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Sum-frequency generation in a two-dimensional photonic lattice
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We have formulated the Green’s-function method for describing nonlinear optical processes in an arbitrary
two-dimensional photonic lattice with particular regard to sum-frequency generation. In addition to the deri-
vation of the generalized phase-matching condition, we have shown that the field intensity and the average
Poynting’s vector of the sum-frequency component are proportional tégitaup velocity) 2 and (group
velocity) ™2, respectively. Therefore, an enhancement is expected for both of them at photonic band edges,
where the group velocity tends to zero. This method was applied to a square lattice composed of circular
air-rods formed in a LiNb@crystal, and the average intensity of the electric field of the second harmonic and
the effective nonlinear susceptibility were numerically calculaf80163-182@06)07832-0

I. INTRODUCTION an arbitrary two-dimensiondRD) photonic lattice with the
second-order optical nonlinearity and derive the phase-
Periodic dielectric structures called photonic crystals ormatching condition by taking into account the umklapp pro-
photonic lattices have attracted much intefedf. The main  cess. We will also show some results of numerical calcula-
reason for the recent intensive investigations lies in the facions on the effective nonlinear susceptibility, and the
that a photonic band gap, in which the existence of electrointensity of the induced nonlinear field. _ N
magnetic modes is forbidden, can be realized by means of he analytical formula and the phase-matching condition
the proper choice of the lattice structure and the dielectrigVill be given in Sec. Il In Sec. Ill, the intensity of the in-
constants—3 Many peculiar physical phenomena due to theduced_second-harmomc field in a 2D square lattice _W|II be
photonic band gap, such as the suppression of Spontaneoggme(lcally calf:ulated. based on the dispersion relation :_;md
emissiod and energy transférlocalized donor and acceptor the eigenfunctions given by the plane-wave expansion
mode<” and stable solitary wavés, have been predicted, Method. The selection rule due to the symmetry of the eigen-
and some of them were confirmed experimentally. The Symfunctlo_ns of the fundamen_tal and harmonic waves will be
metry of the wave functions of the eigenmodes was als@lSO discussed. The reduction of our formula to the case of a
analyzed, and the existence of uncoupled modes that canngfiform crystal will be examined in Appendix A. An effi-
be excited by an external plane wave was sh&#*More-  cient method to calculate the group velocity in 2D lattices
over, it is expected that the photonic band gaps in luminesWill be given in Appendix B.
cent semiconductors, for example, realize several technologi-
cal applications such as single-mode light-emitting diddes. Il. THEORY
In addition to these phenomena, which originate purely _ . _ _ _
from the zero-state density in the photonic band gaps, the In this section, we will derive an expression for sum-
divergent state density at the band edges also yield possibilftequency generation in an arbitrary 2D photonic lattice. An
ties. For example, John and Quang discussed spontanecg¥ample of a 2D lattice is shown in Fig. 1, which is the top
emission near a band edge, and showed its nonexponentideW of a square lattice composed of identical cylinders with
decay, et¢>*%0On the other hand, the divergent state density2 radiusR, where the dielectric constants of the cylinder and
at an edge of any branch of the photonic bands brings abotife background are denoted lay and e,, respectively. In
an enhancement of nonlinear optical processes. this case, the 2D elementary lattice vectors agd) and
Let us consider a situation where both the frequency an§0.a) wherea is the lattice constant. In a general case, we
the wave vector of the final state of a nonlinear optical protake these vectors as,0) and ,b,), and there is no
cess are located near a photonic band edge by the constralgstriction on the position-dependent dielectric constant
due to energy and momentum conservations. Then the prots(x) except the periodicity under the translation by an el-
ability of the nonlinear process is enhanced compared witlementary lattice vector. Here is the 2D position vector
that in a uniform material due to the divergent state density(X,y). The elementary reciprocal-lattice vectors in the gen-
at the band edge. In addition, the phase-matching conditioaral case are (&/a,—2wb,/ab,) and (0,27/b,). The z
can be fulfilled by an appropriate use of the band dispersiorxis is taken as to be perpendicular to the 2D plane.
In this paper, we will demonstrate this enhancement, and the Now we assume that the 2D lattice is composed of a
modified phase-matching condition for the case of sumimaterial with second-order nonlinearity. Thus, we introduce
frequency generation. First we will formulate the Green’s-a position-dependent second-order susceptibiity(x) that
function method for describing sum-frequency generation iris also a periodic function ok. We assume that the wave

