIG. 4. ~Color online! Trajectories with~a! two and ~b! three
turns contributing to the form factorsa2,3

. ; inset, the semiclassica
path of the electron in the vicinity of the impurity.
3-6
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mate no longer holds. On the contrary, foru&\/pFj, one
can roughly estimate from Fig. 3~b!

a1
,~u!a1

.~u!.expF2
2p

vctq
S Dr

j D 2G ,
whereDr is the typical distance between trajectories. Es
matinguDru.Rcu1, one finds for the angular interval of non
typical trajectories

u1.
j

Rc
~vctq!1/25S \

pFj D S j

Rc
D S vctqpF

2j2

\2 D 1/2

5S \

pFj D S j

Rc
D ~vct tr !

1/2.

The contribution of the scattering process to the transp
scattering time~2.10!, is proportional tou1

3 and the typical
scattering angle is\/(pFj). Therefore, the relative contribu
tion to the nontypical trajectories to the change in all t
dissipative processes, say resistivity, is

Drxx

rxx
.S pFju1

\ D 3

5S j

Rc
D 3

~vct tr!
3/2. ~2.30!

This power-law dependence should replace exp(22p/vctq)
dependence in all the formulas obtained in the self-consis
Born approximation for \vc@T ~not containing the
Shubnikov–de Haas oscillatory term!.

Finally, we notice that the product of two amplitudes f
the electron propagation in the same disorder can be
scribed as the classical probability of the circular path, a
all the discussion can be recast into the notion of the class
memory effect~CME!. It is not accidental that the estima
~2.30! coincides with calculation of the CME
magnetoresistance31 up to a numerical prefactor. Accurat
calculation of the nonlinear effect within the CME mod
will not be done in the present paper. It is important to e
phasize, however, that the fact that the self-consistent B
approximation has to be corrected by the classical mem
effect affects only the overall prefactors in the nonlinear
fects and does not change the basic structure of Eq.~2.19!.32

III. QUANTUM BOLTZMANN EQUATION „QBE…

In this section, we will derive the quantum Boltzman
equation. The purpose of this derivation is to separate
contributions remaining atn@1 from the very beginning.
We use the standard Keldysh formalism for the nonequi
rium system.33,34

A. Derivation of the semiclassical transport equation

The derivation is very similar to that for the Eilenberg
equation.35,36 The matrix Green functions and the corr
sponding self-energies have the form

Ĝ5S ĜR ĜK

0 ĜAD
K

, Ŝ5S ŜR ŜK

0 ŜAD
K

, ~3.1!
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where the component of the matrices is linear operator
time space and the one-electron Hilbert space.

The equation for the Green function is

~ i ] t2Ĥ !Ĝ511ŜĜ, Ĝ~ i ] t2Ĥ !511ĜŜ, ~3.2!

whereĤ is the one-electron Hamiltonian of the clean syste
1 is the short-hand notation15I K ^ I ed(t12t2), andI K,e are
the unit matrices in the Keldysh space and the one-elec
Hilbert space, respectively.~We set\51 in all of the inter-
mediate formulas.! For the retarded Green function we us

~ i ] t2Ĥ !ĜR5d~ t2t1! Î e1ŜRĜR, ĜR~ t,t1!50,
~3.3!

and ĜA5@ĜR#†. For the Keldysh Green function it is con
venient to take the nondiagonal component of the differe
of two Eqs.~3.2!

@~ i ] t2Ĥ !;ĜK#5ŜRĜK2ĜKŜA1ŜKGA2ĜRŜK,
~3.4!

where @•;•# stands for the commutator. The next standa
step is to separate the time evolution of the occupation n
bers f̂ and the wave function of the system

ĜK5ĜR2ĜA22@ĜRf̂ 2 f̂ ĜA#. ~3.5!

In general,f̂ is an operator in both one-electron space a
the time space. In thermal equilibrium, however, one h
simply

f̂ F5E d«

2p
e2 i«(t12t2) f F~«!5

iT

2sinhpT~ t12t21 i0!
,

~3.6!

f F~«!5
1

e«/T11
,

whereT is the temperature in the energy units. Substitut
Eq. ~3.5! into Eq. ~3.4!, one obtains the kinetic equation

@~] t1 iĤ !; f̂ #5St̂f̂ , ~3.7a!

with the collision integral given by

iSt̂f [@ŜRf̂ 2 f̂ SA#1 1
2@ŜK2ŜR1ŜA#. ~3.7b!

The next step is to write down a self-energy for the ele
tron subjected to the random potentialU(r) characterized by
the correlation function

^U~r1!U~r2!&5E d2q

~2p!2
W~q!eiq(r12r2).

For the sake of concreteness we will adopt the model wi

W~q!5W~0!e2qj, ~3.8!

wherej is the disorder correlation length. Equation~3.8! is
an adequate description for the potential created by rem
donors situated on the distancej/2 from the plane of two-
3-7
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M. G. VAVILOV AND I. L. ALEINER PHYSICAL REVIEW B 69, 035303 ~2004!
dimensional electron gas. The self-consistent Born appr
mation, involving the summation of all the diagrams wi
nonintersecting impurity lines, see Fig. 5, is

Ŝ5E d2q

~2p!2
W~q!@eiqr̂Ĝe2 iqr̂#. ~3.9!

The self-consistent Born approximation is justified if tw
conditions

j!lH , ~3.10a!

sxx@
e2

2p\
~3.10b!

hold. HereinafterlH5(c\/eB)1/2 is the magnetic length
andB is the applied magnetic field. The physical meaning
the condition~3.10a! was discussed in Sec. II, see Eq.~2.29!.
Condition ~3.10b! allows us to neglect the localization e
fects shown in Fig. 5~c!. Note that the external microwav
radiation further suppresses the localization correction.39

We also assume small-angle scattering

pFj@1, ~3.11!

wherepF is the Fermi momentum. This condition is not r
ally essential for the physical processes but it allows
some technical simplifications.40 Moreover, based on
Shubnikov–de Haas data, we believe that this regime is
most relevant for the experimental situation.3–5

We will consider the system in the classically strong ma
netic field, so that the Hall anglevct tr is large @t tr is the
transport time, see Eq.~3.50! below#. The effects we will be
studying are proportional to the inverse Hall angle and v
ish in clean systems. Therefore, it is convenient to solve
time-dependent problem for the clean system first, and t
to consider the effect of the disorder on the top of this so
tion. This program is easily accomplished by using the tra
formation Eqs.~2.1!and~2.2!. Transformation~2.1! removes

FIG. 5. ~a!, ~b! Self-consistent Born approximation~SCBA!.
Diagrams~c! are the most important contributions not included
the SCBA, corresponding to the logarithmically divergent seco
loop weak localization correction~Ref. 37!, see, e.g., Ref. 38. Dia
gram @c ~i!# with one of the diffusons~d! reduced to one impurity
line describes the first contribution to the classical memory mag
toresistance~Ref. 31!.
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electric field from the Hamiltonian. Instead, the disorder p
tential becomes time-dependent. We rewrite Eq.~3.9! as

Ŝ5E d2q

~2p!2
W~q!e2 iqz12@eiqr̂Ĝe2 iqr̂#,

z125z~ t1!2z~ t2!. ~3.12!

Separating the guiding center coordinate and the cy
tron motion, we write

Ĥ5
p̂2

2me
2m, r̂5R̂1lH

2 «̂p̂, ~3.13!

wherem is the chemical potential and the operators obey
following commutation relations:

@R̂a ;R̂b#5 ilH
2 «ab , @ p̂a ; p̂b#52

i

lH
2

«ab , @R̂;p̂#50.

~3.14!

The Green functionsĜ(p̂;R̂) and the self-energiesŜ(p̂;R̂)
can be obviously written as functions of the operators~3.14!.
Using commutation relations~3.14!, we obtain from Eq.
~3.12!

Ŝ~ p̂;R̂!5E d2q

~2p!2
W12@eiq«p̂lH

2
Ĝ~ p̂;R̂~q!!e2 iq«p̂lH

2
#,

W12[W~q!e2 iqz12, R̂~q!5R̂1lH
2 «̂q. ~3.15!

Here we suppressed time indices.
The next step is to separate the motion in the phase s

into components parallel and perpendicular to the Fermi s
face. For this purpose, we parametrize the cyclotron mo
operators as

p̂x5
1

lH
S N1n̂

2
D 1/2

ei ŵ1H.c.,

p̂y5
2 i

lH
S N1n̂

2
D 1/2

ei ŵ1H.c., ~3.16!

where the integer

N5 int
m

vc

is introduced for convenience. To preserve the commuta
relations~3.14! for operators~3.16!, the commutation rela-
tion

@ n̂;ŵ#52 i ~3.17!

is imposed. It follows from Eqs.~3.17! and ~3.16! that the
integer eigenvaluesn>2N of the operatorn̂ have the mean-
ing of the Landau-level indices. The Hamiltonian~3.13! ac-
quires the form

d

e-
3-8
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Ĥ5vc@ n̂1d~m!#, d~m!5
1

2
1N2

m

vc
. ~3.18!

All the previous manipulations were valid for any ma
netic field. Now we are going to make use of the large filli
factor

N@1. ~3.19a!

We will assume that the characteristic value ofn̂ contributing
to the transport quantities is such thati n̂i!N, i.e., all the
relevant dynamics occurs in the vicinity of the Fermi lev
This assumption is justified provided that two conditions

T!N\vc , vctq!N ~3.19b!

are satisfied, withtq being the quantum elastic scatterin
time, see below. Those assumptions allow for the semic
sical consideration of the self-energy~3.12!, which is pre-
sented below.

