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Charged Impurity-Scattering-Limited Low-Temperature Resistivity
of Low-Density Silicon Inversion Layers
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We calculate within the Boltzmann equation approach the charged impurity-scattering-limited low-
temperature electronic resistivity of low-density n-type inversion layers in Si MOSFET structures. We
find a rather sharp quantum to classical crossover in the transport behavior in the 0 5 K temperature
range, with the low-density, low-temperature mobility showing a strikingly strong nonmonotonic
temperature dependence, which may qualitatively explain the recently observed anomalously strong
temperature dependent resistivity in low-density, high-mobility MOSFETs.

PACS numbers: 73.40.Qv, 71.30.+h, 73.50.Bk
Several recent publications on low-temperature resis-
tivity measurements [1–4] in various low-density two-
dimensional (2D) systems report the observation of an
anomalously strong temperature dependence as a function
of carrier density, which has been interpreted as evidence
for a zero-temperature two-dimensional metal-insulator
transition (2D MIT), which is considered to be forbidden
in two dimensions (at least for a noninteracting 2D sys-
tem) by the one parameter scaling theory of localization
[5]. A number of theoretical papers [6–8] have appeared
in the literature providing many possible resolutions of this
seemingly unanticipated (but apparently ubiquitous) phe-
nomenon. In this Letter, we propose a possible theoretical
explanation for (at least a part of ) the observed phenom-
ena. Our explanation is quantitative, microscopic, and
physically motivated. Although our theory is quite general
and generic (and thus applicable to all the systems [1–4]
exhibiting the so-called 2D MIT), we specifically con-
sider here the electron inversion layer in Si metal-oxide-
semiconductor field-effect transistor (MOSFETs), which is
both the original system in which the 2D MIT was first
reported [1] and is also the most exhaustively experimen-
tally studied [1–3] system in this context. It is important
to emphasize that, in contrast to much [6] of the existing
theoretical work on the subject, our theory does not ad-
dress the existence (or not) of a zero temperature 2D MIT,
but addresses the issue of quantitatively understanding the
strikingly unusual finite temperature experimental results
on the effective “metallic” side of the transition.

We first summarize the key experimental features of the
2D MIT phenomenon (focusing on Si MOSFETs), empha-
sizing the specific aspects addressed in our theory. Ex-
perimentally one finds a “critical density” (nc) separating
an effective metallic behavior (for density ns . nc) from
an effective “insulating” behavior (ns , nc). We con-
centrate entirely on the effective metallic behavior in this
Letter since a 2D metal is “unusual” according to the
conventional theory [5] and a 2D insulator is not. The
experimental insulating behavior (for ns , nc) is quite
conventional for a strongly localized semiconductor, and
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can be understood using standard transport models [7,8].
The effective metallic behavior is characterized by a strong
drop in the temperature dependent resistivity, r�T �, at low
temperatures (0.1 K # T # 1 3 K) and at low densities
(ns $ nc). This novel and dramatically strong tempera-
ture dependence of r�T �, where r�T � may drop by a factor
of 2 10 at low electron densities as temperature decreases
from 2 K to 100 mK, is one of the most significant experi-
mental observations we qualitatively explain in this Let-
ter. In addition the experimental resistivity, r�T , ns�, as
a function of temperature and electron density, shows an
approximate “scaling” behavior r�T , ns� � r�T�T0� with
T0 � T0�ns� indicating consistency with quantum critical-
ity. Our theoretical results show the same scaling behav-
ior with our calculated T0�ns� having very similar density
dependence as the experimental observation. There are
interesting aspects of the magnetic field and the electric
field dependence of the observed resistivity, which we do
not address here, concentrating entirely on the behavior of
r�T , ns� in the ns $ nc metallic regime. It is this “anoma-
lous metallic” behavior (in the sense of a very strong metal-
lic temperature dependence of the resistivity in a narrow
density range above nc) which has created the recent in-
terest in the 2D MIT phenomena since in general, the tem-
perature dependent resistivity of a metal should saturate
as it enters the low-temperature Bloch-Grüneisen regime
without manifesting any strong temperature dependence.

