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We have formulated the Green’s-function method for describing nonlinear optical processes in an arbitrary
two-dimensional photonic lattice with particular regard to sum-frequency generation. In addition to the deri-
vation of the generalized phase-matching condition, we have shown that the field intensity and the average
Poynting’s vector of the sum-frequency component are proportional to its~group velocity)22 and ~group
velocity)21, respectively. Therefore, an enhancement is expected for both of them at photonic band edges,
where the group velocity tends to zero. This method was applied to a square lattice composed of circular
air-rods formed in a LiNbO3 crystal, and the average intensity of the electric field of the second harmonic and
the effective nonlinear susceptibility were numerically calculated.@S0163-1829~96!07832-0#

I. INTRODUCTION

Periodic dielectric structures called photonic crystals or
photonic lattices have attracted much interest.1–16 The main
reason for the recent intensive investigations lies in the fact
that a photonic band gap, in which the existence of electro-
magnetic modes is forbidden, can be realized by means of
the proper choice of the lattice structure and the dielectric
constants.1–3 Many peculiar physical phenomena due to the
photonic band gap, such as the suppression of spontaneous
emission4 and energy transfer,5 localized donor and acceptor
modes,6,7 and stable solitary waves,8,9 have been predicted,
and some of them were confirmed experimentally. The sym-
metry of the wave functions of the eigenmodes was also
analyzed, and the existence of uncoupled modes that cannot
be excited by an external plane wave was shown.10–14More-
over, it is expected that the photonic band gaps in lumines-
cent semiconductors, for example, realize several technologi-
cal applications such as single-mode light-emitting diodes.2

In addition to these phenomena, which originate purely
from the zero-state density in the photonic band gaps, the
divergent state density at the band edges also yield possibili-
ties. For example, John and Quang discussed spontaneous
emission near a band edge, and showed its nonexponential
decay, etc.15,16On the other hand, the divergent state density
at an edge of any branch of the photonic bands brings about
an enhancement of nonlinear optical processes.

Let us consider a situation where both the frequency and
the wave vector of the final state of a nonlinear optical pro-
cess are located near a photonic band edge by the constraint
due to energy and momentum conservations. Then the prob-
ability of the nonlinear process is enhanced compared with
that in a uniform material due to the divergent state density
at the band edge. In addition, the phase-matching condition
can be fulfilled by an appropriate use of the band dispersion.
In this paper, we will demonstrate this enhancement, and the
modified phase-matching condition for the case of sum-
frequency generation. First we will formulate the Green’s-
function method for describing sum-frequency generation in

an arbitrary two-dimensional~2D! photonic lattice with the
second-order optical nonlinearity and derive the phase-
matching condition by taking into account the umklapp pro-
cess. We will also show some results of numerical calcula-
tions on the effective nonlinear susceptibility, and the
intensity of the induced nonlinear field.

The analytical formula and the phase-matching condition
will be given in Sec. II. In Sec. III, the intensity of the in-
duced second-harmonic field in a 2D square lattice will be
numerically calculated based on the dispersion relation and
the eigenfunctions given by the plane-wave expansion
method. The selection rule due to the symmetry of the eigen-
functions of the fundamental and harmonic waves will be
also discussed. The reduction of our formula to the case of a
uniform crystal will be examined in Appendix A. An effi-
cient method to calculate the group velocity in 2D lattices
will be given in Appendix B.

II. THEORY

In this section, we will derive an expression for sum-
frequency generation in an arbitrary 2D photonic lattice. An
example of a 2D lattice is shown in Fig. 1, which is the top
view of a square lattice composed of identical cylinders with
a radiusR, where the dielectric constants of the cylinder and
the background are denoted bye1 and e2, respectively. In
this case, the 2D elementary lattice vectors are (a,0) and
(0,a) wherea is the lattice constant. In a general case, we
take these vectors as (a,0) and (bx ,by), and there is no
restriction on the position-dependent dielectric constant
e(x) except the periodicity under the translation by an el-
ementary lattice vector. Herex is the 2D position vector
(x,y). The elementary reciprocal-lattice vectors in the gen-
eral case are (2p/a,22pbx /aby) and (0,2p/by). The z
axis is taken as to be perpendicular to the 2D plane.