Using Eqs.~3.19!, we expand Eq.~3.16! as

p̂x5pFcosŵ1
1

2Rc
@ n̂ei ŵ1H.c.#1•••,

p̂y5pFsinŵ2
1

2Rc
@ i n̂ei ŵ1H.c.#1•••, ~3.20!

where

pF5
A2N

lH
, Rc5A2NlH

are the Fermi momentum and the cyclotron radius, resp
tively. Substituting Eq.~3.20! into Eq. ~3.15! and keeping in
mind condition~3.11!, we find

Ŝ~ n̂;ŵ;R̂!5E d2qW12

~2p!2
@Û iÛ'Ĝ„n̂;ŵ;R̂~q!…Û'

† Û i
†#,

Û'5expF iqRcsinŵq2
iq2Rcsin2ŵq

4pF
1OS q3Rc

pF
2 D G ,

~3.21!

Û i5expH q@ n̂ei ŵq2H.c.#

2pF
J , ŵq[ŵ2fq ,

whereq5q(cosfq ;sinfq). Matrix Û' commutes withŵ, i.e.,
in the semiclassical sense it describes the scattering of
electron perpendicular to the Fermi surface. On the ot
hand, matrixÛ i changesŵ, i.e., it has the semiclassica
meaning of the evolution parallel to the Fermi surface. D
to the condition~3.19a!, those processes originate from par
metrically different values ofq and that is why they can b
considered separately. We use the parametrization

G~ n̂,ŵ !5E
0

2p du

2p
e2 iun̂G̃~u,ŵ !. ~3.22!
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Commutation relation~3.17! gives

eixsinŵe2 iun̂5e2 iun̂eixsin(ŵ1u).

Thus, using definitions of Eq.~3.21! we obtain

Û'Ĝ„n̂;ŵ;R̂~q!…Û'
†

5E
0

2p du

2p
e2 iun̂G̃~u,ŵ !expH iqRc@sin~ ŵq1u!2sinŵq#

2
iq2Rc@sin~2ŵq12u!2sin2ŵq#

4pF
J . ~3.23!

The characteristic values ofq entering into the integral can
be estimated asqRc.Rc /j@Rc /lH5A2N@1. Let us call
the argument of the exponentb(u,f). BecauseqRc@1, the
integrals will be determined by the saddle-point determin
by bu8(u,f)50, andbf8 (u,f)50 the latter condition gives
u50. Thus, we write

eib(u,f)'2pd~u!d@bu8~u,f!#,

in a sense that the saddle point integration in the LHS gi
the same result as the integration in the RHS. Employing
approximation in Eq.~3.23!and taking into accounti n̂i
!qRc ,

Û'Ĝ~ n̂;ŵ !Û'
† 5

G~0,ŵ !

qRc
dS cosŵq2

qcos2ŵq

2pF
D ,

~3.24!

where thed function has to be understood in an opera
sense.

We substitute Eq.~3.24! into Eq.~3.21!and use Eq.~3.22!
to find G̃(u50). With the help of the commutation relatio
~3.17! and using the small-angle scattering condition~3.11!,
we obtain

Ŝ~ ŵ;R̂!5
2 i

2pvF
E

2`

` dq

2p
W~q!exp@2 iqz12• «̂ iq#,

3ĝF ŵ1
q

pF
;R̂2lH

2 qiqG , ~3.25!

iq[FcosS ŵ1
q

2pF
D , sinS ŵ1

q

2pF
D G ,

where we introduced the analog of the Green function in
Eilenberger equation

ĝ~ ŵ;R̂!5 ivc(
k

Ĝ~ n̂1k;ŵ;R̂!. ~3.26!

Notice that operatorŵ commutes with all other operator
entering into Eq.~3.25!, and, therefore, it can be treated as
c number.

Equation~3.25! also can be rewritten in a different form

Ŝ t,t852 i K̂t,t8ĝ~ t,t8;w,R̂!, ~3.27!
3-9
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where the kernelKt,t8 is

Kt,t85E W~q!

4p2vF

expF q]w

2pF
Ge2 iqPi(w)expF q]w

2pF
Gdq,

~3.28!

with

P5zt,t8«̂2 ilH
2
“R . ~3.29!

This form is more convenient for the further expansion
1/jpF , as we show later.

Closing this subsection, we write down the expressio
for the variation of the electron density,dNe , and the current
density, j. Representing the coordinate operators by
~3.13! and approximating the operators with the help of E
~3.20! we obtain

dNe~r,t !52meE
0

2pdw

2p
dgK@ t,t;w,rg#,

rg5r2Rc«̂ i~w!2z~ t !, ~3.30a!

anddgK denotes the deviation of the Keldysh Green funct
from its equilibrium value in the absence of the extern
fields. The coordinatez(t) is defined in Eq.~2.2!.

For the full electric current we have

j~r,t !5eNe~r,t !] tz1 j(d)~r,t !, ~3.30b!

where the first term in the current is dissipationless. At c
stant electric field it is merely the Hall current. The seco
term is given by

j(d)~r,t !52epFE
0

2pdw

2p
i~w!gK@ t,t;w;rg#. ~3.30c!

The numerical coefficients in Eqs.~3.30a! and ~3.30c!are
written with account of the spin degeneracy, andNe is the
total electron density.

B. Equation for the spectrum

In this subsection we solve Eq.~3.3! with the Hamiltonian
~3.18! and the semiclassical self-energy~3.25!,

$ i ] t2vc@ n̂1d~m!#%GR~ t,t1 ;n̂!

5
d~ t2t1!

2p
1E

t1

t

dt2SR~ t,t2!GR~ t2 ,t1 ;n̂!. ~3.31!

Hereafter, we suppressw andR arguments in the Green func
tion and the self-energy whenever they are the same in
sides of the equations. Our purpose is to represent theGR in
terms of the Green functions~3.26! only.

For the calculation of the spectrum it is sufficient to ke
the terms only to the zeroth order in small parameterq/pF .
Equations~3.25! and ~3.27! then simplify to
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i ŜR~ ŵ;R̂!5h1F ~z12«̂2 ilH
2
“R!• i~w!

j
G ĝR@ŵ;R̂#

tq
.

~3.32!

Here

1

tq
5

1

2pvF
E dq

2p
W~q! ~3.33!

is merely the standard Born approximation for the quant
scattering time for small-angle scatterers, and the dimens
less function

h1~x!5

E dqW~q!eiqxj

E dqW~q!

5
1

11x2
~3.34!

characterizes the effect of the external electric field dur
the cyclotron motion between electron returns to the sa
impurity.

We will look for the self-energy in the form

iSR~ t,t1!5
d~ t2t1!

2tq
1(

l 51

`

l lS l
R~ T̂ l t !d~ T̂ l t2t1!,

~3.35!

where the coherence factorl describes the phase accumul
tion during one period and it is defined as

l5expS 2
p

vctq
2 i2pd~m! D , ~3.36!

andS l
R are to be found self-consistently. The time shift o

erator is defined as

T̂ l t5t2
2p l

vc
. ~3.37!

We look for the solution of Eq.~3.31! in the form

iGR~ t,t1 ;n̂,ŵ !5
e2 ivcd(m)(t2t1)e2(t2t1)/2tq

2p

3(
l

$@e2 ivcn̂tG l
R~ T̂ l t,t1 ,ŵ !eivcn̂t1#

3u~ T̂ l t2t1!u~ t12T̂ l 11t !%. ~3.38!

Substituting Eqs.~3.38! and ~3.35! into Eq. ~3.31!, and
using ei2p l n̂51, eixn̂we2 ixn̂5w1x, we obtain the chain of
equations

G l
R~ t,t1 ;ŵ !5gl

R~ t1 ;ŵ !2E
t1

t

dt2 (
m51

l

S m
R@T m2 l t2 ;ŵ

1vc~ t22t1!#G l 2m
R ~ t2 ,t1 ;ŵ !, ~3.39!

where

gl
R~ t;ŵ,R̂![G l

R~ t,t;ŵ,R̂!, ~3.40!
3-10
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G l
R~ t,t1!5G l 21

R ~ T̂ t,t1!,

with the initial conditiong0
R51.

The final step is the self-consistency procedure wh
amounts to a substitution of Eq.~3.38! into Eq. ~3.26!. It
gives41

gR~ t;t1!5
d~ t2t1!

2
1(

l 51

`

l lgl
R~ t1!d~ T̂ l t2t1!, ~3.41!

where l is defined in Eq.~3.36!. Using Eq. ~3.41! in Eq.
~3.32! and extractingSl of Eq. ~3.35!, we find

S l
R~ t,w!5h1F @zl~ t !«̂2 ilH

2
“R#• i~w!

j
Ggl

R~ t,w!

tq
.

~3.42!

We use the short-hand notation

zl~ t ![z~ T̂ 2 l t !2z~ t !, ~3.43!

where the finite time shift operator is defined in Eq.~3.37!.
Equations~3.39!–~3.42!constitute a complete system fo

the spectrum averaged over disorder. Note that the G
function Gl is expressed in terms ofGm with m, l only.

C. Equation for the distribution function

In this subsection, we will reduce Eqs.~3.7! to the canoni-
cal Boltzmann form. According to Eq.~3.25!, the self-
energiesŜ do not depend onn̂. It suggests that the distribu
tion function f̂ does not depend onn̂ either. This observation
enables us to substitute Eq.~3.5! into Eq.~3.26! and perform
the summation overk with the help of Eq.~3.41! and rela-
tions gA52@gR#†, f 5 f †. We find

1

2
@gR2gA2gK# t,t8

5 f ~ t,t8;w,R!1(
l 51

`

l lgl
R~ T̂ l t;w,R! f ~ T̂ l t,t8,w,R!

