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We report results for the potential of mean force �PMF� and the defect structures that arise when sphero-
cylindrical nanoparticles are immersed in a nematic liquid crystal. Using a dynamic field theory for the tensor
order parameter Q of the liquid crystal, we analyzed configurations, including one, two, and three elongated
particles, with strong homeotropic anchoring at their surfaces. For systems with one nanoparticle, the most
stable configuration is achieved when the spherocylinder is placed with its long axis perpendicular to the
far-field director, for which the defect structure consists of an elongated Saturn ring. For systems with two or
three nanoparticles with their long axes placed perpendicular to the far-field director, at small separations the
defect structures consist of incomplete Saturn rings fused with new disclination rings orthogonal to the original
ones, in analogy to results previously observed for spherical nanoparticles. The shape of these orthogonal rings
depends on the nanoparticles’ configuration, i.e., triangular, linear, or parallel with respect to their long axis. A
comparison of the PMFs indicates that the latter configuration is the most stable. The stability of the different
arrays depends on whether orthogonal disclination rings form or not, their size, and the curvature effects in the
interparticle regions. Our results suggest that the one-elastic-constant approximation is valid for the considered
systems; similar results were obtained when a three-constant expression is used to represent the elastic free
energy. The attractive interactions between the elongated particles were compared to those observed for
spheres of similar diameters. Similar interparticle energies were observed for linear arrays; in contrast, parallel
and triangular arrays of spherocylinders yielded interactions that were up to 3.4 times stronger than those
observed for spherical particles.
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I. INTRODUCTION

Liquid crystals are finding emerging applications in a
wide variety of fields. One example is the use of liquid crys-
tals in chemical and biomolecular sensors �1–3�. The sensing
mechanism is remarkably simple; the presence of chemicals
or biomolecules perturbs the local ordering of a liquid crys-
tal, and triggers the formation of inhomogeneous textures.
Due to the long-range order of the liquid crystals, these in-
homogeneities can be communicated over several length
scales, e.g., from a nanometer-sized protein to the size of a
disclination line, on the order of tenths of millimeters. There-
fore, the optical signatures can be detected by simply using a
microscope and polarized light �1–3�. A second example is
provided by the use of liquid crystals as tunable solvents for
microemulsions and particle dispersions �4–8�; in such sys-
tems, the elastic distortion of the liquid crystal induced by
the presence of the particles can give rise to long-range in-
terparticle interactions, which are absent when colloids or
droplets are dispersed in isotropic solvents. Particle or drop-
let suspensions in liquid crystals have potential applications
for development of new composite materials with improved
physical properties �4–8�.

The main objects responsible for the response of a biosen-
sor or the structure of a microemulsion or suspension are the
defects that arise around a specific nanoparticle or a collec-
tion of nanoparticles. Optimization of the applications men-

tioned above therefore requires a fundamental understanding
of the structure and dynamics of topological defects around
particles immersed in a liquid crystal, as well as the liquid
crystal-induced interparticle interactions that arise due to
elastic distortions. The uniform alignment of a nematic is
usually distorted by the particles, due to the constraints im-
posed by the anchoring of the liquid crystal at their surfaces.
Topological defects are observed when these constraints im-
pose conflicting orientations to the liquid crystal, giving rise
to discontinuities in the director field n�r� �9�. The defect
core itself is characterized by strong biaxiality and a pro-
nounced decrease in the scalar order parameter S�r�, which
measures the degree of orientational order; a low value of
S�r� reflects the fact that the liquid crystal “melts” locally at
the defect core �9,10�. Experimentally, three types of defects
have been observed when a spherical particle is placed in a
nematic liquid crystal: the dipole configuration or hyperbolic
hedgehog �4,11�, the quadrupolar configuration or Saturn
ring �12,13�, and the surface-ring configuration or boojum
�11�. They have been the subjects of a number of theoretical
and numerical studies �14–18�. In particular, Stark �17,18�
used a director description of the liquid crystal to show that
the hedgehog configuration is stable for strong surface an-
choring and �m-sized spherical particles. The Saturn ring
configuration becomes stable when the particle size is re-
duced or when a magnetic field is applied; confining the
particle is also predicted to stabilize a Saturn ring configura-
tion �19�. A surface ring defect is observed upon reduction of
the surface anchoring strength �17,18�. Recent calculations
using a tensor order parameter description of the liquid crys-*Electronic address: depablo@engr.wisc.edu
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tal and an adaptive mesh refinement scheme confirmed these
conclusions �20�. This methodology was extended very re-
cently to study a system of two �m-sized spheres in a nem-
atic liquid crystal, where each particle exhibits a hyperbolic
hedgehog defect �21,22�. A similar system, consisting of a
pair of nanoscopic spherical particles surrounded by Saturn
ring defects, was studied recently using both Monte Carlo
molecular simulations and a continuum field theory for the
liquid crystal tensor order parameter Q �23,24�; in both ap-
proaches, a third disclination ring orthogonal to the original
ones was observed between the two spheres at short separa-
tions. Given the good agreement between molecular simula-
tions and the field theory, the latter approach was extended to
study a system of three spherical nanoparticles immersed in a
nematic liquid crystal �25�, and also to study the structure
and dynamics of a nematic in a two-dimensional �2D� repre-
sentation of a liquid crystal sensor �1,2�, where chemicals or
biomolecules �represented as spherical nanoparticles� can ad-
sorb at the sensor walls �26,27�.