Our theory, which provides good qualitative agreement
with the existing experimental data on the metallic (ns .

nc) side of the transition, is based on two essential assump-
tions: (1) transport is dominated by charged impurity scat-
tering centers (with a density of Ni per unit area) which are
randomly distributed at the interface; (2) the MIT at ns �
nc is characterized by a “freeze-out” of free carriers due
to impurity binding—the free carrier density responsible
for metallic transport is thus (ns 2 nc) for ns . nc, and
on the insulating side, ns , nc, the free carrier density (at
T � 0) is by definition zero. Some justifications for these
assumptions have been provided in Ref. [7], although our
current model transcends the specific scenario envisioned
© 1999 The American Physical Society
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in Ref. [7] and is more general. In contrast to Ref. [7],
we do not specify any particular mechanism for the carrier
freeze-out and accept it as an experimental fact. We note
that we could extend our model and go beyond the above
two assumptions, for example, by making the effective free
carrier density n � �ns 2 nc�u�ns 2 nc� 1 na�T �, where
na�T � is a thermally activated contribution to the carrier
density (this relaxes the second assumption), and/or by
introducing additional scattering mechanisms such as the
short-range surface roughness scattering (this relaxes the
first assumption). These extensions beyond our two essen-
tial approximations will undoubtedly produce better quan-
titative agreement between our theory and experiment (at
the price of having unknown adjustable parameters). We,
however, refrain from such a generalized theory, because
we believe that the minimal theory, constrained by our two
stringent assumptions and thus allowing for only one un-
known parameter (the charged impurity density Ni) which
sets the overall scale of resistivity in the system, already
catches much of the essential physics in the problem.

We use the finite temperature Drude-Boltzmann theory
to calculate the Ohmic resistivity of the inversion layer
electrons taking only into account long range Coulombic
scattering by the random static charged impurity cen-
ters with the electron-impurity Coulomb interaction being
screened by the 2D electron gas in the random phase ap-
proximation (RPA). The resistivity is given by r � s21,
where the conductivity s � ne2�t��m with m as the car-
rier effective mass, and �t� is the energy averaged finite
temperature scattering time:

�t� �

R
dE Et�E� �2 ≠f

≠E �R
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where f�E� is the Fermi distribution function, f�E� �
�1 1 exp	�E 2 m�
�kBT �21 with m�T , n� as the finite
temperature chemical potential of the free carrier system
determined self-consistently. The energy dependent scat-
tering time t�E� for our model of randomly distributed in-
terfacial impurity charge centers is given by
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with q � jk 2 k0j, u � ukk0 is the scattering angle be-
tween k and k0, E � ek � h̄2k2�2m, ek0 � h̄2k02�2m,
y�q� is the 2D Coulomb interaction between an elec-
tron and an impurity, and ´�q� � ´�q; m, T � is the 2D
finite temperature static RPA dielectric (screening) func-
tion [9,10]. In calculating the Coulomb interaction and
the RPA dielectric function in Eq. (2) we take into account
subband quantization effects in the inversion layer through
the lowest subband variational wave function [9]. We note
that there are two independent sources of temperature de-
pendence in our calculated resistivity—one source is the
energy averaging defined in Eq. (1), and the other is the ex-
plicit temperature dependence of the finite temperature di-
electric function ´�q� which produces a direct temperature
dependence through screening in Eq. (2). At very high
temperatures, when T ¿ TF with TF � m�T � 0��kB as
the free carrier Fermi temperature, the system is classical
and it is easy to show that Eq. (1) leads to a decreasing re-
sistivity with increasing temperature: r�T � � A�T�TF�21

for T ¿ TF . In the quantum regime, however, energy
averaging by itself produces a weak quadratic (nega-
tive) temperature dependence according to Eq. (1): r �
r�T � 0� 2 B�T�TF�2, for T ø TF . For Si inversion
layer, however, this low temperature negative tempera-
ture dependence is overwhelmed [9–11] by the tempera-
ture dependence of the screening function in Eq. (2) which
dominates 2kF scattering—this phenomenon arises from
the specific form of the 2D screening function which is
a constant up to q � 2kF , and has a cusp at 2kF at
T � 0. This strong temperature dependence arising from
the low-temperature screening function produces a linear
rise in the low-temperature (T ø TF) resistivity with in-
creasing temperature according to Eq. (2): r�T � � r�T �
0� 1 C�T�TF�, for T ø TF . This linear temperature de-
pendence is, however, cut off at very low temperatures
due to the rounding of the sharp corner in the 2D screen-
ing function by impurity scattering effects [10–12]—at
very low temperature T ø TD where TD (� G�pkB with
G as the collisional broadening) is the collisional broad-
ening induced Dingle temperature, the explicit tempera-
ture dependence of ´�q, T � is suppressed. At the densities
and temperatures of interest in the 2D MIT phenomena all
of these distinct physical effects are operational, and the
actual behavior of r�T , n� could be quite complicated be-
cause the four different asymptotic mechanisms discussed
above compete with each other as the system crosses over
from a nondegenerate classical (T . TF) to a strongly
screened degenerate quantum (T ø TF) regime. We note
that in general the temperature dependence is nonmono-
tonic (particularly at lower densities where the energy av-
eraging effects are significant), as has been experimentally
observed [1–4], because the temperature dependence of
Eq. (1) by itself produces a negative temperature coeffi-
cient, whereas screening through Eq. (2) produces a posi-
tive temperature coefficient.