0163-1829/96/58)/57428)/$10.00 54 5742 © 1996 The American Physical Society



54 SUM-FREQUENCY GENERATION IN A TWO. .. 5743

2D photonic lattice, lie in thex,y) plane. Then the vector
Maxwell's equations are reduced to two independent scalar
equations.” The eigenmodes of these scalar equations are
called theE polarization, for which the electric field is par-
allel to the z axis, and theH polarization, for which the
magnetic field is parallel to the axis. In this paper, we will
consider the case @& polarization.

Thez component of the electric displacement vedigris
given by
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We assume thab, and D, are zero. This situation can be
realized if we use, for example, a nonlinear crystal of
3m-C3, symmetry such as LiNb§) with its crystallinec
axis parallel to thez axis. Then theE polarization corre-
FIG. 1. An example of a 2D lattice. This figure is the top view sponds to the extraordinary wave in the above uniaxial crys-
of a square lattice with a lattice constamicomposed of identical tal. We will omit the suffixz hereafter. In order to clarify the
cylinders with a radiuRR. The dielectric constants of the cylinder phase-matching condition, we further assume y{é{(x) is
and the background are denoted by and ¢,, respectively. The  nonzero only at &y<n,b,, wheren, is a positive integer.
position-dependent second-order susceptibiiity(x) is assumed The second-order nonlinear polarization produced by
to be nonzero at_ﬁygany_ in this example. Two,incident eigen- X(Z)(X) yields the sum-frequency component whose wave
][nodes ofE polarization with wave vectork andk’, and angular function E(wk/.t_l—wk’;t’:xlt) satisfies the following equation,
requenciesoy, andwy .+ generate the sum-frequency component.  nich can be easily derived from Maxwell’s equations with
an assumption that the amplitude of the sum-frequency com-
vectors of two incident waves, which are eigenmodes of th@onent is much smaller than those of the fundamental waves:
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where Ey ,(X)exp(—iwy,t) and Ey/,/(x)exp(—iwy, 1) are 9
the wave functions of the two incident eigenmodes with the E[l 7t
wave vectors ok andk’ and the eigenangular frequencies of

wy,, andwy,+, A is their amplitudeu andu’ are the indi-  This can be accomplished by the Green’s-function method as

ces for specifying the band,is the light velocity in vacuum,  follows. First, we define differential operatafs and such
and the magnetic permeability was taken to be unity. Therhat

Ex.(x) satisfies the following equatiof:

E(x,t)=f(x)e ' (5)

I a1
N PO S Nl | MU i
[@k,]Ek,(X)= Z Tl t oz kn(X)=0. 6)
3 "y 1 (az . az> 1
=T\ 32 V"
N X d N
According to Bloch’s theorem, the eigenfunction of the pho- €(X) y €(X)
tonic lattice can be expressed as Then the eigenequation E) is equivalent to the following
equation:
Exu(X) = €XP(i k- X) Uy, (X), (@) ,
Wiy
whereu,,(X) is a periodic function under the translation by HQkW(X)= ?QK”(X)’ @)

an elementary lattice vector.
In order to calculate the wave function of the sum-where
frequency component in E@2), we have to solve an inho-
mogeneous equation of the following type: Qk,(X)=Ve(X)Ek(X). (8)
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BecauseH is a Hermitian operator, its eigenfunctions

{Qk.} form a complete orthonormal set.
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\/s(x)E(x,t)=fvdx’Jidt’G(x,x’,t—t’)