Now we assume that the 2D lattice is composed of a
material with second-order nonlinearity. Thus, we introduce
a position-dependent second-order susceptibilityx (2)(x) that
is also a periodic function ofx. We assume that the wave
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vectors of two incident waves, which are eigenmodes of the

2D photonic lattice, lie in the (x,y) plane. Then the vector
Maxwell’s equations are reduced to two independent scalar
equations.17 The eigenmodes of these scalar equations are
called theE polarization, for which the electric field is par-
allel to the z axis, and theH polarization, for which the
magnetic field is parallel to thez axis. In this paper, we will
consider the case ofE polarization.

Thez component of the electric displacement vectorDz is
given by

Dz~x,t !5e~x!Ez~x,t !14px~2!~x!Ez
2~x,t !. ~1!

We assume thatDx andDy are zero. This situation can be
realized if we use, for example, a nonlinear crystal of
3m-C3v symmetry such as LiNbO3, with its crystallinec
axis parallel to thez axis. Then theE polarization corre-
sponds to the extraordinary wave in the above uniaxial crys-
tal. We will omit the suffixz hereafter. In order to clarify the
phase-matching condition, we further assume thatx (2)(x) is
nonzero only at 0<y<nyby , whereny is a positive integer.

The second-order nonlinear polarization produced by
x (2)(x) yields the sum-frequency component whose wave
functionE(vkm1vk8m8:x,t) satisfies the following equation,
which can be easily derived from Maxwell’s equations with
an assumption that the amplitude of the sum-frequency com-
ponent is much smaller than those of the fundamental waves:

LF i ]

]t GE~vkm1vk8m8:x,t ![F2
1

c2
]2

]t2
1

1

e~x! S ]2

]x2
1

]2

]y2D GE~vkm1vk8m8:x,t !

52
4px~2!~x!~vkm1vk8m8!

2A2

c2e~x!
Ekm~x!e2 ivkmtEk8m8~x!e2 ivk8m8t, ~2!

whereEkm(x)exp(2ivkmt) and Ek8m8(x)exp(2ivk8m8t) are
the wave functions of the two incident eigenmodes with the
wave vectors ofk andk8 and the eigenangular frequencies of
vkm andvk8m8, A is their amplitude,m andm8 are the indi-
ces for specifying the band,c is the light velocity in vacuum,
and the magnetic permeability was taken to be unity. Then
EKn(x) satisfies the following equation:17

L@vKn#EKn~x![FvKn
2

c2
1

1

e~x!
S ]2

]x2
1

]2

]y2D GEKn~x!50.

~3!

According to Bloch’s theorem, the eigenfunction of the pho-
tonic lattice can be expressed as

Ekm~x!5exp~ ik•x!ukm~x!, ~4!

whereukm(x) is a periodic function under the translation by
an elementary lattice vector.

In order to calculate the wave function of the sum-
frequency component in Eq.~2!, we have to solve an inho-
mogeneous equation of the following type:

LF i ]

]t GE~x,t !5 f ~x!e2 ivt. ~5!

This can be accomplished by the Green’s-function method as
follows. First, we define differential operatorsL2 andH such
that

L2F i ]

]t G[2
1

c2
]2

]t2
2H,

~6!

H[2
1

Ae~x!
S ]2

]x2
1

]2

]y2D 1

Ae~x!
.

Then the eigenequation Eq.~3! is equivalent to the following
equation:

HQKn~x!5
vKn
2

c2
QKn~x!, ~7!

where

QKn~x!5Ae~x!EKn~x!. ~8!

FIG. 1. An example of a 2D lattice. This figure is the top view
of a square lattice with a lattice constanta composed of identical
cylinders with a radiusR. The dielectric constants of the cylinder
and the background are denoted bye1 and e2, respectively. The
position-dependent second-order susceptibilityx (2)(x) is assumed
to be nonzero at 0<y<any in this example. Two incident eigen-
modes ofE polarization with wave vectorsk andk8, and angular
frequenciesvkm andvk8m8 generate the sum-frequency component.
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BecauseH is a Hermitian operator, its eigenfunctions
$QKn% form a complete orthonormal set.