In Fig. 1 we show our numerically calculated resistivity
for the Si-15 sample of Ref. [1]. We use several different
Dingle temperatures to incorporate [10–12] the impurity
scattering induced collisional broadening corrections in the
screening function, including the pure RPA (TD � 0) case
which completely neglects collisional broadening effects
on screening. In Fig. 1(b) we show the calculated Si-15
results where the Dingle temperature varies as a function of
electron density. For each density the appropriate TD is de-
termined from the resistivity for that particular density. In
Fig. 1(b) the temperature dependence of r�T � at low tem-
peratures is strongest at intermediate densities somewhat
away from nc, whereas in Fig. 1(a) the temperature de-
pendence of r�T � becomes stronger as one approaches nc,
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FIG. 1. The calculated resistivity r�T� for the Si-15 sample
of Ref. [1]. We use (a) the fixed Dingle temperature, TD �
0 K (dashed lines) and TD � 0.5 K (solid lines), for various
electron densities, ns � 8.9, 9.2, 10.2, and 12.4 3 1010 cm22

(from top to bottom), and the experimental data points are taken
from Ref. [1]; (b) the density dependent Dingle temperature for
various densities, ns � 8.9, 9.2, 10.2, 11.3, 11.8, 12.4, 13.5,
14.5, 15.5, 16.5, 20.0, and 24.2 3 1010 cm22 (from top to
bottom).

and is the strongest at the lowest density. This arises from
the competition in screening among T , TF , and TD —at the
lowest densities the temperature dependence is moderated
by having relatively high values of TD , whereas at high
densities the temperature dependence is suppressed by the
large value of TF , implying that the strongest temperature
dependence of r�T � occurs at intermediate densities where
neither TD nor TF is too high. Putting TD � 0 leads to
stronger temperature dependence because the temperature
dependence of screening is not cut off at low temperatures.

The impurity density Ni has been fixed by demanding
agreement between experiment and theory at high tem-
peratures (T � 5 K) and the highest densities. The impu-
rity density Ni thus sets the scale of the overall resistivity
(r ~ Ni), and does not affect the calculated T and ns de-
pendence of r�T , ns�. It is important to emphasize that
Ni values needed in our calculation to obtain quantitative
agreement with experiment are in the reasonable range of
Ni � 1010 cm22, which is known [7,9,11] to be the typi-
cal effective random charged impurity scattering center
density in high mobility Si MOSFETs. Since Ni is the
only “free” parameter of our theory, it is significant that
166
we obtain a reasonable value for Ni in order to achieve
agreement between theory and experiment. We emphasize
that our theory is valid even if the metallic (ns . nc) sys-
tem is actually weakly localized as long as the effective
localization length is larger than the system size or the
phase coherence length. Our theory predicts a somewhat
stronger ns dependence of r than that observed experi-
mentally. This discrepancy can be corrected by adding an
activated carrier density na�T� to our effective carrier den-
sity n � �ns 2 nc� 1 na, which produces the strongest
effect at the lowest densities (and essentially no effect at
higher densities), and would reduce r�T � at lower densi-
ties. One can also use a variable impurity density Ni�ns�
which varies with the gate voltage (following the spirit of
Ref. [8]), and is lower at lower values of ns, again produc-
ing quantitative agreement between theory and experiment.
Given the overall excellent qualitative agreement between
our results and the experimental data of Ref. [1], we think
that these refinements of our model are not particularly es-
sential or meaningful.

We show the experimental data points for Si-15 taken
from Ref. [1] in Fig. 1(a) to give an idea about the level of
agreement between our calculation and the experimental
results. We do not attach particularly great significance to
the quantitative agreement achieved in Fig. 1(a) because of
the various approximations in our theory. We do empha-
size, however, that our calculations catch all the essential
qualitative features of the low temperature experimental
data [1,2]. We obtain the observed nonmonotonicity in
r�T � at low densities and also the strong drop in r�T � at
low densities in the �0.1 2 K temperature range. Con-
sistent with the experimental observations our calculated
low density r�T � could drop by an order of magnitude for
1 2 K change in the temperature. Our high density re-
sults show weak monotonic increasing r�T � with increas-
ing T similar to experimental observations [1–4]. We
have carried out calculations for all the reported Si samples
(as well as GaAs samples) in the literature [1–4], and
our level of qualitative agreement with experiment is uni-
formly good for all the existing experiments.