We assume, without a loss of generality, the periodic

boundary condition foQy,(x) over a 2D volumeV that is
spanned byN;(a,0) andNy(b,,by), and thatQy,(x) is nor-
malized in a unit volume. Herd; andN, are positive inte-
gers. Then the orthogonality condition is

JVdXQKV(X)Q;’V'(X)=V5KK’5VV’1 (9)

where dxk» and 6, are the Kronecke#’s. In addition, the
completeness of the eigenfunctions leads to

2 2 Qu(0Qi,(X)=Valx=x), (10
where §(x) is the Diracé function.
Now, Eq.(5) is modified to
/jz[i% Ve(X)E(x,t)=e(x)f(x)e et (11)

We define the retarded Green'’s function of Etjl) by

r . a

2 IE
G(x,x",t—t")=0 for t<t’.

Then, Ve(X)E(x,t) is, as usual, given by

G(x,x",t—t")=8(x—x")o(t—t"),

12

> /G(X,)f(X/)e—iwt/
:e*ith' dx’' G(x,x",w)Ve(x")f(x"),
\%

(13
where G(x,x",w), which is the Fourier transform of
G(x,x’,t), is given by

Q(x,x’,w)zf dt G(x,x’,t)e'!
Oy Q) Q,(X')
VX 5 (o= wg,Tid)(w+wk,+id)’

(14)

where § is a positive infinitesimal. The last equality in Eq.
(14) is derived from Egs(7) and (10), and the following
relation:

Lo w]G(X, X" ,w)= 8(x—x"). (15
Inclusion of i § in the denominator in Eq(14) assures the

retarded solution of Eq.11).
Then, from Eq.(13),

47T(wk'u+ (.Ukrlu/)zAz

E(wk#-l—wklﬂ/:x,t):— Y;

eXF[—i(wkM-i- wk,lu,)t]

EK V(X)

xf dx’ XD (X ) EE (X' )Eg(X ) Egr o (X)),
\Y

(wkM-I— wkyﬂ/—wKV—Hﬁ)(a)kM-l- wk/,u’+ wKV+i5)

(16)

where the summation with respect ko is over the first Brillouin zone. Substituting E¢), the integral in Eq.(16) is

calculated as

dX,X(Z)(X,)Eﬁv(X,)EkM(X,)Ek’M’(X,):5K kK, +k!—(2nm/a) dX,X(Z)(XI)U;V(X,)Uk’u(x/)Ukr#r(X,)eX
v XU v

xexdi(ky+k,—Ky)y'],

2n7TiX’)

(17

whereéKx K +k!—2nm/a is the Kroneckess, andn is an integer that was introduced to make allowance for an umklapp process.
’ X

Because of the periodicity Q(f(z)(x)u’,gy(x)uku(x)uk,ﬂ,(x) and the periodic boundary condition, the integration o¢/en Eq.
(17) is nonzero only when the differenég+k;,— K, is a multiple of 2r/a. Actually, n is equal to—1, 0, or 1 becausK,
k, andk’ all belong to the first Brillouin zone. Now we defitg, asK,=k,+k;—2n=/a. Then, Eq.(17) equals

CNotngt 2o 2ni , : ,
5K><’K><1'Zo |20 Vodx’x (XU (X ) U (X VU (X' ) eXP —— (X" +ja+1b,) | exeli(ky+ ky—Ky) (' +1by)]

1—-exfdi{(ky+ky—Ky)b,+2nmb,/a}n,]
1—exfdi{(ky+ky—Ky)by+2nmb,/a}]

=N1Vodk k F(Kvkuk'n') (18

where
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2nix’

1
F(Kv,ku,k’u’)=v—0jv dx’X(Z)(x’)u’gv(x’)uk#(x’)ukrﬂ,(x’)ex;{ )ex;{i(ky+k3’,—Ky)y’], (19
0

which may be regarded as an effective nonlinear susceptibility with respect to the initial and final statég,dandtes the
volume of the unit cell.
Next, we denote the “group velocity” of theth band to they direction byvy(w,v):