Several simulation and numerical studies have considered
the case of elongated particles immersed in a liquid crystal.
In addition to their relevance for liquid crystal sensors and
particle dispersions, anisotropic particles have been consid-
ered in recent experiments by Lapointe and co-workers, who
showed that for a system of nanowires placed in a nematic,
controlled variations in the liquid crystal director field could
levitate the nanowires to a specified height �28,29�. Burylov
and Raikher �30� used a continuum theory in terms of the
liquid crystal director n to study the equilibrium orientation
of an elongated particle immersed in a nematic. Andrienko et
al. �31� used molecular dynamics and Monte Carlo simula-
tions to examine the defect structures and torque around an
spherocylindrical particle and a rod of infinite length placed
in a nematic. In later studies, Andrienko and co-workers also
used a Landau–de Gennes free energy in terms of the liquid
crystal tensor order parameter Q to determine the interac-
tions between pairs of infinitely long cylindrical particles
immersed in a nematic �32�, and in a nematic-isotropic inter-
face �33,34�. Similarly, McKay and Virga �35� used a free
energy in terms of Q to study the force and torque exerted on
an infinitely long cylinder placed in a nematic when the cyl-
inder is close to a wall. Most of these studies have consid-
ered elongated particles of infinite length, which were often
modeled as disks in a 2D system. Only one of these previous
studies �31� has considered the case of a single anisotropic
particle of finite length. Results for two spheres have been
reported in several studies ��21–24� and references therein�,
and systems of more particles have been considered in just a
few investigations �25,36,37�; interestingly, Yamamoto et al.
�36,37� have considered a 2D system where the disks are free
to move due to the many-body forces mediated by nematic
and smectic-C* solvents.

In this paper, we report numerical calculations for the
defect structures that arise when spherocylindrical nanopar-
ticles are immersed in a 3D nematic liquid crystal. A
Landau–de Gennes free energy in terms of the tensor order
parameter Q is used to represent the nematic solvent. Differ-
ent configurations with one, two, and three elongated nano-
particles with strong homeotropic anchoring are considered.
We also calculate the potential of mean force �PMF� for the

different systems. The PMF gives the difference in free en-
ergy between two states, as a function of a specific degree of
freedom of the system, namely the orientation angle � for
one-particle systems, and the minimum surface-to-surface in-
terparticle distance d for the case of two- and three-particle
systems. The paper is organized as follows. In Sec. II we
present a description of our model systems and details of the
numerical methodology. Our results are presented and dis-
cussed in Sec. III. Section IV includes some concluding re-
marks and suggestions for future work.

II. MODELS AND METHODS

A. Details of the model systems

The model system considered in this work consists of a
rectangular box of dimensions Lx, Ly, and Lz, containing one,
two, or three elongated nanoparticles immersed in a nematic
liquid crystal. A schematic representation of the model sys-
tem for one particle is shown in Fig. 1. The nanoparticles are
represented by a cylinder of length L=24.8 nm and spherical
caps of diameter �=12.4 nm, so that the total length of the
spherocylinder is 37.2 nm. These dimensions are comparable
to the particle size considered in the molecular simulations of
Andrienko and co-workers �31�, and a direct comparison be-
tween their results and ours is therefore possible. As in our
previous studies �23–25�, periodic boundary conditions are
imposed in the x and y directions. The top and bottom of the
simulation box consist of walls that impose strong homeo-
tropic anchoring to the liquid crystal. In the absence of par-
ticles, the system exhibits a homogeneous texture where the
director field n�r� is parallel to the z axis. Homeotropic an-
choring of the liquid crystal is also imposed at the nanopar-
ticle surfaces. For brevity, when we refer to the “placement”
and “orientation” of an spherocylindrical particle in this pa-
per, we mean the placement of its center of mass and the
orientation of its long axis, respectively. In addition, when
we refer to the “separation” between particles, we denote the
minimum surface-to-surface distance between spherocylin-
ders.