In Fig. 2 we show our calculated “scaling” properties
of r�T , ns� � r�T�T0� with T0 � T0�ns� for the Si-15
results shown in Fig. 1(b). The scaling is obtained en-
tirely numerically by obtaining the T0 which gives the best
scaling fit to the calculated r�T , ns�. Comparing Fig. 2
with the corresponding experimental scaling plots [1] of
resistivity, we conclude that our theoretical scaling behav-
ior of r�T , ns� is about as good as the corresponding ex-
perimental scaling. In particular, our T0�ns�, shown as an
inset in Fig. 2, agrees reasonably well with the experimen-
tal results [1]. We obtain very similar scaling results for
the other Si samples in Refs. [1,2]. The scaling we obtain
in Fig. 2 underscores the important point that the experi-
mentally observed scaling behavior in a narrow (T , ns)
range does not necessarily imply quantum criticality.

Before concluding, we point out the approximations
made in our calculations. We have uncritically applied
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FIG. 2. The calculated scaling behavior of the resistivity from
Fig. 1(b). Inset shows density dependence of the scaling
parameter T0.

the Drude-Boltzmann transport theory. Our main justi-
fication for applying the standard transport theory to the
current problem is our belief that such a “zeroth or-
der,” “one-parameter” (Ni being the only parameter in
our model) theory must be applied to the problem and
compared with the experimental data before one can
discuss more speculative (and calculationally difficult)
approaches [6]. The fact that such a zeroth order theory
already obtains good qualitative agreement with the
experimental results indicates that charged impurity
scattering, carrier binding and freeze-out, temperature
and density dependence of 2D screening, and classical
to quantum crossover (in the T � 0 5 K range) are
playing significant roles in the experiments and cannot
be neglected in any theoretical analysis of the “2D MIT”
phenomenon. Our other approximations of using the
RPA screening (we actually incorporate a 2D Hubbard
local field correction [13] in our screening, which has no
qualitative effect on our results) and the Dingle tempera-
ture approximation to incorporate collisional broadening
effects on screening are quite reasonable (at least quali-
tatively) within our model and approximation scheme,
and may be systematically improved (with a great deal of
work) if future experiments warrant such a quantitative
improvement of the theory. It is important to emphasize
that quantum corrections, including localization effects,
are left out of our semiclassical Drude-Boltzmann theory.
We estimate weak localization effects to be substantially
weaker than the temperature dependence shown in Fig. 1
in the experimental temperature range (T . 50 mK) in
Refs. [1,2]. The fact that the observed temperature de-
pendence, particularly at lower temperatures, is somewhat
stronger than our calculated results may very well be the
manifestation of quantum fluctuation or interaction effects
neglected in our theory. An important approximation
of our theory (consistent with the Drude-Boltzmann
approach) is the neglect of inelastic electron-electron in-
teraction, which may well be significant in the low-density
2D systems of experimental relevance. For example, it is
possible that the insulating system (ns , nc) is an electron
glass (arising from the competition/frustration between
interaction and disorder). While a quantitative theory
including disorder and interaction effects is extremely
difficult, we speculate that our Boltzmann theory (in
particular, the quantum-classical crossover which leads to
the strong temperature dependence) is sufficiently robust
so that our qualitative conclusions will remain unaffected.

We conclude by emphasizing the specific features of
our theory: (1) strong temperature dependence at low and
intermediate densities (ns $ nc); (2) nonmonotonicity in
r�T �, arising from quantum-classical crossover, at low
values of ns $ nc where r�T � increases weakly with
decreasing T at higher temperatures and decreases strongly
with T at lower temperatures; (3) scaling of r�T , ns� �
r�T�T0� with the theoretical T0�ns�, agreeing with the
experimental results; (4) our calculated zero-temperature
conductivity, s�T � 0, ns� � 1�r�T ! 0, ns�, shows an
approximately (within 25%) linear density dependence,
s�T � 0� ~ n � �ns 2 nc�, which is consistent with the
T ! 0 extrapolation of the experimental [1,2] resistivity
and also with several other experimental [14] findings
[this dependence, s�T � 0� ~ �ns 2 nc�, also supports
our basic freeze-out or binding model].
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