&wK,,
oK,

vg(w,v)=( (20

K=Ky 0k, =0

Then, converting summation ovi, into an integration ovem(XKyV in Eq. (16), we obtain

E(wk'u-i— wkr’ur:X,t)= —Z(a)kﬂ-f- wkr#r)zAzbyeXF{—i(wkﬂ-i— wk,’u,)t]

D _ Bk, v OO F(KKyw kp K ")
X > deKxKyV (i ) @, + — ok i) (@, + + o k ,+i0)
Ug (UKXKyVyV U)k//, (l)k/’u/ wKXKyV wk/}. wk',u,’ wKXKyV

1—-exdi{(ky+ky—K)by,+2nmh,/ajn,]
1—-exfdi{(ky+ky—Ky)by+2n7zh,/a}] -

(21)

Here we define the wave vect&_r,, such that

K_,,X=K_X and  wg,= oy, + ok, (22
The last term on the right-hand side of EQ1), which leads to the phase-matching condition, as we will show below,
substantially restricts the region of integration @Q_xKy,, whenn, is sufficiently large, because it consists of a sharp peak.
Then the rest of the integrand may be regarded as slowly varying around this peak, except for the next term,

1 P . _
— — = — — 17l 5((1)k’u+wk/’ur_w|(x|(yy), (23)
wk,u-l- (Uk/Mr_wKXKyV+|5 wk,u+ wkrﬂ/—wKXKyV

whereP denotes Cauchy’s principal value. The phase matching is realized when the peak of the last terf@ hfdeipcides

with the pole of Eq(23). Then the second term on the right-hand side of (8) makes the dominant contribution, and we
neglect the first term. We also neglect the contribution from those bands which do not inglyéteo,. . as an eigenfre-
guency. In Appendix A, we will discuss the relation between this approximation and the rigorous calculation for the case of
a uniform lattice In a general case, analytical evaluation of the integral is not possible, and the above approximation leads to

i 2 - Efyv(x)F(K_I)V'kM:k'M')
oy, + o Xt =mi (o, o) ATbyexd —i(o, + wk’ﬂ’)t]{%r Vg @y, + @kr 1, V)

1—expi{(k,+kj—K,,)b,+2nmb,/aln,]
X - 1
1—-exfi{(ky+ky—K,y)by+2nmb,/a}]

(24)

where the summation is over bands which includeEquation(26) means that the conservation of the crystalline
wy, T o, as an eigenfrequency. L momentum assures the phase matching. In addition, we have
__Apart from the weak dependence®fK ,v,ku,k’x’) on  to note thatF(K,v,ku,k’u"), which is regarded as an ef-

K,, k, andk’, Eq. (24) leads to the phase-matching condi- fective nonlinear susceptibility with respect to the initial and
tion final states, may vanish for particular combinationskef

andk’u’ in highly symmetric photonic lattices because of
the symmetry of the relevant wave functions. This gives a
2nwb, 2mm . : o . .
_— (25)  kind of selection rules. We will discuss this point for a par-
ab by ticular case of a square lattice in Sec. Ill.
We should also note that the field intensity is proportional
to |c/vg|2, and we can expect a large enhancement at the
photonic band edge wherng, tends to zero. On the other

Koy=ky+ky+ )

wherem is —1, 0, or 1. Together with the momentum con-
servation in thex direction,

hand, the average velocity of energy flow is equabo™®
— 2w 2wby 2 o . :
K =k+k'—n|—,— —m|lo— (26) and so the average Poynting’s vector is proportional to
' a aby by Iclvgl.
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FIG. 2. The dispersion relation of the square lattice of circular aik,
air rods formed in a LiNb@crystal. The ordinate is the normalized 2

angular frequency. The following values were assunfi®@d=0.3, FIG. 3. The group velocity ofcurve a the second branch and

e o e fone ars. ShlCVE e fourth i onsege. Curves ) and )
shown3 ' y y 9 their dispersion relations. The same parameters as for Fig. 2 were
’ assumed. The data points corresponding to cases 1 and 2 are de-