In all cases considered in this work, the particles lie in a
common plane that passes through the center of the simula-
tion box. For one-particle systems, we considered different

FIG. 1. Scheme of the model system for one anisotropic
nanoparticle.
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configurations where the spherocylinder is oriented at an
angle � with respect to the x axis in the x-z plane �see Fig. 2�.
For two-particle systems, three arrays were considered where
the particles are oriented along the x axis, but the particles
are placed in different ways �see Fig. 5�: �a� centers are on
the x axis �linear array�; �b� centers are on the y axis �parallel
x-y array�; and �c� centers are on the z axis �parallel x-z
array�. The same arrays were considered for three-particle
systems, together with an additional arrangement �d� where
the particles’ long axes lie at the sides of an equilateral tri-
angle in the x-y plane �triangular array, see Fig. 10�. The
PMF and the defect structures were determined as a function
of the angle � for one-particle systems, and as a function of
the particle separation d for the case of two- and three-
particle systems. Different simulation box sizes were consid-
ered, depending on the number of particles. A cubic simula-
tion box with Lx=Ly =Lz=114 nm was used for one-particle
systems. For the systems with two and three nanoparticles,
the dimensions of the simulation box were Lx=Ly =202 nm,
Lz=80 nm for all cases except the parallel x-z arrays, where
a box with Lx=Lz=202 nm and Ly =80 nm was used.

B. Dynamic field theory for the nematic liquid crystal

The behavior of the nematic was modeled using a dy-
namic field theory for the tensor order parameter Q�r�; in
contrast to the director field n�r�, Q�r� is free of divergences
and discontinuities even at the disclination lines. The local
values of the scalar order parameter S�r� and the director
n�r� can be obtained from Q through its largest eigenvalue
2S /3 and its associated eigenvector, respectively �9�. In pre-
vious studies �23,24�, it was shown that results obtained from
this theory are in agreement with those from molecular simu-
lations, down to length scales comparable to the size of a
liquid crystal molecule. This theory corresponds to a particu-
lar case of the Beris-Edwards formulation of the thermody-
namics of fluids with internal microstructure �38�. In this
formulation, the evolution of the tensor order parameter Q as
a function of position r and time t is determined by the
functional derivative of the system free energy F with re-
spect to Q,

�Q

�t
= −

1

�
� �F

�Q
−

1

3
Tr� �F

�Q
�I� . �1�

Here � is a kinetic coefficient associated with the rotational
viscosity of the liquid crystal, and for simplicity it is as-
sumed to be a constant. In this equation, it is assumed that
�F /�Q has been symmetrized. The free energy F of the liq-
uid crystal includes three contributions,

F =	 dr fLdG�r� +	 dr fe�r� + 
 dSfs�r� . �2�

The first term, fLdG, represents a Landau–de Gennes expan-
sion describing the short-range interactions that drive the
bulk isotropic-nematic phase transition

fLdG =
A

2
�1 −

U

3
�Tr�Q2� −

AU

3
Tr�Q3� +

AU

4
�Tr�Q2��2.

�3�

The phenomenological coefficients A and U depend on the
liquid crystal of interest. A controls the energy scale of the
model, whereas U controls the value of the bulk scalar order
parameter S,

Sbulk =
1

4
�1 + 3�1 −

8

3U
� . �4�

In this model, the system is isotropic for 0�U�2.7, and
nematic for U�2.7. The limits of metastability for the iso-
tropic and nematic phases are U=3 and 8/3, respectively.
The third term in Eq. �2� represents the surface contribution
to the free energy, and accounts for the liquid crystal anchor-
ing at the surfaces. We only consider the case of strong ho-
meotropic anchoring at all surfaces. In this limit case, the
prescribed perpendicular orientation of the liquid crystal at
every surface must be satisfied, lest fs diverges. In our cal-
culations, the homeotropic anchoring of the liquid crystal at
every surface is enforced through the boundary conditions.

The second term in Eq. �2� describes the long-range elas-
tic forces of the liquid crystal, and introduces a free energy
penalty associated with gradients of the tensor order param-
eter field. Two expressions have been used to evaluate the
elastic free energy of the liquid crystal: the one-elastic-
constant approximation, and a three-elastic-constant expres-
sion proposed by Edwards et al. �38–40�. We explain those
in detail in the following sections.