1(
l 51

`

~l l !* f ~ t,T̂ l t8,w,R!@gl
R~ T̂ l t8;w,R!#†,

~3.44!

where the coherence factorl is defined in Eq.~3.36!, and the
time shift operator is given by Eq.~3.37!.

Substitution of Eq.~3.44! into Eqs. ~3.30a! and ~3.30c!
yields the connection between the distribution functionf and
the observables,

dNe~r,t !52meE
0

2pdw

2p H d f ~ t,t;w,rg!

12 Re(
l 51

`

l lgl
R~ T̂ l t;w,rg! f ~ T̂ l t,t;w,rg!J ,

~3.45a!
03530
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j(d)~r,t !52epFE
0

2pdw

2p
i~w!H f ~ t,t;w,rg!

12 Re(
l 51

`

l lgl
R~ T̂ l t;w,rg! f ~ T̂ l t,t;w,rg!J ,

~3.45b!

where we used the short-hand notationrg5r2Rc«̂ i(w)
2z(t).

To derive the kinetic equation, we substitutef into Eqs.
~3.7!. Equation~3.7a! gives

F ]

]t
1

]

]t8
1vc

]

]wG f ~ t,t8;w,R!5St̂$ f % t,t8 .

~3.46a!

According to Eq.~3.7b!, the collision integral is defined in
terms of the electron self-energy; the latter is given by E
~3.27!. Substituting Eq.~3.27! into Eq. ~3.7b! and using the
relation Eq.~3.44!, we obtain the following expression fo
the collision integral:

St$ f % t,t852$K̂~ t,t8! f ~ t,t8!%

1(
l 51

`

l l$@K̂~ t,T̂ l t !gl
R~ T̂ l t !# f ~ T̂ l t,t8!

2@K̂~ t,t8! f ~ T̂ l t,t8!gl
R~ T̂ l t !#%

2(
l 51

`

~l* ! l$ f ~ t,T̂ l t8!@K̂~ T̂ l t8,t8!gl
A~ T̂ l t8!#

2@K̂~ t,t8! f ~ t,T̂ l t8!gl
A~ T̂ l t8!#%. ~3.46b!

In Eq. ~3.46b!, kernel K̂ is given by Eq.~3.28!, functions
gl

R,A are defined in the previous subsection by Eq.~4.1!, the
coherence factorl is defined in Eq.~3.36!, and the time shift
operator is defined in Eq.~3.37!. Note that we suppressedw
and R arguments in the entries of Eqs.~3.46b! for brevity.
The first line in Eq.~3.46b! corresponds to the classical sca
tering off an impurity; the second and the third lines descr
the retarded interference corrections due to the return
orbits.

One property of the kinetic equation~3.46! is worth em-
phasizing because it is a crucial check of the consistenc
the approximation we made. Consider the constant elec
field E, so that

z~ t !52ct
«̂E

B
. ~3.47!

Then the distribution function

f ~ t,t8!5 f F~ t2t8!e2 ieER̂(t2t8),

where the equilibrium distribution function is given by E
~3.6!, null both the collision integral and the left-hand side
Eq. ~3.46a!. In the energy representation,f («)5 f F(«
3-11
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1eER̂) corresponds to the thermodynamic equilibrium of t
system in the moving coordinate frame.

For the small-angle scattering, see Eq.~3.11!, we expand
the rotation operator exp(q]w/2pf) in the powers ofq/pF and
obtain the following expression for the kernel Eq.~3.28!:

K̂5K̂'1K̂j1K̂w1 k̂O , ~3.48!

where the first term contains only even angular harmonic

K̂'5
~@pFzt,t8«̂2 iRc“R#• i!2

t tr
h1S ~zt,t8«̂2 ilH

2
“R!• i

j
D ,

~3.49a!

the second term contains odd angular harmonics,

K̂j5
@Rc“R«̂2 ipFzt,t8#• i

t tr
h2S ~zt,t8«̂2 ilH

2
“R!• i

j
D

1
pFj

t tr
h3S ~zt,t8«̂2 ilH

2
“R!• i

j
D ]w , ~3.49b!

and the third term represents the angular diffusion,

K̂w52
1

t tr
]wh2S ~zt,t8«̂2 ilH

2
“R!• i

j
D ]w . ~3.49c!

The remaining termk̂O describes contributions which are o
the order of 1/(pFj)2 smaller. In Eqs.~3.49! we introduced
the transport mean free time

1

t tr
5

1

4pvFpF
2E dq

2p
q2W~q!.

1

tq

1

~pFj!2
~3.50!

and the dimensionless function

h2~x!5

E dqq2W~q!eiqxj

E dqq2W~q!

5
123x2

~11x2!3
. ~3.51!

Function h1(x) is defined by Eq. ~3.34!, and i
5(cosw,sinw).

Let us discuss in more detail the meaning of the com
nents of the kernel Eq.~3.48!. The third term in Eq.~3.48!,
given by Eq.~3.49c!, describes the angular diffusion. Its co
tribution to the collision integral suppresses angular harm
ics of the distribution function rather than the zeroth harm
ics.

The second termK̂j in Eq. ~3.48!, see Eq.~3.49b!, repre-
sents the scattering process accompanied by simultan
creation of odd-angular harmonics and energy shift. It is t
term that is responsible for the dissipative current. When
substituted into the collision integral Eq.~3.46b!, the first
line of the collision integral describes an instantaneous s
tering and gives the classical conductivity. The second
third lines describe the interference due to the returns of
cyclotron trajectories. All nonlinear effects considered in t
following sections originate from the second and third lin
03530
,

-

-
-

us
is
is

t-
d
e

e
s

of the collision integral Eq.~3.46b! with the full kernel K̂
replaced byK̂j . The linear in]w term in Eq.~3.49b! may be
safely omitted since it does not give rise to any effects r
evant for future consideration. We kept it in Eq.~3.49b! to
display explicitly that the operatorK̂j is Hermitian as guar-
anteed by the relation

dh3~x!

dx
52ixh2~x!.

Finally, the first termK̂' of the kernel Eq.~3.48!, see Eq.
~3.49a!, is responsible for the evolution of the distributio
function perpendicular to the Fermi surface, which does
mix angular harmonics of the distribution function with di
ferent parity. Similarly toK̂j , in the first line of the collision
integral Eq.~3.46b!, K̂' describes the classical effect of th
electric field on the electron distribution — Joule heatin
The other terms in Eq.~3.46b! describe the returns of th
cyclotron trajectories, which may result in oscillating com
ponents of the distribution function with period\vc .23,24We
remark that term Eq.~3.49a! of the collision integral canno
be considered separately from inelastic processes such a
electron-electron and electron-phonon interactions. Inde
taking the zeroth angular harmonics of Eqs.~3.46a! and
~3.49a!, one finds the correction to the distribution functio
which grows infinitely in time. This is just a signature of th
energy absorbed by the system from the external field. E
tic impurities alone cannot stabilize the distribution functio
The electron-electron interaction suppresses large deviat
from the Fermi distribution with some effectiveTeff ,
whereas the electron-phonon interaction preventsTeff from
an infinite increase.

In the remainder of the paper, we will consider only t
phenomena associated withK̂j that are not sensitive to ef
fects of the external field on the distribution function. Ther
fore, we neglect the contribution to the collision integral E
~3.46b! originating from the term Eq.~3.49a! of the kernel
Eq. ~3.48!. This contribution may be neglected if the ener
relaxation time is small, a condition which is generally n
valid. In a recent work,23 an estimate of the contribution t
the dc resistivity from the oscillating component of the d
tribution function was presented. When inelastic proces
are weak, this contribution is larger than the contributio
studied in the present paper. Nevertheless, the effects co
ered here are robust and are described by different sys
parameters, therefore they deserve separate considera
The contribution which depends on the form of the electr
distribution function will be presented elsewhere.24 The im-
plicit assumption everywhere will also be (T,Teff)!m, i.e.,
the electron system is degenerate.

IV. LINEAR TRANSPORT

The purpose of this section is twofold:~i! to demonstrate
how the solution of the QBE is obtained for the simplest ca
and to reproduce relatively known results;~ii ! to derive for-
mulas for the spectrum which can be used as building blo
3-12
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for consideration of more elaborate effects in the later s
tions.

We begin with the solution of Eq.~3.39! for the spectrum.
In the linear regime, we can puth151 in Eq. ~3.42!. After
this simplification, the entries of Eqs.~3.39! become inde-
pendent of the anglew and timet1. We find with the help of
Eqs.~3.40! and ~3.42!

G l
R~ t !5gl

R2
1

tq
(

m51

l E
0

t

dt1gm
RG l 2m

R ~ t1!,

gl
R5G l

R~0!5G l 21
R S 2p

vc
D , ~4.1!

with the initial conditionsg0
R51, g21

R 50.
Nonlinear recursion relations~4.1! can be resolved ex

actly with the result

Gl~x!5
Ll

1@~x1 l !a#

l 11
1

a~12x!Ll 21
2 @~x1 l !a#

l 11
,

gl5
Ll 21

1 ~ la!

l
, x5

vct

2p
, a5

2p

vctq
, ~4.2!

whereLl
m(x) is the Laguerre polynomial.42

The next step is to find the distribution function. To do s
we use Eq.~3.6! for equilibrium distribution and solve Eq
~3.46a! to the leading order in 1/(vct tr)!1 and in the first
order inz(t), see Eq.~3.47!. In this approximation, only the
collision term ~3.49b! contributes. Taking the limitst2→t1
2(2p l /vc) for integerl, we find

2pd f ~T l t,t;w!