) _ _ ) noted by solid circlegsee texkt
We would like to conclude this section by making two

remarks. First, as is apparent from the above derivation, thiere we consider two examples. In case 1, two incident
enhancement of the induced electric field and the Poynting’§,aves in the lowest branch induce the second harmonic in

vector due to a small,, or, in other words, to0 a divergent o gecond lowest branch on segmei;, wa/2mc=0.14 for
state density at a photonic band edge, which was shown he{ﬁe fundamental wave. and=0. In case 2. the second har-

for sum-frequency generation, is a universal feature of nonc hic in the fourth branch on segmeFK with negative

linear optical processes in photonic lattices. Second, the e —y is induced by similar incident wavesa/2mc=~0.25 and

tension of the present calculation to three-dimensigaa) m=1 for this case. The effective nonlinear susceptibilit
lattices is straightforward if we take into consideration the = — : P y

3D variation of the position-dependent dielectric constant (K,»#.k1k'1) (v=2 or 4 is nonzero for both cases. On
and the vector nature of the eigenfunctions. the other hand, the third branch does not contribute to SHG

sinceF(K33,k1k’1)=0. This is because the wave function
of the third branch on segmeiitxX is antisymmetric under
IIl. NUMERICAL CALCULATION AND DISCUSSION the mirror reflection at the/z plane, whereas the induced
£lectric displacement of the second harmonic is symmetric.
As seen in this examplé; (K v,ku,k’ w') vanishes for par-
ticular combinations of the initial and final states in a highly
symmetric lattice, and this gives selection rules that are not

along thez axis. Then the incident fundamental waves of therelevant to the crystallographic symmetry of the host crystal.

E polarization yield only thez component of the harmonic Figure 3 shows the group velocity OT the gecqnd and
electric displacement vector, and, therefore, the methofPUrth branches on segmehiX together with their disper-

given in Sec. Il is applicable. Similar situations can be realSion curves. The former was calculated by means of
ized for crystals of 46, 4mmC,,, 3-Cs, 6-C,, and Hellmann-Feynman theorem. The detail is described in Ap-

6mm-Cg, symmetry as well. pendix B. As is understood from this figure, the group ve-
Figure 2 shows the photonic band structure of the squart?City of both bands tends to zero at theand X points. In

lattice, where we assumed th&/a=0.3, ¢;=1.0, and addition, the group velocity of the fourth band is small over
€,=4.9912, which is the dielectric constant of LiNpG@t the whole branch due to the flatness of its dispersion curve.

532 nm. The calculation was performed by the plane-wave NOW We take the angular frequency of the fundamental
expansion method according to Plihal and Maradddifine =~ Waveé « such that wa/2mc=0.138 for case 1 and
number of basis plane waves was 289, and the accuracy w4/2m¢=0.253 for case 2. Thejyy|/c at 2w is 0.114 and
estimated as better than 1%. The Brillouin zone of the 200-0740, respectively. The corresponding data points are de-

square lattice has two highly symmetric points besidelthe noted by solid circlt_as in Fig. 3, where we have to note that
point. They are theX point (Oz/a) and the M point Ky<0 for case 2. Figure 4 shows two contours of the lowest

(wla,wla). Figure 2 is drawn for these points. The Symme_branch for both cases where the dielectric c.ons.tant of the
try of the eigenfunctions are also shown in Fig:32. h_ost crystale, is assumed to be 4.642_33, which is t_hat of
Now, we assume for simplicity thak=(ky.k,) and L|_Nb03 at 1064 nm. In order to use this value consistently
k'=(—ky,ky) (k,>0). Then, the phase-matching condition with the assur_ned angular frequency of the fundamental
is fulfilled when waves, the lattice constaat should be about 0.1mm for
case 1 and 0.24m for case 2. From the dispersion relations
of the second and fourth bands, we find that the phase-
matching condition is fulfilled wheak,/27=0.245 for case
1 and ak,/2m=0.413 for case 2, respectively. Note that