1. One-elastic-constant approximation

For simplicity, we have used in most of our calculations
the one-elastic-constant approximation �9�, where the splay,
twist, and bend elastic constants K11, K22, and K33 have a
common value. The elastic free energy takes the following
form:

fe =
L1

2
�kQij�kQij . �5�

In Eq. �5�, i , j ,k�x ,y ,z, and the Einstein summation con-
vention over repeated indexes is used �this convention is also
assumed in subsequent equations�. When the functional de-
rivatives in Eq. �1� are evaluated with Eq. �5� for the elastic
free energy, the following partial differential equation for Q
is obtained:

�Qij

�t
= −

1

�
�A�1 −

U

3
�Qij − AU�QikQkj −

�ij

3
QklQkl

− Qij�QklQkl�� − L1�k�kQij , �6�

where the indexes i , j ,k , l�x ,y ,z. Equation �6� was solved
numerically for all systems considered in this study. The val-
ues of the dimensionless parameters are A=1, U=6, �
=400, and L1=1, corresponding to Sbulk=0.81. Given suit-
able scaling factors for pressure �105 Pa�, length �10 nm�,
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and time �1 ns�, these parameters correspond to a material
having an elastic constant K=5 pN �within the one-elastic-
constant approximation�, and an orientational viscosity �
=0.04 Pa s. These values are representative of a low
molecular-weight liquid crystal, such as 5CB. In addition,
from a dimensional analysis one can obtain a characteristic
length scale for the spatial variations of Q �10�, �
=�18L1 /AU, which corresponds to �=17.3 nm for our pa-
rameters.

2. Three-elastic-constant expression of Edwards et al. [38–40]

One of the issues of the one-elastic-constant approxima-
tion is that it cannot distinguish bend from splay elastic con-
stants �i.e., K11=K33�. Complete expressions have been de-
rived for the elastic free energy �see, e.g., Refs. �41,42��. For
example, the theoretical form proposed by Longa et al. �41�
involves a fourth-order expression in terms of Q and its gra-
dient, and nineteen elastic coefficients are required. Note,
however, that several theoretical studies �38–40,42,43� have
demonstrated that to remove the restriction K11=K33, it is
enough to include higher moments in the orientation distri-
bution function, or to simply incorporate higher order terms
in Q in the elastic free energy. One simple extension has
been proposed by Edwards et al. �38–40�, and involves a
cubic term in Q and its gradient. This expression for the
elastic free energy includes three different values for the
splay, twist, and bend elastic constants �K11, K22, and K33�. In
contrast to the expression of Longa et al., which requires
nineteen elastic coefficients �41�, the expression of Edwards
et al. requires just three parameters �L1, L2, and L3�, and was
therefore adopted for some of our calculations,

fe =
L1

2
�kQij�kQij +

L2

2
�iQik� jQjk +

L3

2
Qij�iQkl� jQkl. �7�

The coefficients L1, L2, and L3 are related to the splay, twist,
and bend constants K11, K22, and K33 as follows:

L1 =
3K22 − K11 + K33

6S2 , �8�

L2 =
K11 − K22

S2 , �9�

L3 =
K33 − K11

2S3 . �10�

When the functional derivatives from Eq. �1� are evaluated
with Eq. �7� for the elastic free energy, the following partial
differential equation is obtained �40�:

�Qij

�t
= −

1

�
�A�1 −

U

3
�Qij − AU�QikQkj −

�ij

3
QklQkl

− Qij�QklQkl�� − L1�k�kQij − L2�1

2
�k�iQkj +

1

2
�k� jQki

−
�ij

3
�k�lQkl� + L3�1

2
�iQkl� jQkl − Qkl�l�kQij

− �kQkl�lQij −
�ij

6
�mQkl�mQkl� , �11�

where the indexes i , j ,k , l�x ,y ,z, and Einstein’s summation
convention is used. The dimensionless parameters in Eq. �11�
have values A=1, U=6, and �=400, which correspond to
Sbulk=0.81, and were obtained following the same procedure
described in the previous section. We have calculated L1
=0.733, L2=0.800, and L3=0.800, from Eqs. �8�–�10� and
experimental values recently reported for 5CB �44� for the
elastic constants �K11=5 pN, K22=3 pN, and K33=7 pN�.
Equation �11� was solved numerically just for the two-
particle configurations, in order to determine the possible
effect of splay and bend distortions in our systems.