5
2] t1vc]w

t tr~] t
21vc

2! H @pF] tz~ t !• i~w!#l l* gl
R

1 (
m50, mÞ l

`
@pFzl 2m~ t !• i~w!#~lm!* pT

sinh
2p2T~ l 2m!

vc

gm
R

1 (
m51

`
@pFzl 1m~ t !• i~w!#lmpT

sinh
2p2T~ l 1m!

vc

gm
RJ , ~4.3!

wherezl(t) is defined in Eq.~3.43!.
Equations~4.2! and ~4.3! are sufficient to calculate th

linear response of the electric current Eq.~3.45b! to the ap-
plied electric field within the self-consistent Born approx
mation at arbitrary temperatures and magnetic fields. F
we discuss the high temperature limit,T@\vc , when the
conductance is a smooth function of the applied magn
field. Then we take into account 1/vc oscillations of the con-
ductivity which appear atT/vc@1 ~Shubnikov–de Haas os
cillations!.
03530
c-
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A. ac and dc transport at high temperatures

At T@vc , only the first term in Eq.~4.3! remains and all
other terms are exponentially suppressed. IntroducingNe

5pF
2/(2p) and substituting Eqs.~4.2! and ~4.3! into Eq.

~3.45b!, we find with the help of Eq.~3.36!

j(d)~ t !5
~ «̂] t1vc!

2

~] t
21vc

2!2 S e2Ne

met tr
D

3H E~ t !12(
l 51

`
e2

2p l
vctq

l 2 FLl 21
1 S 2p l

vctq
D G2

E~ T̂ l t !J ,

~4.4!

where the time finite shift operator is given by Eq.~3.37!.
The first term in Eq.~4.4! describes the usual scattering co
tribution and the subsequent terms result from the multi
returns to the same impurity. In the frequency representat
Eq. ~4.4! may be written as

jv
(d)5ŝ (d)~v!Ev ,

whereŝ (d)(v) is the conductivity tensor,

ŝ (d)~v!5
~2 iv«̂1vc!

2

~vc
22v2!2 S e2Ne

met tr
D

3H 112(
l 51

`
e2 ~2p l /vctq! 1 i ~2pv l /vc!

l 2

3FLl 21
1 S 2p l

vctq
D G2J . ~4.5!

At v50, Eq. ~4.5! gives the nonoscillating correction t
the diagonal dc resistivityrxx . Using vct tr@1, one writes
rxx5sxx(v50)@rxy#

2 and Eq.~4.5! yields

rxx~B!5rDh0S 2p

vctq
D , ~4.6!

where

rD5
me

e2Net tr

~4.7!

is the Drude resistivity, and

h0~a!5112(
l 51

`
e2a l

l 2
@Ll 21

1 ~a!#2. ~4.8!

The asymptotic behavior of Eq.~4.8! is

h0~a!5112@e2a1e22a~12a!2#1O~e23a! ~4.9!

at a@1 ~weak magnetic field!, and

h0~a!5
16

3p
A1

a
1O~Aa!, ~4.10!
3-13
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at a!1 ~strong magnetic field!. Function h0(a) together
with its asymptotes is plotted in Fig. 6.

Equation ~4.10! was written to the leading order i
1/(vct tr). To obtain the correction to the Hall coefficient on
has to solve Eq.~3.46a! and take into account the term
~3.49c! in the first-order perturbation theory. The Hall coe
ficient can be expressed in terms of the third powers of
coefficients~4.2!. The final result, however, will have th
smallness 1/(vct tr)

2 and that is why we will not write down
the explicit form of those corrections. The Hall coefficient
this approximation is

rxy5
B

ecNe
F11

FH~vctq!

vc
2t tr

2 G , ~4.11!

whereFH(x) vanishes exponentially atx→0.
At finite frequencyv, Eq. ~4.4! gives, in particular, the

oscillatory dependence of the absorption of microwave ra
tion with field E(t)5ReEve2 ivt on frequencyv. We find

ReEv* sxx~v!Ev

5S e2NeuEvu2

met tr
D vc

21v222vvccos2b

~vc
22v2!2

F1S v

vc
,

2p

vctq
D ,

~4.12!

where parameterb describes the polarization of the field b
parametrization ofEv as

A2Ev

AEv•Ev*
5e1cosb1e2sinb, e65e6 i «̂e, ~4.13!

wheree is the unit vector. For the circular polarization of th
microwave b50,6p/2. For the linear polarization alon
e, b5p/4.

The dimensionless functionF1(w,a)5F1(w11,a) rep-
resents the normalized coefficient of microwave absorpti

FIG. 6. ~Color online! The solid line represents the high
temperature magnetoresistance curve Eq.~4.6!, a52p/(vctq).
The dashed curve in the main panel is the high-field approxima
~4.10!. The dashed curve in the inset is the low-field asympto
expression~4.9!.
03530
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F1~w,a!5112(
l 51

`
e2 lacos2p lw

l 2
@Ll 21

1 ~ la!#2.

~4.14!

At weak field,a@1, functionF1(w,a) is well described by
the first few terms,

F1~w,a!'112e2acos2pw

12e22a~12a!2cos4pw1 . . . . ~4.15!

At strong magnetic field,a!1, we use the asymptotic ex
pression of the Laguerre polynomials in terms of the Bes
functionsJn(y) ~Ref. 42! and obtain

e2 lx/2

l
Ll 21

1 ~ lx !'
J1~2lAx!

lAx
, l !

1

x
. ~4.16!

Substituting Eq.~4.16! in Eq. ~4.15! and employing the Pois
son summation formula, we obtain fora!1

F1~w,a!5
16

3pAa
(

k52`

`

H1S puw2ku

Aa
D , ~4.17!

where

H1~x!5
3pu~22uxu!

4 E
0

`

dycosxyFJ1~x!

x G2

5
~21x!u~22uxu!

8

3H ~41x2!ES 22x

21xD24xKS 22x

21xD J .

FunctionsK(x) and E(x) are complete elliptic integrals o
the first and second kind, respectively, and functionH1(x)
can also be obtained as a convolution of two semicircle d
sities of states. Equation~4.12! and its asymptotes~4.15! and
~4.17! are consistent atuv2vcut tr@1 with the result of
Ref. 23.

According to Eq.~4.17!, at sufficiently strong magnetic
field the absorption coefficientF1(w,a) vanishes at fre-
quency intervals such thatuw2ku.2Aa/p with integerk, as
one may expect for the case when the density of states
gaps between Landau levels, see e.g. Ref. 28. Nume
investigation ofF1(w,a) at intermediate values ofa;1 al-
lows us to find the threshold value of magnetic field, wh
the gap appears in the two-level correlation function with
the SCBA; this value of the magnetic field corresponds
a'0.65. Figure 7 showsF1(w,a) for three values ofa,
including the threshold valuea'0.65. We note that the van
ishing of the two-level correlation function at some ener
interval is an artifact of the SCBA. However, the correcti
to this result~tails in the density of states! is known43 to drop
exponentially with the increase of the Landau-level indexN
and we disregard such tales in our study.

n
c

3-14
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B. dc transport at low temperature

At low temperature, terms in the second and third lines
Eq. ~4.3! become important. Substitution of these terms in
Eq. ~3.45b! yields for the resistivity atvct tr@1, compare
with Eq. ~4.6!,

rxx~B,T!

rD
5 (

l 52`

1`

~21! lYS lT

\vc
D cosS p lpF

2lH
2

\2 D h l S 2p

vctq
D ,

~4.18!

whererD is the Drude resistivity, Eq.~4.7!, and

Y~x!5
2p2x

sinh~2p2x!
, Y~0!51.

The disorder-dependent coefficientsh l(a)5h2 l(a) are
given by

h l~a!5 (
k52`

`

expS 2
a~ u l 1ku1uku!

2 Dguku~a!gu l 1ku~a!,

~4.19!

with gl(a) defined in terms of the Laguerre polynomials
Eq. ~4.2!.

The term withl 50 in Eq. ~4.18! reproduces the smoot
part of the magnetoresistance~4.6! and l>1 represent the
Shubnikov–de Haas oscillations. The asymptotic behavio
functionh l(a) is the following. At low fields,a@1 only the
first few terms are relevant,

h152e2a/212~12a!e23a/21O~e25a/2!,

h25~322a!e2a1O~e22a!, ~4.20!

h35~428a13a2!e23a/21O~e25a/2!,

h l5O~a l 21e2 la/2!.

FIG. 7. ~Color online! Dependence of normalized microwav
absorption coefficientF1(w,a), see Eq.~4.14!, on frequencyw
5v/vc at three values ofa52p/vctq . The functionF1(w,a) is
periodic inw with the period 1. Note that at strong magnetic fie
(a50.3) the function vanishes at intervals aroundw5k11/2 with
integerk.
03530
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At high magnetic fielda!1, we use Eq.~4.16! and obtain
for lAa!1

h l~a!5
16

3pAa
F12

2l 2a

5
1O~ l 4a2!G . ~4.21!

Coefficientsh l(a) obtained from Eqs.~4.19! and Eq.~4.2!
are plotted in Fig. 8.

Below in this paper we assume that temperature is su
ciently high,T@vc . This assumption allows us to disrega
the Shubnikov–de Haas oscillations in transport quantitie

In this section, we applied the quantum Boltzmann eq
tion to calculate the linear response of electron system on
applied electric field. The approach developed here ena
us to describe the resistivity at arbitrary values of the para
eter vctq . Our findings are in accord with the results
Refs. 1, 28, and 44 and differ by an overall numerical fac
from the corresponding result of Ref. 45. Particularly, t
strong magnetic field asymptote for the smooth part of
magnetoresistance matches the result of Ref. 28. The am
tude of the Shubnikov–de Haas oscillations calculated in
section is consistent with the previous analysis of magnet
sistance oscillations in Refs. 44 and 45. We also derived
expression for the absorption rate of microwave radiati
Eq. ~4.12!. Asymptotes of our expression in weak and stro
magnetic fields coincide with the results presented in R
23. Having made sure that the consequences of the quan
Boltzmann equation are consistent with the results obtai
by different methods, we will proceed with the description
electron transport beyond the linear response.