We assume, without a loss of generality, the periodic
boundary condition forQkm(x) over a 2D volumeV that is
spanned byN1(a,0) andN2(bx ,by), and thatQkm(x) is nor-
malized in a unit volume. HereN1 andN2 are positive inte-
gers. Then the orthogonality condition is

E
V
dxQKn~x!QK8n8

* ~x!5VdKK 8dnn8, ~9!

wheredKK 8 anddnn8 are the Kroneckerd ’s. In addition, the
completeness of the eigenfunctions leads to

(
K

(
n

QKn~x!QKn* ~x8!5Vd~x2x8!, ~10!

whered(x) is the Diracd function.
Now, Eq. ~5! is modified to

L2F i ]

]t GAe~x!E~x,t !5Ae~x! f ~x!e2 ivt. ~11!

We define the retarded Green’s function of Eq.~11! by

L2F i ]

]t GG~x,x8,t2t8!5d~x2x8!d~ t2t8!,

G~x,x8,t2t8!50 for t,t8. ~12!

Then,Ae(x)E(x,t) is, as usual, given by

Ae~x!E~x ,t !5E
V
dx8E

2`

`

dt8G~x,x8,t2t8!

3Ae~x8! f ~x8!e2 ivt8

5e2 ivtE
V
dx8G~x,x8,v!Ae~x8! f ~x8!,

~13!

where G(x,x8,v), which is the Fourier transform of
G(x,x8,t), is given by

G~x,x8,v![E
2`

`

dt G~x,x8,t !eivt

5
c2

V(
K

(
n

QKn~x!QKn* ~x8!

~v2vKn1 id!~v1vKn1 id!
,

~14!

whered is a positive infinitesimal. The last equality in Eq.
~14! is derived from Eqs.~7! and ~10!, and the following
relation:

L2@v#G~x,x8,v!5d~x2x8!. ~15!

Inclusion of id in the denominator in Eq.~14! assures the
retarded solution of Eq.~11!.

Then, from Eq.~13!,

E~vkm1vk8m8:x,t !52
4p~vkm1vk8m8!

2A2

V
exp@2 i ~vkm1vk8m8!t#

3(
K

(
n

EKn~x!

~vkm1vk8m82vKn1 id!~vkm1vk8m81vKn1 id!

3E
V
dx8x~2!~x8!EKn* ~x8!Ekm~x8!Ek8m8~x8!, ~16!

where the summation with respect toK is over the first Brillouin zone. Substituting Eq.~4!, the integral in Eq.~16! is
calculated as

E
V
dx8x~2!~x8!EKn* ~x8!Ekm~x8!Ek8m8~x8!5dKx ,kx1k

x82~2np/a!E
V
dx8x~2!~x8!uKn* ~x8!ukm~x8!uk8m8~x8!expS 2np ix8

a D
3exp@ i ~ky1ky82Ky!y8#, ~17!

wheredKx ,kx1k
x822np/a is the Kroneckerd, andn is an integer that was introduced to make allowance for an umklapp process.

Because of the periodicity ofx (2)(x)uKn* (x)ukm(x)uk8m8(x) and the periodic boundary condition, the integration overx8 in Eq.
~17! is nonzero only when the differencekx1kx82Kx is a multiple of 2p/a. Actually, n is equal to21, 0, or 1 becauseK ,
k, andk8 all belong to the first Brillouin zone. Now we defineK̄x as K̄x5kx1kx822np/a. Then, Eq.~17! equals

dKx ,K̄x (
j50

N121

(
l50

ny21 E
V0

dx8x~2!~x8!uKn* ~x8!ukm~x8!uk8m8~x8!expF2np i

a
~x81 ja1 lbx!Gexp@ i ~ky1ky82Ky!~y81 lby!#

5N1V0dKx ,K̄xF~Kn,km,k8m8!
12exp@ i $~ky1ky82Ky!by12npbx /a%ny#

12exp@ i $~ky1ky82Ky!by12npbx /a%#
, ~18!

where
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F~Kn,km,k8m8!5
1

V0
E
V0

dx8x~2!~x8!uKn* ~x8!ukm~x8!uk8m8~x8!expS 2np ix8

a Dexp@ i ~ky1ky82Ky!y8#, ~19!

which may be regarded as an effective nonlinear susceptibility with respect to the initial and final states, andV0 denotes the
volume of the unit cell.