C. Simulation details

Equations �6� and �11� were solved for the five indepen-
dent components of Q �Qxx, Qyy, Qxy, Qxz, and Qyz, since Q
is traceless� using the finite element computational package
COMSOL Multiphysics™ �45�. In order to solve the equa-
tions, we used the time-dependent algorithm DASPK, com-
bined with the linear system solver GMRES and the incom-
plete LU preconditioner �45�. Equation �6� was solved for a
sufficiently long time to observe negligible variations in the
numerical solution with respect to time, which corresponds
to finding the solution that minimizes the free energy �the
right-hand side of Eq. �6� and �11��. We performed three-
dimensional simulations using unstructured meshes contain-
ing tetrahedral, linear Lagrange elements �46�. Different grid
densities were used, and it was found that for the solutions to
be independent of further mesh refinements, 20 240, 24 810,
and 32 060 finite elements were required in systems with
one, two, and three particles. The mesh was significantly
finer in the immediate vicinity of the nanoparticles, where
strong variations in Q are expected. In addition, much
smaller elements were required close to the nanoparticles’
spherical tips, due to important curvature effects. The mini-
mum length size of the finite elements was approximately
2.6	10−3 nm for systems containing one nanoparticle, and
1.1	10−3 nm for systems with two and three spherocylin-
ders. These finest grid sizes correspond to 2.1	10−4� and
8.9	10−5� �where � is the spherocylinder diameter�, and
are comparable to those reported by Fukuda et al. �20� in
their adaptive mesh refinement scheme. The initial condi-
tions of Q in our simulations are such that the director n is
initially aligned along the z direction, and the scalar order
parameter S was initially fixed to the equilibrium value
Sbulk=0.81 �Eq. �4��. For completeness, several runs were
also started from conditions giving an initial random con-
figuration of the director field; it was found that the final
numerical solutions were independent of the initial condi-
tions. The scalar order parameter at the nanoparticles’ surface
was also set to S=Sbulk=0.81. Different methods are avail-
able to visualize the defect structures �see, e.g., Refs.
�47–49��. In this work, we follow literature studies �23–25�
and choose the contour S=0.25 to visualize the defects that
arise for specific numerical solutions, since it corresponds to
the smallest value of S for a stable bulk nematic in our par-
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ticular model �10,38�. The free energy values used in the
computation of the potential of mean force were determined
by numerical integration of Eqs. �2�, �3�, and �5� �for the
one-elastic-constant approximation� or Eq. �7� �when using
the three-elastic-constant expression of Edwards et al.
�38–40�� over the volume of the system.

III. RESULTS AND DISCUSSION

A. One-particle systems

As mentioned before, one of our aims is to determine the
defect structures and the potential of mean force that arise
when spherocylindrical nanoparticles are immersed in a
nematic liquid crystal. First, we consider the situation where
a single anisotropic nanoparticle lies in the x-z plane, ori-
ented with its long axis at an angle � with respect to the x
axis. The director n is parallel to the z axis far away from the
particle, which exhibit homeotropic anchoring at its surface,
and the one-elastic-constant approximation was used. In Fig.
2 we present contour maps of the scalar order parameter S in
the x-z plane, for �=0°, 60°, and 90°. The corresponding
director fields are superimposed to those maps. The defect
structures are visualized as the surface S=0.25. For �=0°,
the defect structure is a Saturn ring elongated in the direction
of the spherocylinder long axis �Fig. 2�a��. Such a defect
structure was expected to be the stable one for particles with
nanoscopic size �17,18�. As the angle � increases, the Saturn
ring “bends:” close to the spherical caps, the disclination line
remains in a horizontal position, whereas close to the cylin-
drical body it runs parallel to the long axis of the nanopar-
ticle �Fig. 2�b��. Moreover, close to the cylinder the defect
core widens gradually as � increases, until it eventually sur-
rounds the cylindrical section of the particle and forms the
defect structure observed for �=90° �Fig. 2�c��. These results
are in good agreement with those reported by Andrienko and
co-workers �31�, who studied a similar system using molecu-
lar dynamics and Monte Carlo simulations. However, when
the spherocylinder is parallel to the far-field director ��
=90° �, Andrienko et al. reported that the director distribu-
tion around the particle is not axially symmetric, causing a