V. NONLINEAR DC EFFECTS

A strong dc electric field produces nonlinear effects on~i!
the even harmonics of the distribution function, see E
~3.49a!; and ~ii ! the elastic scattering processes~spectrum!,
see nonlinear terms in Eq.~3.49b!. The first mechanism
roughly corresponds to the heating and it strongly affe
system properties determined directly by the electron dis
bution function, such as Shubnikov–de Haas oscillations
the conductivity, see Sec. IV B. As we have already notic

FIG. 8. ~Color online! The harmonicsh l of Shubnikov–de Haas
oscillations, Eq.~4.18!, as functions of magnetic field and the qua
tum scattering time,a52p/vctq .
3-15
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in Sec. III C, the distribution function is very sensitive to th
details of inelastic processes. If, however, the temperatu
large,

T@\vc , ~5.1!

from the very beginning we can restrict our consideration
the nonlinear effects on the electron scattering process. In
remainder of the paper we consider only the hig
temperature limit Eq.~5.1!.

Similarly to Eq.~4.3!, we take into account only collision
term ~3.49b!. Neglecting exponentially small terms and a
sumingvct tr@1, we solve Eq.~3.46a! and obtain

2pd f ~T l t,t;w!5
pF]w

21

vct tr
@l l* gl

R~w!C~T l t,t;w!#,

C~ t1 ,t2 ;w!5
]

]t2
F z12• i~w!h2S z12«̂ i~w!

j
D G . ~5.2!

We notice that the distribution functiond f (T l t,t;w) does not
depend on timet. In the linear-response regimeh251, see
Eq. ~3.51!, and Eq.~5.2! reduces to the first term in Eq.~4.3!.

Using Eq.~3.45b! andNe5pF
2/2p we find

j(d)5
2eNe

vct tr
E

0

2pdw

2p
i~w!H ]w

21C~ t,t;w!

12(
l 51

`

ulu2lgl
R~ T̂ l t;w!]w

21@gl
R~ T̂ l t;w!C~T l t,t;w!#J .

~5.3!

Equation~5.3! is more complicated than its linear-respon
counterpart, because the spectrum, determined bygl

R(t,w),
depends on the applied dc field. It prevents one from us
Eq. ~4.2!; therefore Eq.~3.39! should be solved again. Usin
Eq. ~3.42!, and Eq.~2.2! for the] tE50, we obtain instead o
Eq. ~4.1!

G l
R~ t,w!5gl

R~w!2
1

tq
(

m51

l E
0

t

dt1gm
Rh1

3S mE• i~w1t1vc!

E0
DG l 2m

R ~ t1 ,w!,

gl
R5G l

R~0!5G l 21
R S 2p

vc
D , ~5.4!

whereh1 is defined in Eq.~3.34!, and we introduced a scal
for electric field

E05
mevc

2j

2pe
. ~5.5!

Explicit angular dependence in Eq.~5.4! makes the solution
for an arbitrary magnetic field difficult. We consider on
limiting cases of weak,vctq!1, and strong,vctq@1, mag-
netic fields.
03530
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At weak magnetic field,vctq!1 we can keep only the
first two nontrivial terms in Eq.~5.3!. Solutions of Eq.~5.4!
for l 51,2 are angular-independent,

g15g051, g2512
2p

vctq
S E0

2

E21E0
2D 1/2

.

Substituting these functions into Eq.~5.3! we obtain the so-
lution in the form

j(d)5
E

uEu S e2NeE0

mevc
2t tr

DF2S E

E0
,

2p

vctq
D , ~5.6!

where the dimensionless functionF2(x,a) in the weak mag-
netic field can be expanded as

F2~x,a@1!5xH 11
2~122x2!e2a

~11x2!5/2
1

2~128x2!e22a

~114x2!5/2

3S 12
a

~11x2!1/2D 2

1O@e23a#J . ~5.7!

For the weak dc fields,uEu!E0, Eq. ~5.7! matches Eq.~4.9!.
At strong magnetic fieldvctq@1 the second angular har

monics in the solution of Eq.~5.4! is suppressed by a facto
of a52p/(vctq) in comparison with the zero angular ha
monics. Neglecting this correction and introducing

g̃l
R~E/E0 ,a!5gl

R~E/E0 ,a!e2a l /2 ~5.8!

we obtain from Eq.~5.4!

g̃l 11
R ~x,a!5F12

a

2G g̃l
R~x,a!2a (

m51

l g̃m
R~x,a!g̃l 2m

R ~x,a!

~11m2x2!1/2
.

~5.9!

Equation~5.3! simplifies to

F2~x,a!1!5xF112(
l 51

`
~122l 2x2!

~11 l 2x2!5/2
g̃l

2~x,a!G .

~5.10!

If the electric field is weak,uEu!E0 /(vctq)1/2, one can
find a solution of Eq.~5.9! as a correction to Eq.~4.2! and
use an approximation similar to Eq.~4.16!,

g̃l~x,a!5A 1

a l 2
J1~2Aa l 2!G1~ lx;a l 2!,

G1~x,y!5H 1, y!1

A11x2

2A11x221
, y@1.

~5.11!

Substituting this expression into Eq.~5.10!, we find with the
logarithmic accuracy forx!1

F2~x,a!5
x

pAa
F16

3
2

11x2

4a
lnS a

x2D G . ~5.12!
3-16
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The second term in Eq.~5.12! represents the suppression
the renormalized transport time due to the applied elec
field, compare to Eq.~4.10!.

At strong electric field,uEu@E0 /(vctq)1/2, Eq. ~5.9! can
be solved by perturbation theory in 1/(vctq),

g̃l
R~x,a!512aS l

2
1 (

m51

l 21
~ l 2m!

~11m2x2!1/2D . ~5.13!

This gives with the help of Eq.~5.10! and the Poisson sum
mation formula

F2~x,a!5
2pa

x2
1

8p2

x3/2
e2

2p
x , Aa!x!1. ~5.14!

For the strongest fieldsuEu@E0 the main contribution to the
current becomes linear in field,

F2~x,a!5x24
z~3!22az~2!

x2
, x@1, ~5.15!

wherez(x) is thez function.
Dependence ofF2(x,a) on x is plotted in Fig. 9 for sev-

eral values ofa. FunctionF2(x,a) is calculated according
to Eq. ~5.10! with functions g̃l(x,a) obtained from the re-
cursive equation~5.9!. At strong magnetic field,F2(x,a)
exhibits a nonmonotonic behavior with a minimum atE
;E0. At strong electric field,E@E0, all curves approach the
zero-magnetic-field result,F2(x,a)5x, since the strong
electric field destroys the interference effect of electron m
tion along cyclotron orbits.

Figure 10 shows the asymptotes of functionF2(x,a) for
three intervals of the strength of electric field, see E
~5.12!, ~5.14!, and ~5.15!. For comparison, we also sho
F2(x,a) calculated directly from Eq.~5.10! for a5 1

40 .

FIG. 9. ~Color online! Nonlinear dependence of the dissipati
current on the applied electric fieldx5E/E0 at high-temperature
\vc!T, for different values of the magnetic fields,a
52p/vctq .
03530
ic
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VI. EFFECT OF MICROWAVE RADIATION
ON DC TRANSPORT

Consider the two-dimensional electron gas in a magn
field vct tr@1, subjected to a monochromatic microwave r
diation together with the dc field

E~ t !5E1ReEve2 ivt, ~6.1!

where Ev is a complex vector in the plane of two
dimensional electron gas.

For the strong magnetic field when the filling factor
small, n.1, the effect of microwave radiation was consi
ered in detail in Ref. 9, and the linear response for the sh
range disordered was analyzed in Ref. 11. Our goal is
extend these studies to the small-angle impurity scatte
and to the nonlinear dc response. The first direction w
make the theory more adequate for the description of
experiments,3–5,7 whereas the second development provid
the microscopic grounds of the theory of the zero-resista
state.12 The latter issue is analyzed in further detail in t
subsequent section.

To characterize the microwave power in dimensionle
units, we introduce

P5
vc

2~vc
21v222vvccos2b!

2~v22vc
2!2 S vc

pv D 2Ev•Ev*

E0
2

, ~6.2!

where the characteristic field,E0, is defined in Eq.~5.5!.
The polarization of the microwave is described by t

angleb and the unit vectore as prescribed by Eq.~4.13!. We
will introduce also the parameter

g~v!5arctanS v1vc

v2vc
tanb D , ~6.3!

which describes an elliptic trajectory of a classical electr
in the magnetic and microwave fields.

The only difference of Eq.~6.4! from Eq.~5.2! is the time
dependence of the distribution function and the spectrum

FIG. 10. ~Color online! The plot shows three asymptotes
function F2(x,a) for a51/40: ~i! for small x!1 @Eq. ~5.12!,
dashed line#; ~ii ! for Aa!x!1 @Eq. ~5.14!, solid line#; ~iii ! for
largex@1 @Eq. ~5.15!, dot-dashed line#. The dotted line represent
function F2(x,a) at a5

1
40 calculated directly from Eq.~5.10!.
3-17
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to the oscillating microwave field. Working in the approx
mation of large Hall anglevct tr@1 and large temperatur
T@\vc , we once again solve Eq.~3.46a! with the collision
term ~3.49b!. We obtain

d f ~T l t,t;w!5
pF~2pt tr!