Next, we denote the ‘‘group velocity’’ of thenth band to they direction byvg(v,n):

vg~v,n!5S ]vKn

]Ky
D
Kx5K̄x ,vKn5v

. ~20!

Then, converting summation overKy into an integration overv K̄xKyn
in Eq. ~16!, we obtain

E~vkm1vk8m8:x,t !522~vkm1vk8m8!
2A2byexp@2 i ~vkm1vk8m8!t#

3(
n
E dv K̄xKyn

EK̄xKyn
~x!F~K̄xKyn,km,k8m8!

vg~v K̄xKyn
,n!~vkm1vk8m82v K̄xKyn

1 id!~vkm1vk8m81v K̄xKyn
1 id!

3
12exp@ i $~ky1ky82Ky!by12npbx /a%ny#

12exp@ i $~ky1ky82Ky!by12npbx /a%#
. ~21!

Here we define the wave vectorK̄ n such that

K̄nx5K̄x and v K̄n5vkm1vk8m8. ~22!

The last term on the right-hand side of Eq.~21!, which leads to the phase-matching condition, as we will show below,
substantially restricts the region of integration onv K̄xKyn

whenny is sufficiently large, because it consists of a sharp peak.
Then the rest of the integrand may be regarded as slowly varying around this peak, except for the next term,

1

vkm1vk8m82v K̄xKyn
1 id

5
P

vkm1vk8m82v K̄xKyn

2p id~vkm1vk8m82v K̄xKyn
!, ~23!

whereP denotes Cauchy’s principal value. The phase matching is realized when the peak of the last term of Eq.~21! coincides
with the pole of Eq.~23!. Then the second term on the right-hand side of Eq.~23! makes the dominant contribution, and we
neglect the first term. We also neglect the contribution from those bands which do not includevkm1vk8m8 as an eigenfre-
quency. In Appendix A, we will discuss the relation between this approximation and the rigorous calculation for the case of
a uniform lattice. In a general case, analytical evaluation of the integral is not possible, and the above approximation leads to

E~vkm1vk8m8:x,t !.p i ~vkm1vk8m8!A
2byexp@2 i ~vkm1vk8m8!t#(

$n%8

EK̄nn~x!F~K̄ nn,km,k8m8!

vg~vkm1vk8m8,n!

3
12exp@ i $~ky1ky82K̄ny!by12npbx /a%ny#

12exp@ i $~ky1ky82K̄ny!by12npbx /a%#
, ~24!

where the summation is over bands which include
vkm1vk8m8 as an eigenfrequency.

Apart from the weak dependence ofF(K̄ nn,km,k8m8) on
K̄ n , k, andk8, Eq. ~24! leads to the phase-matching condi-
tion

K̄ny5ky1ky81
2npbx
aby

2
2mp

by
, ~25!

wherem is 21, 0, or 1. Together with the momentum con-
servation in thex direction,

K̄ n5k1k82nS 2p

a
,2

2pbx
aby

D2mS 0,2p

by
D . ~26!

Equation~26! means that the conservation of the crystalline
momentum assures the phase matching. In addition, we have
to note thatF(K̄ nn,km,k8m8), which is regarded as an ef-
fective nonlinear susceptibility with respect to the initial and
final states, may vanish for particular combinations ofkm
and k8m8 in highly symmetric photonic lattices because of
the symmetry of the relevant wave functions. This gives a
kind of selection rules. We will discuss this point for a par-
ticular case of a square lattice in Sec. III.

We should also note that the field intensity is proportional
to uc/vgu2, and we can expect a large enhancement at the
photonic band edge wherevg tends to zero. On the other
hand, the average velocity of energy flow is equal tovg ,

19

and so the average Poynting’s vector is proportional to
uc/vgu.
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We would like to conclude this section by making two
remarks. First, as is apparent from the above derivation, the
enhancement of the induced electric field and the Poynting’s
vector due to a smallvg , or, in other words, to a divergent
state density at a photonic band edge, which was shown here
for sum-frequency generation, is a universal feature of non-
linear optical processes in photonic lattices. Second, the ex-
tension of the present calculation to three-dimensional~3D!
lattices is straightforward if we take into consideration the
3D variation of the position-dependent dielectric constant
and the vector nature of the eigenfunctions.