nonzero torque; they did not observe a configuration with
axial symmetry, even though it is physically possible �31�. In
contrast, the dynamic field theory predicts an axially sym-
metric solution for this case. Andrienko et al. �31� did not
report the values of the elastic constants for their system, and
so it is not possible to perform a detailed comparison. In
addition, the theory does not take into account effects due to
liquid crystal density inhomogeneities and packing around
the elongated nanoparticles, which may be responsible for
the discrepancies observed between our results and those
from Ref. �31� for �=90°. A previous study �24� has consid-
ered the case of two spheres immersed in a liquid crystal
using both dynamical field theory and molecular simulations.
Good agreement between both approaches was found down
to length scales comparable to the mesogens size, but for
smaller interparticle separations it was concluded that the
effect of density inhomogeneities in the liquid crystal needed
to be included in the theory in order to obtain defect struc-
tures similar to those observed from molecular simulations.
Aside from the particular case of an spherocylinder with �
=90°, the agreement between dynamic field-theoretic results
and the molecular simulations of Andrienko and co-workers
�31� is excellent.

Figure 3�a� depicts the free energy of the system as a
function of the orientation �. For each angle, the free energy
was calculated as the difference of free energy F with respect
to that for the case of �=0°. The lowest free energy values
are observed for configurations where the nanoparticle is per-
pendicular to the director field, i.e., ��0° –10° �the differ-
ence in free energy among these configurations is on the
order of a few kBT�. In Fig. 3�b� we show plots of the
Landau–de Gennes �LdG� and elastic contributions to the

FIG. 2. �Color online� 3D visualizations of the defect structures
�represented as the contour S=0.25, top�, and contour maps of the
scalar order parameter S superimposed with the director field in the
x-z plane �bottom�, for �a� �=0°, �b� �=60°, and �c� �=90°.

FIG. 3. Potential of mean force �PMF� for one nanoparticle
immersed in a nematic liquid crystal, as a function of the angle �
with respect to the x axis. �a� Total PMF; �b� Landau–de Gennes
�LdG, squares�, and elastic �circles� contributions to the PMF.
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free energy �Eq. �2��. Both curves exhibit the same behavior
as the total free energy curve �i.e., minima at ��0° –10°,
maxima at ��85° –90°�, but the difference between
maxima and minima is larger for the elastic contribution
��100kBT, against �30kBT for the LdG term�. These results
suggest that elastic effects are more important, and configu-
rations with smaller gradients in the director field will be
preferred. The Saturn ring defect structures obtained for low
� values exhibit smaller surface areas than those observed for
higher � values �see Fig. 2�. The elastic free energy penalties
are therefore smaller for configurations with low �, and as a
result, these are significantly more stable than their high-�
counterparts. The free energy differences among these can
reach values as large as 130 kBT �Fig. 3�.

B. Two-particle systems

1. One-elastic-constant approximation

In view of the results for uniparticle systems, and given
the computational demands of the calculations presented in
this work, our analysis of two- and three-particle systems is
limited to configurations where the spherocylinders are per-
pendicular to the far-field director. As mentioned in Sec. II,
for two-particle systems we considered three cases: �a� a lin-
ear array, �b� a parallel array in the x-y plane, and �c� a
parallel array in the x-z plane. In all cases the director field n
is parallel to the z axis far away from the spherocylinders, as
it was previously considered for the one-particle systems,
and the one-elastic-constant approximation was used.

The potential of mean force �PMF� was determined as a
function of the minimum surface-to-surface interparticle dis-
tance d; these results are presented in Fig. 4. In this case, the
PMF represents the free energy difference of a given two-
particle configuration, with respect to a situation where they
are infinitely apart. The total PMF �Fig. 4�a�� for all arrays
becomes negative as the separation d is reduced. The PMF
for the parallel x-y array becomes negative at the largest
separation d��, followed by the linear array �at d��� and
parallel x-z array �at d���. In this regime, the parallel x-y
array gives the lowest value of the PMF at any given d,
followed by the linear array and the parallel x-z array. The
parallel x-y array is the most stable configuration in this case.
The Landau–de Gennes �LdG� contribution to the PMF �Fig.
4�b�� for each array is close to zero at large particle separa-
tions, but as d is reduced the LdG PMF starts to increase
until it reaches a maximum. The value of d at which the
maximum is reached is larger for the parallel x-y array, fol-
lowed by the linear and parallel x-z arrays; moreover, the
value of the LdG PMF maximum is comparable for both
parallel arrays ��13 kBT�, and smaller for the linear array
��5 kBT�. As d is reduced further, the LdG PMF curves start
to decrease and eventually become negative. In contrast to
the LdG PMF, the elastic contribution to the PMF �Fig. 4�c��
for each array follows the same trends previously described
for the total PMF curves. In analogy to the uniparticle sys-
tem, the free energy differences observed at the minima in
the elastic PMF are larger in magnitude than those seen at
the maxima of the LdG PMF �e.g., �70 kBT and �12 kBT,
respectively, for the parallel x-y array�. However, these free

energy differences are similar in the parallel x-z array. The
maximum interparticle attractive energy is on the order of
80 kBT and 35 kBT for the parallel x-y and linear arrays,
respectively, and on the order of only a few kBT for the
parallel x-z array.