21

~] t1vc]w!
@l l* gl

R~ t,w!C~T l t,t;w!#,

C~ t1 ,t2 ;w!5
]

]t2
F i~w!z~ t1 ,t2!h2S z~ t1 ,t2!«̂ i~w!

j
D G ,

~6.4!

where z(t1 ,t2)[z(t1)2z(t2) with vector z defined in Eq.
~2.2!, andl is introduced in Eq.~3.36!. Explicitly,

z~ t1 ,t2!

j
5

vc~ t22t1!«̂E

2pE0
1APsin

v~ t22t1!

2

3Re@ «̂~e1cosg1e2sing!e2 iv(t11t2)/2#.

The spectrum of the system depends both on the microw
radiation and the applied electric field. From Eqs.~3.39!,
~3.40!, and~3.42! we find similarly to Eq.~5.4!

gl
R~ t !5G l

R~ t,t !5G l 21
R ~ T̂ 21t,t !,

G l
R~ t,t1 ,w!5gl

R~ t,w!2
1

tq
(

m51

l E
0

t2t1
dt2gm

R~ t2 ,w1t2vc!

3G l 2m
R ~ t2 ,t,w!h1@Zl ,m~ t2 ,t1!#,

Zl ,m~ t2 ,t1!5 i~w1t2vc!FmE

E0
1APsin

pmv

vc

3Re~e1cosg1e2sing!

3e2 iv(t11t2)eip(m22l )v/vcG , ~6.5!

whereh1 is defined in Eq.~3.34!, time shift operator is given
by Eq. ~3.37!, field E0 is defined in Eq.~5.5!, dimensionless
power of the microwave radiationP is given by Eq.~6.2!,
and the angleg is given by Eq.~6.3!.

We substitute the electron distribution function Eq.~6.4!
into Eq. ~3.45b! and obtain the following expression for th
dc component of the electric current in terms ofgl

R(t,w),
compare to Eq.~5.3!,

j(d)5
2eNe

vct tr
E

0

2pdw

2p
i~w!H ]w

21^C~ t,t;w!& t

12(
l 51

`

ulu2l^gl
R~ T̂ l t;w!~] t1vc]w!21

3@gl
R~ T̂ l t;w!C~T l t,t;w!#& tJ , ~6.6!

and^•••& t stand for the time averaging over the period of t
microwave field. Equation~6.6! together with the recursion
relation Eq.~6.5! determines the electric current to all orde
03530
ve

both in the microwave powerP and dc electric fieldE/E0.
We remind that our consideration is valid for large fillin
factorsn@1, large Hall anglevct tr@1, large temperatures
T@\vc , and under the conditions of the applicability o
self-consistent Born approximation~3.10!. Further simplifi-
cations are possible for certain limiting cases, which will
considered below.

A. Weak magnetic field,vctq™1

In this case we can limit ourselves with only the fir
nontrivial term in Eq.~6.6!. Becauseg151, further calcula-
tion is reduced to straightforward angular and time integ
tion in Eq. ~6.6!. The regimes where the compact analy
results are available are listed below.

1. Circular polarized microwave radiation

For the linear response in dc electric fieldE, we find

jc
(d)5S e2NeE

mevc
2t tr

DF3S P,
v

vc
,

2p

vctq
D , ~6.7!

where dimensionless microwave power is defined in E
~6.2! and

F3~P,w,a!511
e2a~22Psin2pw!

~11Psin2pw!5/2

2
3pw

2
Pe2asin2pw

~42Psin2pw!

~11Psin2pw!7/2

1O~e22a!. ~6.8!

At P50, Eq. ~6.8! matches Eq.~4.9!.
The structure of Eq.~6.8! deserves some additional dis

cussion. The second term in brackets describes the effe
the microwave on the elastic scattering process. In the reg
of the applicability of the theoryvctq!1, its value can
never become larger than the first term and their sum is
ways positive. This follows from the fact that the elas
transport cross section is positive by construction no ma
what kind of renormalization it acquires. The third term
the photovoltaic effect discussed in Sec. II. Its sign depe
on the frequency of the radiationv and, remarkably, on the
power of the microwave radiation. It is noteworthy that th
term may make the current flow opposite to the electric fi
even at small magnetic field due to the presence of poss
large factor 6pv/vc in front. Finally, we emphasize non
monotonic dependence of the photovoltaic effect on the
crowave power.46 The frequency dependence of the dc res
tivity at weak field is plotted in Fig. 11. The corrections
the Hall coefficient are small as 1/(vct tr)

2 and will net con-
sidered here explicitly.

If the microwave power is small,

Psin2
pv

vc
!1,
3-18
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one can expand Eq.~6.2! up to the first order inP. In this
case, the whole nonlinear dc response affected by the m
wave can be found, compare with Eq.~5.6!,

jc
(d)5

E

uEu
e2NeE0

mevc
2t tr

F4S uEu
E0

,P,
v

vc
,

2p

vctq
D , ~6.9!

where

F4~x,P,w,a@1!

5xF11
2~122x2!e2a

~11x2!5/2
23Pe2asin2pw

4227x217x4

2~11x2!9/2

23pwPe2asin2pw
42x2

2~11x2!7/2

1O~P 2e2a!1O~e22a!G . ~6.10!

FunctionF4(x,P,w,a) is plotted in Fig. 12. One can see th
at large electric fieldx@1 the Ohm law is restored and th
microwave radiation becomes irrelevant in accord with
conjecture of Ref. 12. We will discuss consequences of ne
tive values ofF4 in Sec. VII.

At weak dc field,uEu!E0 one can keep only terms linea
in dc field in Eq.~6.9!,

FIG. 11. ~Color online! Frequency (w5v/vc) dependence of
F3(P,w,a) at fixed value of the microwave power parameterP
from Eq. ~6.2! ~notice that it corresponds to the actual microwa
power dependent on the frequencyv) in the weak magnetic field
vctq50.8p. The upper panel presents curves corresponding to
weak microwave field,P&1, whereas the solid curve in the lowe
panel corresponds to the strong microwave radiationP54. Curves
are calculated for the circularly polarized microwave.
03530
o-
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jc
(d)5S e2NeE

mevc
2t tr

D H 112e2
2p

vctq

26Pe22p/vctqS sin2
pv

vc
1

pvsin
2pv

vc

vc

D J .

~6.11!

It coincides with the corresponding expansion in Eq.~6.8!.

2. Arbitrary polarization of the microwave radiation

The compact results can be obtained for the first-or
expansion inPsin2pv/vc!1. Polarization of the microwave
is characterized by the parameterg from Eq. ~6.3!. We find

j(d)~g!5 jc
(d)1d jasin2g, ~6.12!

where jc
(d) represents the isotropic component of the curr

and coincides with the current produced by circularly pol
ized microwave field, Eq.~6.9!. The anisotropic componen
is given by

d ja5
e2NeE0

mevc
2t tr

H E22e~eE!

uEu
F 5

dS uEu
E0

,P,
v

vc
,

2p

vctq
D

2
E

uEu
E222~eE!2

uEu2
F 5

qS uEu
E0

,P,
v

vc
,

2p

vctq
D J ,

~6.13!

where functions for the dipole and quadruple angular h
monics are given by

F 5
d~x,P,w,a!5

3pwsin2pw

~11x2!5/2
1

3~124x2!sin2pv

~11x2!7/2
,

~6.14a!

e

FIG. 12. ~Color online! Nonlinear dependence ofF4(x,P,w,a)
on the strengthx5uEu/E0 of the dc field for different values of
power parameterP and forv57.25vc . Compare with Figs. 9 and
11. Curves are plotted for the regime of weak magnetic fieldvctq

5p and for circularly polarized microwave.
3-19
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F 5
q~x,P,w,a!5

15

2 Fpwsin2pw

~11x2!7/2
1

~324x2!sin2pv

~11x2!9/2 G
~6.14b!

for P!1, a@1.
For the current linear in the dc field and bilinear in t

microwave field, Eq.~6.12! simplifies to

d ja5
3e2NePe22p/vctq

mevc
2t tr

@E22e~e•E!#

3S pv

vc
sin

2pv

vc
1sin2

pv

vc
D . ~6.15!

We emphasize that the anisotropy of the electric current
sus the applied electric field appears both in the linear
nonlinear dc transport.

In Fig. 13, we plot the dc resistivity for the linear pola
ization, b5p/4, of microwave field for the casesEie and
E'e. One can see from Fig. 13 that the condition for t
electric current to flow against the applied electric fieldE
depends on the polarization of the microwave field with
spect to the direction ofE.

B. Strong magnetic field,vctqš1

In this case, Eq.~6.5! can also be significantly simplified
We will limit ourselves with the first-order expansion in m
crowave powerP.