In this section, we apply our method to second-harmoni
generation(SHG) in a square lattice of circular air rods
formed in a LINbQ crystal. We assume that the crystalline
¢ axis of this uniaxial crystal of ®-C5, symmetry is aligned

— — 2mar
K,=0 and Kvy=2ky—T (m=0,1). (27
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The average intensity of the electric field of the second |= g‘ o : =
harmonic,|E(2w:x,t)|?, is given by = :
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FIG. 5. The angular dependence of the average intensity of the
’ electric field of the second harmor(igolid circles and the effective
nonlinear susceptibilityopen circleg for (a) case 1 andb) case 2.
(28 n, is assumed to be 100, and therefore, the sample thickngsis
where 15 or 27um, respectively. The abscissa is the angle of incidence of
the fundamental waves.

X|F(K,v,k1k'1)|2

—  2mmr
Ak=2ky—KVy—T. (29

condition by taking into account the umklapp process, and
The results of the numerical calculation are shown in Fig. 5shown that the conservation of the crystalline momentum
wheren, was assumed to be 100 an®® of LINbO; was  assures the phase matching. We have also shown that the
taken as 1.9410 7 (esy.'® The abscissa is the angle of effective nonlinear susceptibility vanishes for particular
incidence of the fundamental waves, and the angular depe@ombinations of the fundamental and second-harmonic
dence of| F(K,v,k1k’1)| is also shown. In this figure, we Wwaves in highly symmetric photonic lattices, and this fact
find the sharp peaks d—E(Zw:x,t)|2 at the phase-matched gives a kind of selection rules beside those derived from the
angles, which are 20.9° for casdRig. 5a)] and 33.1° for  crystallographic symmetry of the host crystal. ,
case JFig. 5(b)]. We also find the fairly weak angular varia- e have applied our method to a 2D square lattice com-
tion of the effective nonlinear susceptibility around the peakPosed of circular air rods formed in a LiNg@rystal, and
which was assumed when we derived the phase-matchinfg'merically calculated the angular dependence of the effec-
condition in Sec. Il. The sharpness of the peak depends of\vé nonlinear susceptibility and the average intensity of the
n,. For a very smalh,, the peak becomes broad, and theSecond harmonic. Because of the weak angular dependence
aégular variation O“:(yg v,ku,k' )| may somewhat af- of the former, the peak position of the latter is almost rigor-
fect the peak position. Oyn’the’ other hand, the height of th(QUSIy determined by the generalized phase-matching condi-

peak is proportional tmi. Therefore, the peak height in-
creases quadratically with the sample thicknesg. It was
assumed to be about 15 or gifn for the present cases. ACKNOWLEDGMENTS

IV. CONCLUSION This work was supported by a Grant-in-Aid for Scientific
Research on Priority Area “Quantum Coherent Electronics,
We have formulated the Green’s-function method forPhysics and Technology” and that for “Mutual Quantum
sum-frequency generation in an arbitrary 2D photonic latticeManipulation” from the Ministry of Education, Science,
In addition, we have derived the generalized phase-matchin§ports, and Culture.
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APPENDIX A

Now we examine the result of the approximation given in
Eq. (23) for the case of a uniform lattice. We takéx) and
x?(x) as to be independent of We further assume that
k=k’ for simplicity, and we take thg axis as to be parallel

tok, i.e.,k=(0k) (k>0).
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wheree, ande,, are the dielectric constants atand 2w,
respectively. In Eq(Al), we took the extended zone scheme,
and the suffix to distinguish the band was omitted. Because
the umklapp process is absent in a uniform lattice,(E§). is
reduced to