III. NUMERICAL CALCULATION AND DISCUSSION

In this section, we apply our method to second-harmonic
generation~SHG! in a square lattice of circular air rods
formed in a LiNbO3 crystal. We assume that the crystalline
c axis of this uniaxial crystal of 3m-C3v symmetry is aligned
along thez axis. Then the incident fundamental waves of the
E polarization yield only thez component of the harmonic
electric displacement vector, and, therefore, the method
given in Sec. II is applicable. Similar situations can be real-
ized for crystals of 4-C4, 4mm-C4v , 3-C3, 6-C6, and
6mm-C6v symmetry as well.

Figure 2 shows the photonic band structure of the square
lattice, where we assumed thatR/a50.3, e151.0, and
e254.9912, which is the dielectric constant of LiNbO3 at
532 nm. The calculation was performed by the plane-wave
expansion method according to Plihal and Maradudin.17 The
number of basis plane waves was 289, and the accuracy was
estimated as better than 1%. The Brillouin zone of the 2D
square lattice has two highly symmetric points beside theG
point. They are theX point (0,p/a) and theM point
(p/a,p/a). Figure 2 is drawn for these points. The symme-
try of the eigenfunctions are also shown in Fig. 2.13

Now, we assume for simplicity thatk5(kx ,ky) and
k85(2kx ,ky) (ky.0). Then, the phase-matching condition
is fulfilled when

K̄x50 and K̄ny52ky2
2mp

a
~m50,1!. ~27!

Here we consider two examples. In case 1, two incident
waves in the lowest branch induce the second harmonic in
the second lowest branch on segmentGX, va/2pc.0.14 for
the fundamental wave, andm50. In case 2, the second har-
monic in the fourth branch on segmentGX with negative
Ky is induced by similar incident waves.va/2pc.0.25 and
m51 for this case. The effective nonlinear susceptibility
F(K̄ nn,k1,k81) (n52 or 4! is nonzero for both cases. On
the other hand, the third branch does not contribute to SHG
sinceF(K̄33,k1,k81)50. This is because the wave function
of the third branch on segmentGX is antisymmetric under
the mirror reflection at theyz plane, whereas the induced
electric displacement of the second harmonic is symmetric.
As seen in this example,F(Kn,km,k8m8) vanishes for par-
ticular combinations of the initial and final states in a highly
symmetric lattice, and this gives selection rules that are not
relevant to the crystallographic symmetry of the host crystal.

Figure 3 shows the group velocity of the second and
fourth branches on segmentGX together with their disper-
sion curves. The former was calculated by means of
Hellmann-Feynman theorem. The detail is described in Ap-
pendix B. As is understood from this figure, the group ve-
locity of both bands tends to zero at theG andX points. In
addition, the group velocity of the fourth band is small over
the whole branch due to the flatness of its dispersion curve.

Now we take the angular frequency of the fundamental
wave v such that va/2pc50.138 for case 1 and
va/2pc50.253 for case 2. Thenuvgu/c at 2v is 0.114 and
0.0740, respectively. The corresponding data points are de-
noted by solid circles in Fig. 3, where we have to note that
Ky,0 for case 2. Figure 4 shows two contours of the lowest
branch for both cases where the dielectric constant of the
host crystale2 is assumed to be 4.6483, which is that of
LiNbO3 at 1064 nm. In order to use this value consistently
with the assumed angular frequency of the fundamental
waves, the lattice constanta should be about 0.15mm for
case 1 and 0.27mm for case 2. From the dispersion relations
of the second and fourth bands, we find that the phase-
matching condition is fulfilled whenaky/2p50.245 for case
1 and aky/2p50.413 for case 2, respectively. Note that

FIG. 2. The dispersion relation of the square lattice of circular
air rods formed in a LiNbO3 crystal. The ordinate is the normalized
angular frequency. The following values were assumed:R/a50.3,
e151.0, and e254.9912, which is the dielectric constant of
LiNbO3 at 532 nm. The symmetry of the eigenfunctions are also
shown.