First we analyze the first-order correction inP to the
spectral functionsgl

R in Eq. ~6.5!. By inspection, one can se
that this equation contains terms either slowly changing d
ing the cyclotron period or oscillating with frequenciesnv.
The term oscillating with frequency 2v does not contribute
at all to the final answer, whereas the term oscillating w

FIG. 13. ~Color online! Dependence on microwave frequency
the electric current for a linear polarization of the microwave fie
~i! eiE ~dashed line! and ~ii ! e'E ~solid line!. The curves are cal-
culated for weak magnetic fieldvctq5p and weak power of mi-
crowaveP50.2. The strength of the electric field isuEu50.5E0.
The plot shows that the possibility to form a current in the direct
opposite to the electric field depends on the polarization of
microwave field.
03530
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frequencyv can be taken into account perturbatively. Thu
for the redefined spectral functions according Eq.~5.8!, we
obtain analogously to Eq.~5.9!

g̃l
R~ t,w!5g̃l

R1Redg̃l~w!e2 ivt2 i2p lv/vc, ~6.16!

where the angle independent componentg̃l
R satisfies the fol-

lowing recursion relation:

g̃l 11
R 5g̃l

RF12
p

vctq
G

2
2p

vctq
(

m51

l E0g̃l 2m
R g̃m

R

~E0
21m2E2!1/2

$12PJ1~m!%, ~6.17!

and the angle-dependent componentdgl 11
R (w) can be found

from

dgl 11
R ~w!5dgl

R~w!1
2pAPe2p ivw/vc

vctq
(

m51

l

J2~m!gl 2m
R gm

R.

~6.18!

The initial conditions for the recursion relations areg0
R

51, dg0
R50. Above we introduced the short-hand notatio

J1~m!5sin2
pmv

vc
E0

2

3
2E0

22m2E223m2sin2g@2~eE!22E2#

4~E0
21m2E2!2

~6.19!

and

J2~m!5sin
pmv

vc
E0

4E
0

2pdf

p
expS 2

2p ivf

vc
D

3
@mE• i~f!#@~e1cosg1e2sing!• i~f!#

@E0
21~mi~f!•E!2#2

,

~6.20!

whereg is given by Eq.~6.3!.
One can see that due to the oscillating factore2p ivw/vc in

Eq. ~6.18! the contribution of this term is suppressed by a
ditional factor ofvc /v in comparison with contribution of
J1 in Eq. ~6.17!. Nevertheless, evenJ1, which describes the
effect of the microwave radiation on the density of states
suppressed in comparison with the photovoltaic effect b
factor ofvc /v. Thus, in the consideration of the transport

v@vc , ~6.21!

we replaceg̃l
R(t,w), defined by Eq.~6.17!, with g̃l

R(t,w)
obtained from Eq.~5.9!. All the further formulas of this sec-
tion are valid in this high-frequency limit only.

We present the dc current in the form of Eq.~6.12!, where
the polarization dependence is characterized by factorg, Eq.
~6.3!. Keeping in mind condition~6.21!, we obtain from Eqs.

:

e

3-20
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~6.4! and ~6.6! the following expressions for the function
defined in Eqs.~6.9! and ~6.13!:

F4~x,P!1,w@1,a!1!

5F2~x,a!2
3pxwP

2

3(
l 51

`
~42 l 2x2!sin~2p lw !

~11 l 2x2!7/2
g̃l

2~x,a!, ~6.22!

and

F 5
d~x,P,w,a!53pwP(

l 51

`
lsin2p lw

~11 l 2x2!5/2
g̃l

2~x,a!,

~6.23a!

F 5
q~x,P,w,a!5

15pw

2
P(

l 51

`
l 3sin2p lw

~11 l 2x2!7/2
g̃l

2~x,a!

~6.23b!

for P!1, w@1,a!1 Here, the spectral functionsg̃l are so-
lutions of Eq.~5.9!.

In Fig. 14 we presentF4(x,P,w,a) as a function of the
strength of the electric fieldx5uEu/E0 for several values of
frequencyw5v/vc at strong magnetic field,vctq540p.
We observe that the effect of microwave field on dc curr
is significant only in the nonlinear region,uEu&E0. At stron-
ger electric fieldsuEu@E0, the effect of microwave on the d
current disappears, see Sec. II for a discussion.

We also calculate the dc current linear in the dc fieldE
and bilinear in the microwave field. For simplicity we co
sider only the isotropic component of the current, which s
vives atg50 in Eq. ~6.12! and corresponds to the curre
produced by the circular polarization. In this case we use
spectral functiongl(x,a), given by Eq.~4.2! and obtain

jc
(d)5

e2NeE

mevc
2t tr

F6~P,w,a!, ~6.24!

FIG. 14. ~Color online! Nonlinear dependence ofF4, Eq.~6.22!,
on the strengthx5uEu/E0 of the dc electric field at several values
the microwave frequencyw5v/vc in strong magnetic fieldvctq

540p at P50.05.
03530
t

-

e

where

F6~P,w,a!5 lim
x→0

F4~x, . . . !

x
5h0~a!1

3wP
2

]

]w
F1~w,a!,

~6.25!

and functionsh0(a) andF1(w,a) are defined by Eqs.~4.8!
and ~4.14!, respectively. Relation between the absorpti
spectrum and the microwave frequency dependence of
photovoltaic effect~6.25! was argued recently in Ref. 18 o
the basis of a ‘‘toy model.’’ Dependence ofF6(P,w,a) on
frequencyw5v/vc is shown in Fig. 15 for several values o
P. @Note that fixedP corresponds to the frequency depe
dence of the actual microwave power, see Eq.~6.2!.#

At strong magnetic field we use Eqs.~4.10! and~4.17! to
find the asymptotic form of functionF6(P,w,a) at a!1,

F6~P,w,a!5
16

3pAa
F11

3p

2

Pw

Aa
(

k
H2S puw2ku

Aa
D G ,

~6.26!

where foruxu<2

H2~x!5
3x

8 H ~21x!ES 22x

21xD24KS 22x

21xD J ,

andH2(x)50 otherwise, see also discussion in the last pa
graph of Sec. IV A. FunctionH2(x) has the minimum at
xmin'0.834, where H2(xmin)'0.726. Correspondingly
function F6(P,w,a) becomes negative if the microwav
power P exceedsPmin'0.29Aa/w ~herea&1 andw*1).
This expression demonstrates that at strong magnetic fie
a&1, already a weak microwave is sufficient to create
state with zero-bias negative resistance.

FIG. 15. ~Color online! Dependence ofF6(P,w,a) on fre-
quencyw5v/vc for several values ofP. The upper panel repre
sents the curves calculated fora50.65, and the lower panel show
the curves fora50.30; cf. Fig. 7.
3-21
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VII. FORMATION OF INHOMOGENEOUS PHASES
AND CURRENT IN DOMAINS

Results of the previous section qualitatively consist
with the conclusions of Refs. 9–11 indicate that there i
region in the parameter space where the linear dissipa
conductivity becomes negative. According to Ref. 12, s
tially homogeneous state of such system is unstable
break itself into the domains characterized by zero diss
tive resistivity and conductivity and by the classical H
resistivity, see Fig. 16. In the analysis of such state one
ask two main questions:~i! what the spatial structure of th
domain wall and the boundary conditions fixing the positi
and the size of the domains are;~ii ! what the values of the
current and the electric field inside domains are; the valu
electric field can be found by the local probe measureme

The first question has to be answered by analyzing s
tially inhomogeneous problem by taking into account t
gradient term in Eq.~3.49b! and the Poisson equation; th
question is left for future study. Here, we use the results
Sec. VI to address the second question.47

To clarify further consideration, let us discuss the relat
between applied current and voltage in more details. In al
the above analysis we assumed that the electric fieldE is
applied and the currentj is measured, the current has bo
the dissipative and Hall components; the corrections to
Hall coefficient are small as 1/(vc

2t tr
2). Restoring the Hall

current, we write the expression for the total dc current up
the termsO(vc

22t tr
22)

j5S e2NeE0

mevc
2t tr

D F̂S E

E0
,P,

v

vc
,

2p

vctq
D E

uEu
2

1

rxy
«̂E,

~7.1a!

whererxy is the classical Hall coefficient, see Eq.~4.11!, and
F̂ is the tensor defined for different situations in Eqs.~5.6!,

FIG. 16. ~Color online! Domain structure~Ref. 12! for the
Corbino~a! and Hall bar~b! geometries. For the Hall geometry, th
applied currentI , j dL is accommodated by the shift of the doma
wall without any voltage drop,Vx50. At I . j 0L (V.Ed) for the
Hall bar ~Corbino! geometry domain structure is destroyed and
state with finite dissipation is stable~c!. Note that the construction
~b! does not describe the current pattern near the leads.
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~6.9!, and~6.13!. @Tensor structure appears due to the mic
wave radiation with polarization other than circular, see E
~6.12!–~6.15! and~6.23!.# Microwave power is characterize
by Eq. ~6.2!and the fieldE0 is given by Eq.~5.5!. This rela-
tion is convenient to use for the Corbino disk measurem
scheme. For the Hall bar geometry Eq.~7.1a! can be easily
inverted,

E52 j 0rD«̂F̂S j

j 0
,P,

v

vc
,

2p

vctq
D «̂ j

u ju
1rxy«̂ j, ~7.1b!

where «̂2521, rD is the classical Drude resistivity~4.7!,
and

j 05
E0

rxy
5eNe

jvc

2p
~7.2!

is the electric current scale for nonlinear effects. Equatio
~7.1! shows that both Hall bar and Corbino measureme
should exhibit the similar nonlinear properties, as will
discussed below.

We mainly focus our consideration on the circular pola
ization of microwave radiation; noncircular polarization
briefly discussed in the end of this section. Then, tensoF̂
from Eqs.~7.1! is reduced to scalar and the condition of t
local stability of the state takes the form12

j d5x j0 , Ed5xE0 , ~7.3a!

wherex is the solution of

FS x,P,
v

vc
,

2p

vctq
D50, ]xFS x,P,

v

vc
,

2p

vctq
D.0.

~7.3b!

All the further analysis is reduced to the substituting of t
appropriate limit of the function~6.9! into the stability con-
dition ~7.3!.