In Fig. 5 we present visualizations of the defect structures
obtained at the maxima of the LdG PMF �the points colored
in gray in Fig. 4�. In Fig. 6 we show the defect structures
obtained close to the minima of the elastic PMF �the points
colored in black in Fig. 4�. For all arrays, each spherocylin-
der is surrounded by a Saturn ring defect structure when the
nanoparticles are far apart �Fig. 2�a��. For the linear and par-
allel x-y arrays, at a given interparticle separation d the de-
fect structures around the nanoparticles start to interact. As d
is reduced, the Saturn rings around each spherocylinder ex-
tend toward each other in the interparticle region, becoming
more and more distorted and finally fusing together �Figs.

FIG. 4. Potential of mean force �PMF� for two spherocylindrical
nanoparticles immersed in a nematic liquid crystal, as a function of
the minimum surface-to-surface interparticle distance d. �a� Total
PMF; �b� Landau–de Gennes contribution; and �c� elastic contribu-
tion. Squares: linear array, diamonds: parallel x-y array, circles:
parallel x-z array. Visualizations of the configurations correspond-
ing to the points colored in grey and black are presented in Figs. 5
and 6, respectively.
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5�a� and 5�b��. Upon further reduction in d, we observe a
defect structure consisting of two incomplete Saturn rings,
connected to a third disclination ring in the space between
the nanoparticles; the latter ring is orthogonal to the original
ones �Figs. 6�a� and 6�b��. An equivalent disclination struc-
ture was observed in studies of two spherical nanoparticles
�23,24�. As discussed there, this defect structure forms when
the particles are close to each other because the local homeo-
tropic anchoring can persist in the interparticle space, and
therefore a “bridge” of director lines forms. These are ob-
served in the S contour and director field maps of Figs. 6�a�
and 6�b�, and they are represented by the third ring “holes” in
the corresponding 3D visualizations of the defect structures.
Microscopically, this would correspond to a few layers of
liquid crystal molecules connecting the nanoparticles. Out-

side this interparticle “bridge” region, the local homeotropic
anchoring of the surfaces is in conflict with the bulk director
field, and this produces the formation of the third disclination
ring and the two Saturn rings around each particle �23,24�.
For the case of two particles in a parallel x-z array, there is
no formation of a third disclination ring; the Saturn rings
around each nanoparticle persist disconnected down to very
small values of the minimum interparticle distance d, when
they start to fuse together �Figs. 5�c� and 6�c��.

Now we can analyze the PMF curves presented in Fig. 4,
with the help of the defect structures shown in Figs. 5 and 6.
First, the maximum in each of the LdG PMF curves �Fig.
4�b�� takes place in configurations where the Saturn rings
become very distorted, i.e., when they extend toward each
other and fuse together. At these points, the size of the defect
structure �and therefore the amount of nematic that “melts”
in the defect core� reaches a maximum. The defect structure
is smaller for the linear array than for the parallel arrays �Fig.
5�, which explains why the maximum in the LdG PMF for
the former configuration is smaller than those for the latter
arrays. In contrast, the defect structures for both parallel ar-
rays have similar sizes �Fig. 5�, and this might be responsible
for the similar LdG PMF maximum values that arise for both
arrays �Fig. 4�b��. For the linear and parallel x-y arrange-
ments, further reductions in d produce defect structures with
smaller areas �e.g., compare Figs. 5�b� and 6�b�� and the LdG
PMF decreases. On the other hand, the visualizations of Fig.
6 correspond to configurations close to the minimum of the
elastic PMF �Fig. 4�c��; these configurations are also close to
the minima in the total PMF �Fig. 4�a��. In these systems, the
liquid crystal in the interparticle region becomes highly or-
dered, with S=Sbulk, and also distortions in the director field
are minimized. The interparticle region is larger for the par-
allel x-y and x-z arrays, as compared to that of the linear
array. Curvature effects are also present: in a linear array, the
liquid crystal in the interparticle region experiences a larger
curvature effect �from the spherical tips of both nanopar-
ticles�, as compared to the interparticle fluid in a parallel x
-y or x-z arrangements �from the cylindrical sections of both
particles�; splay effects are therefore more important in a
linear array. Another factor to consider is that both parallel
x-y and linear arrays form defect structures with a third dis-
clination ring, as opposed to the parallel x-z array, which
does not. Our results suggest that the combination of these
three factors influences the relative stability of the different
arrays. Even though the interparticle region has the same size
in both parallel configurations, the parallel x-z array does not
exhibit the formation of orthogonal rings; furthermore, and
in contrast to the other arrays, the minimum and maximum in
the elastic and LdG PMF occur at the same distance d, and
their magnitudes are similar. The minimum in the total PMF
for this configuration is therefore on the order of only a few
kBT. Among the linear and parallel x-y arrays, the orthogonal
disclination ring and the interparticle region are smaller for
the former configuration, for which curvature effects in this
“bridging” region are more important. As a result, the inter-
particle interaction energies are lower, �35 kBT in the linear
array, as compared to 80 kBT in the parallel x-y array.