FIG. 3. The group velocity of~curve a! the second branch and
~curve b! the fourth branch on segmentGX. Curves (c) and (d) are
their dispersion relations. The same parameters as for Fig. 2 were
assumed. The data points corresponding to cases 1 and 2 are de-
noted by solid circles~see text!.
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phase matching is impossible forE polarization in a uniform
LiNbO3 crystal because the dielectric constant at 2v is
larger than that atv.

The average intensity of the electric field of the second
harmonic,uE(2v:x,t)u2, is given by

uE~2v:x,t !u2516p4A4S va

2pcD
2S cvgD

2

uEK̄nn~x!u2

3uF~K̄ nn,k1,k81!u2U sin~Dknya/2!

sin~Dka/2!
U2,

~28!

where

Dk52ky2K̄ny2
2mp

a
. ~29!

The results of the numerical calculation are shown in Fig. 5,
whereny was assumed to be 100 andx (2) of LiNbO3 was
taken as 1.9431027 ~esu!.18 The abscissa is the angle of
incidence of the fundamental waves, and the angular depen-
dence ofuF(K̄ nn,k1,k81)u is also shown. In this figure, we
find the sharp peaks ofuE(2v:x,t)u2 at the phase-matched
angles, which are 20.9° for case 1@Fig. 5~a!# and 33.1° for
case 2@Fig. 5~b!#. We also find the fairly weak angular varia-
tion of the effective nonlinear susceptibility around the peak,
which was assumed when we derived the phase-matching
condition in Sec. II. The sharpness of the peak depends on
ny . For a very smallny , the peak becomes broad, and the
angular variation ofuF(K nn,km,k8m8)u may somewhat af-
fect the peak position. On the other hand, the height of the
peak is proportional tony

2 . Therefore, the peak height in-
creases quadratically with the sample thicknessany . It was
assumed to be about 15 or 27mm for the present cases.

IV. CONCLUSION

We have formulated the Green’s-function method for
sum-frequency generation in an arbitrary 2D photonic lattice.
In addition, we have derived the generalized phase-matching

condition by taking into account the umklapp process, and
shown that the conservation of the crystalline momentum
assures the phase matching. We have also shown that the
effective nonlinear susceptibility vanishes for particular
combinations of the fundamental and second-harmonic
waves in highly symmetric photonic lattices, and this fact
gives a kind of selection rules beside those derived from the
crystallographic symmetry of the host crystal.

We have applied our method to a 2D square lattice com-
posed of circular air rods formed in a LiNbO3 crystal, and
numerically calculated the angular dependence of the effec-
tive nonlinear susceptibility and the average intensity of the
second harmonic. Because of the weak angular dependence
of the former, the peak position of the latter is almost rigor-
ously determined by the generalized phase-matching condi-
tion.
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FIG. 4. Contours of the lowest branch for~a! case 1:
va/2pc50.138; and~b! case 2:va/2pc50.253. The same param-
eters as for Fig. 2 were assumed except thate254.6483, which is
the dielectric constant of LiNbO3 at 1064 nm. The data points for
which the phase-matching condition for SHG is fulfilled are de-
noted by solid circles.

FIG. 5. The angular dependence of the average intensity of the
electric field of the second harmonic~solid circles! and the effective
nonlinear susceptibility~open circles! for ~a! case 1 and~b! case 2.
ny is assumed to be 100, and therefore, the sample thicknessany is
15 or 27mm, respectively. The abscissa is the angle of incidence of
the fundamental waves.
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APPENDIX A

Now we examine the result of the approximation given in
Eq. ~23! for the case of a uniform lattice. We takee(x) and
x (2)(x) as to be independent ofx. We further assume that
k5k8 for simplicity, and we take they axis as to be parallel
to k, i.e., k5(0,k) (k.0).

Since the eigenfunction is a plane wave in a uniform lat-
tice,

uk~x!5
1

Aev

, uK~x!5
1

Ae2v

, vg~2v!5
c

Ae2v

,

~A1!

whereev ande2v are the dielectric constants atv and 2v,
respectively. In Eq.~A1!, we took the extended zone scheme,
and the suffix to distinguish the band was omitted. Because
the umklapp process is absent in a uniform lattice, Eq.~19! is
reduced to

F~K ,k,k!5
x~2!