The regime of the weak magnetic fielda52p/vctq@1
is simplest. According to Eq.~6.7!, the zero current state i
stable ifF3.0, thus the equation

F3S P,
v

vc
,a D50 ~7.4!

gives the boundary between dissipative and zero resista
state~ZRS! for the Hall bar geometry or the zero condu
tance state~ZCS! for the Corbino disk geometry in the
P2v plane, whereF3(P,v/vc ,a@1) is given by Eq.~6.8!.
The curve given by Eq.~7.4! is plotted in the upper panel o
Fig. 17. For w5v/vc@1, the analytic estimates for th
‘‘phase boundary’’ lines are

P l.
ea

6pwsin2pw
, Pl!1, ~7.5a!

P u.
4

sin2pw
257/2Pl , Pu@1. ~7.5b!

The zero resistance state is impossible not only at too
microwave power but also at excessive microwave pow

e
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~reentrance transition!. Indeed, a weak microwave radiatio
does not produce strong enough photovoltaic current to c
pensate the dissipative current. On the other hand, as
discussed in Sec. II, strong microwave radiation suppre
the electron returns to the same impurity and thus dest
the nonlinear effects.

At microwave power within the zero-resistance regio
Eq. ~7.3b! has the solution atxÞ0

F4S x,P,
v

vc
,

2p

vctq
D50. ~7.6!

For the low microwave power responseF4 is given by Eq.
~6.9!.

The phase boundary given by Eq.~7.6! is shown on the
lower panel of Fig. 17 by the 12223 curve. In the vicinity
of the lower boundary~segment 122) and atv@vc we
have

S j d

Ed
D 5S j 0

E0
DA4~P2Pl !

15Pl
, ~7.7!

wherePl is given by Eq.~7.5a!. As the power increases, th
current in domains reaches maximum and then decrea
This nonmonotonic behavior is schematically shown by
12223 line in the lower panel of Fig. 17. The correspon
ing segment (223) may be obtained from calculations ou

FIG. 17. ~Color online! Upper panel: Phase diagram of a 2DE
in weak magnetic field (a52) in P2w5v/vc coordinates@ I 50
(V50) for the Hall bar~Corbino! geometries#. Region (A) is the
dissipative state; region (B) is the zero resistance~conductance!
state. Lower panel: Phase diagram forv54.3vc ~dashed line on the
upper panel! in P2I coordinates for the Hall bar (P2V for the
Corbino! geometries. The zero resistance~conductance! state exists
if the current through the Hall bar~voltage drop between edges o
the Corbino disk! does not exceed the critical valueI c (Vc). The
same curve defines the value of the spontaneous currentj d5I c /L
~electric fieldEd5Vc /L) in domains. The line labeled by ‘‘1’’ is
the numerical solution of Eq.~7.6! and the line ‘‘2–3’’ is a sche-
matic interpolation beyond the linear expansion in microwa
power. PointsPu,l are the same as in the upper panel.
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lined in Sec. VI A 1 beyond the bilinear response in the m
crowave field, which was not done in the present pap
~Based on the results presented in Sec. VI A 1, only poin
of this segment is known.! However, there is no reason t
expect any singular behavior of this curve.

The lower panel of Fig. 17 may be also used as a ph
diagram in theP-I plane, whereI 5 jL is the total current
through the Hall bar of widthL or in theP-V plane for the
Corbino geometry, see Fig. 16.

We now turn to the discussion of the strong magnetic fi
regimevctq@1. Naively, one would expect that increase
the magnetic field would change the phase diagram of F
17 only quantitatively by rearranging the boundary lin
However, this expectation is not correct. We start from
phase diagram on theP-w plane, Fig. 18~a!. The condition
for the boundary between the dissipative and ZRS~ZCS!
~7.4! is modified as

F6S P,
v

vc
,a D50, ~7.8!

whereF6 is given by Eqs.~6.25! and~6.26!. Solution of Eq.
~7.8! gives the line 12223 in Fig. 18~a!. On can see tha
the region of the instability shrinks with increasing of th
magnetic field. It is not the end of the story though. Acco
ing to Fig. 14, see curves forw55.15 andw55.25, the state
with positive zero-field resistance but with dissipative ele
tric field antiparallel to the electric current at some fin
current is possible. The boundary line@curve 3222425 in
Fig. 18~a!# for such a state is given by, see also Eq.~7.3b!,

F4S x* ,P,
v

vc
,

2p

vctq
D50,

]xF4S x* ,P,
v

vc
,

2p

vctq
D50, ~7.9!

whereF4 is given by Eq.~6.22!. The solution of Eq.~7.9! is
shown as the line 22425 in Fig. 18~a!. Therefore, the
phase diagram becomes more complicated. The region o
ZRS ~ZCS! has the same properties as its counterpart for
weak field. On the other hand, in the coexistence region~C!,
see Figs. 18~a! and 18~c!, both the homogeneous dissipativ
state with zero current and the domain structure of the Z
~ZCS! are locally stable. We believe that such bistability c
cause the hysteretic behavior of theI -V characteristic of the
sample, see Fig. 18~e!.

The aforementioned complication translates into
qualitative change in the phase diagrams inP-V (P-I ) co-
ordinates, see Figs. 18~b! and 18~c! in comparison with the
lower panel of Fig. 17. Equations for the lines on Figs. 18~b!
and 18~c! are

]xF4S x,P,
v

vc
,

2p

vctq
D50, lines V1,2 ~ I 1,2!

F4S x,P,
v

vc
,

2p

vctq
D50, line V3 ~ I 3!,

e
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FIG. 18. ~Color online! ~a! Phase diagram of a 2DEG in strong magnetic field (a!1) in P-w5v/vc coordinates@ I 50 (V50) for the
Hall bar~Corbino! geometries#. The dissipative (A), the zero resistance~conductance! state (B), and the coexistence regions (C) are shown.
~b,c! Phase diagrams forv/vc5w1 andv/vc5w2 ~vertical dashed lines on the upper plane! in P-I coordinates for the Hall bar (P-V for
the Corbino! geometries. LinesV3(I 3) also describe the current in domains as functions of the microwave power. The dissipative inst
region is denoted by D.~d,e! The I -V (V-I ) characteristics for the Hall bar~Corbino disk! geometries atP5P2 andP5P4, respectively.~f!
Relation of the position of the border lines to the results of Fig. 14.
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and V5xLE0 (I 5xL j0). The physical meaning of thos
lines is illustrated in Fig. 18~f!.

The region D in Figs. 18~b! and 18~c! represents the stat
with negative differential conductance~for Corbino geom-
etry!. In this case, the homogeneous state is unsta
whereas the zero-resistance state is not possible. The i
bility of the homogeneous state~see Fig. 19! leads to the
formation of the domain structure with the charge distrib
tion similar to the Gunn domain.13 This structure will be
moving from the boundary to the boundary with the veloc
jvcF* /(2p), thus the domain will be annihilated on th
contact with the other one formed on the opposite contact
that the current pattern will be oscillating in time rather th
stationary.

FIG. 19. The schematic picture of the current distribution in
instability region D for the Corbino geometry.
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Finally, let us discuss the role of the anisotropy of t
dissipative conductivity tensor in the formation of zer
resistance~conductance! state for the linear polarization o
microwave. Here, two situations are possible;~i! both main
components of the linear resistivity tensor are negat
though different;~ii ! the main components of the linear re
sistivity tensor are of different signs, see Fig. 13. Study
the regime~i! can be reduced to the previously studied ca
by rescaling of the coordinate, currents and field, such
equations“• j50, “3E50 are kept intact. It does no
change the state of Ref. 12 qualitatively, though extra sin
larities may be needed to accommodate the change in
boundary conditions. For case~ii !, the homogeneous stat
can be shown to be unstable, whereas the domain struc
with closed current loops would violate the conditionrE
•dl50, because on such contour there must be region
positive resistance. The details of current pattern for this c
requires further investigation; we believe, however, that
stationary solution for this case is not possible and doma
oscillating in time will be formed.

VIII. CONCLUSIONS

In this paper, we derived the kinetic equation within t
self-consistent Born approximation for large filling factor
The obtained equations are written in terms of the Gre
functions integrated in the phase space in the direction
pendicular to the Fermi surface similarly to the Eilenberg
equation for normal metals and superconductors. Our sys
of equations takes into account the effect of electric a
magnetic fields on the elastic scattering process, i.e., on
the spectral function and the electron distribution function

Armed with the quantum kinetic equation for the limit o
large Hall angle, we described the following phenomena:~i!
3-24
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dc and ac magnetoresistance in the linear response;~ii ! non-
linear dc current-voltage characteristic; and~iii ! influence of
oscillating microwave electric field on dc current. It is im
portant to emphasize that the nontrivial effects of the the
are described in terms of only two free parameters, the t
tq which can be extracted for the Shubnikov–de Haas os
lations, and the characteristic electric fieldE0 from Eq.~5.5!.
The major problem of the presented paper is the lack of
consideration of the inelastic processes and, conseque
effects related to the form of the electron distribution fun
tion. The treatment of inelastic processes will be presente
Ref. 24.

We conclude by mentioning another consequence of
domain mechanism proposed in Ref. 12 of zero resista
~ZRS! and zero conductance states~ZRC!. Namely, accord-
ing to our finding, the zero dissipative current represents
interplay of two effects: elastic scattering off impurities a
the photovoltaic effect; electric field in the domain is fou
from the condition that these two effects compensate e
other on average. However, those processes are statist
d

o,

.

v.

.

,

iz

ys

-
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independent. Consequently, this statistical independenc
two processes may be revealed through the current nois
the ZRS or ZCS, which is not expected to have any sin
larity in this regime. The analysis of this noise can be p
formed by a slight modification of the equations derived
the present paper in the spirit of, e.g., Ref. 48 and is left a
subject for future research.
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