. . : . . . (2)
Since the eigenfunction is a plane wave in a uniform lat- X j , . ,
. F(K,k,kK)= ————| dx'exdi(2k—K,)y']
tice, VPRI y
x?{exdi(2k—K,)b,]—1}
(X) ! (X) ! (2w) ¢ - ib e, Ve (2k—K,) (A2)
kaz_, UKXZ_, 1 w)= , yCow 2w - y
\/e—w V€20 ’ V€20
(A1) Then Eqg.(2)) is
8wy DAL , 0 exp(iK{™y) exfi(2k—K{)L]-1
BRox === . o2l _Ldﬂ(zw—nﬂg)(zmnﬂa) (2k—K{ )L
e exp(ik (") exdi(2k—K{")L]-1
+f dQ PRy Y) el y+)) ] : (A3)
0 (20-0+i5)(Ru+Q+id)  i(2k—K{7)L
|
where 204/
Kpy= V€20 and Ak=2k—K,,,  (A6)
— c
L=nb, and K(*)=x 20q (Ad)
yPy y ~ ¢ &

The approximation of Eq23) leads to

and the contribution from the first integral in EGA3) was
neglected because it does not give a phase-matched solution.
On the other hand, for the case of a uniform lattice, the

2miwx' P AL ; integrals in Eq.(A3) can be evaluated rigorously. Actuall
E(2w:x,t)= exgi(Ksy,y—2wt)] 9 q. . d ngo y. Actually,
Ce, Ve, when we change the sign of the variable in the first integral
. of Eq. (A3), modify the path of the integration to enclose the
X expli AKL/2) sm(AkL/Z), (A5)  upper half of the complex} plane, and apply the residue
AkL/2 theorem, fory=L we obtain
where
8wy DAL _ oo exp(iK{"y) exli(2k—K{")L]-1
Ewxt== mexq—m wt) f_wdﬂ (20-0+10)(20+0T15)  1(2k—K,)L
AmioxPAL « ) KL Sin(AKL/2) A7
= mequ( 20y~ 2wt) Jexp(i ) AKLZ (A7)
Therefore, the rigorous expression is twice as large as the APPENDIX B

approximate one. The difference stemmed from the ne-

glected principal value integrated on the whole real axis. For The group velocity of 2D photonic bands can be readily
the case of general photonic lattices, a rigorous evaluation isalculated by means of Hellmann-Feynman theorem. We
not possible, since the path of the integration is not the wholshow the method below.

real axis, and the analyticity of the eigenfunctions is un- The dispersion relation fdE polarization is given by the
known. eigenequatiol
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wﬁ =x*(G), and M() is an Hermitian matrix. Therefore, we
M(k)Aﬂ(k)=?zﬁA,L(k)- (B1)  can apply the Hellmann-Feynman theorem to the present
problem, and we obtain
Here M() is ak-dependent matrix whose5(G') compo-

nent is defined by the following equation: IM(k 0 [ w2 2
d 9 At (k) ) (= | L 2 20,
© Kk m ak,\ c c 9L TRu
M(k:G,G")=|k+G||k+G'|k(G—-G’), (B2) y y

(B4)
whereG andG' are the reciprocal-lattice vectors of the 2D ]

photonic lattice, andx(G) is the Fourier transform of Wheret denotes the transposed matrix, and

1/e(x). The k-dependent vectoh , (k) gives the eigenfunc-

; k:G,G') [|k+G’| |k+G]
tion Ey ,(X) as IM( _ /

g ik, ko] WHeI T ke

B E A,k:G) ) /
Exu.(X)=h > WGXQI(WFG)'X], (B3) X k(G—G'). (B5)

and it is normalized to unity, i.e|A,(k)|=1. In Eq.(B3), Therefore, the group velocityy(w,u) can be readily
h is a constant required to normalizE(x)EkM(x) inaunit evaluated once the eigenvectdr, (k) and the eigenvalue
volume. wﬁMlc2 are obtained by the band calculation based on the

Here we assume thak(x) is real. Then «(—G) plane-wave expansion method.
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