V0evAe2v

E
V0

dx8exp@ i ~2k2Ky!y8#

5
x~2!$exp@ i ~2k2Ky!by#21%

ibyevAe2v~2k2Ky!
. ~A2!

Then Eq.~21! is

E~2v:x,t !52
8v2x~2!A2L

cevAe2v

exp~22ivt !H 2 È0

dV
exp~ iK y

~2 !y!

~2v2V1 id!~2v1V1 id!

exp@ i ~2k2Ky
~2 !!L#21

i ~2k2Ky
~2 !!L

1E
0

`

dV
exp~ iK y

~1 !y!

~2v2V1 id!~2v1V1 id!

exp@ i ~2k2Ky
~1 !!L#21

i ~2k2Ky
~1 !!L J , ~A3!

where

L5nyby and Ky
~6 !56

Ae2v

c
V. ~A4!

The approximation of Eq.~23! leads to

E~2v:x,t !.
2p ivx~2!A2L

cevAe2v

exp@ i ~K2vy22vt !#

3exp~ iDkL/2!
sin~DkL/2!

DkL/2
, ~A5!

where

K2v5
2vAe2v

c
and Dk52k2K2v , ~A6!

and the contribution from the first integral in Eq.~A3! was
neglected because it does not give a phase-matched solution.

On the other hand, for the case of a uniform lattice, the
integrals in Eq.~A3! can be evaluated rigorously. Actually,
when we change the sign of the variable in the first integral
of Eq. ~A3!, modify the path of the integration to enclose the
upper half of the complexV plane, and apply the residue
theorem, fory>L we obtain

E~2v:x,t !52
8v2x~2!A2L

cevAe2v

exp~22ivt !E
2`

`

dV
exp~ iK y

~1 !y!

~2v2V1 id!~2v1V1 id!

exp@ i ~2k2Ky
~1 !!L#21

i ~2k2Ky
~1 !!L

5
4p ivx~2!A2L

cevAe2v

exp@ i ~K2vy22vt !#exp~ iDkL/2!
sin~DkL/2!

DkL/2
. ~A7!

Therefore, the rigorous expression is twice as large as the
approximate one. The difference stemmed from the ne-
glected principal value integrated on the whole real axis. For
the case of general photonic lattices, a rigorous evaluation is
not possible, since the path of the integration is not the whole
real axis, and the analyticity of the eigenfunctions is un-
known.

APPENDIX B

The group velocity of 2D photonic bands can be readily
calculated by means of Hellmann-Feynman theorem. We
show the method below.

The dispersion relation forE polarization is given by the
eigenequation17
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M~k!Am~k!5
vkm
2

c2
Am~k!. ~B1!

Here M(k) is a k-dependent matrix whose (G,G8) compo-
nent is defined by the following equation:

M~k:G,G8!5uk1Guuk1G8uk~G2G8!, ~B2!

whereG andG8 are the reciprocal-lattice vectors of the 2D
photonic lattice, andk(G) is the Fourier transform of
1/e(x). The k-dependent vectorAm(k) gives the eigenfunc-
tion Ekm(x) as

Ekm~x!5h(
G

Am~k:G!

uk1Gu
exp@ i ~k1G!•x#, ~B3!

and it is normalized to unity, i.e.,uAm(k)u51. In Eq. ~B3!,
h is a constant required to normalizeAe(x)Ekm(x) in a unit
volume.

Here we assume thate(x) is real. Then k(2G)

5k* (G), and M(k) is an Hermitian matrix. Therefore, we
can apply the Hellmann-Feynman theorem to the present
problem, and we obtain

Am
t* ~k!

]M~k!

]ky
Am~k!5

]

]ky
S vkm

2

c2 D 5
2vkm

c2
vg~vkm ,m!,

~B4!

wheret denotes the transposed matrix, and

]M~k:G,G8!

]ky
5F uk1G8u

uk1Gu ~ky1Gy!1
uk1Gu
uk1G8u

~ky1Gy8!G
3k~G2G8!. ~B5!

Therefore, the group velocityvg(v,m) can be readily
evaluated once the eigenvectorAm(k) and the eigenvalue
vkm
2 /c2 are obtained by the band calculation based on the

plane-wave expansion method.
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