2. Three-elastic-constant expression of Edwards et al. [38–40]

In order to determine the possible effect of splay and bend
distortions in our systems, we have repeated our calculations

FIG. 5. �Color online� 3D visualizations of the defect structures
�represented as the contour S=0.25, top�, and contour maps of the
scalar order parameter S superimposed with the director field in
different planes �bottom�, for two elongated nanoparticles in �a�
linear array, d=10.9 nm, �b� parallel x-y array, d=15.6 nm, and �c�
parallel x-z array, d=3.6 nm. These visualizations correspond to the
maxima in the Landau–de Gennes contribution to the PMF �the
points colored in grey in Fig. 4�.

FIG. 6. �Color online� 3D visualizations of the defect structures
�represented as the contour S=0.25, top�, and contour maps of the
scalar order parameter S superimposed with the director field in
different planes �bottom�, for two elongated nanoparticles in �a�
linear array, d=2.9 nm, �b� parallel x-y array, d=3.6 nm, and �c�
parallel x-z array, d=3.6 nm. These visualizations correspond to
points close to the minima in the elastic contribution to the PMF
�the points colored in black in Fig. 4�. The visualizations for the
parallel x-z array are equivalent to those presented in Fig. 5�c�,
since for this array the minimum and the maximum in the elastic
and Landau–de Gennes contributions to the PMF occur at the same
distance d.
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for the different two-particle configurations using a three-
constant description for the elastic free energy �Eqs. 7–11�.
In Fig. 7 we compare results for the potential of mean force
for the different two-particle arrays, obtained using the three-
and one-elastic constant equations. Both series of results fol-
low the same trends: the most stable configuration is the
parallel x-y array, followed by the linear and the parallel
x-z array. When the three-elastic-constant description �Eq.
�7�� is used, the maximum interparticle energy for the paral-
lel arrays becomes about 10 kBT more attractive, as com-
pared to when the one-elastic-constant description is used �a
change of 14% for the parallel x-y array�. These changes
come mainly from a reduction in the minima of the elastic
contribution to the PMF �Fig. 7�c��. In addition, for both
parallel arrays the maxima in the LdG contribution to the

PMF increases a few kBT, and is displaced to slightly larger
values of d �Fig. 7�b��, as compared to our previous results
from the one-elastic-constant approximation. In contrast, the
PMF curves for the linear array seems to be unaffected by
using three- or one-elastic-constant expressions for the elas-
tic free energy. We have also determined the partial contri-
butions of the L1, L2, and L3 terms to the total elastic PMF
for all the two-particle arrays �Fig. 8�, from which it is ap-
parent that the main contribution comes from the L1 term,
followed by the L2 and L3 terms. It is worth mentioning that
the L1 term is the same in the three- or one-elastic-constant
expressions �Eqs. �7� and �5�, respectively�. We have also
obtained the defect structures that arise when the elastic free
energy is represented by the three-elastic-constant expres-
sion. We have found that these defect structures are very
similar to those obtained from the one-elastic-constant ap-

FIG. 7. �Color online� Potential of mean force �PMF� for two
spherocylindrical nanoparticles immersed in a nematic liquid crys-
tal, as a function of the minimum surface-to-surface interparticle
distance d. �a� Total PMF; �b� Landau–de Gennes contribution; and
�c� elastic contribution. Diamonds, squares, and circles represent
values for the parallel x-y, linear, and parallel x-z arrays, respec-
tively. Open symbols: one-elastic-constant approximation; filled
symbols: three-elastic-constant expression of Edwards et al.
�38–40�.

FIG. 8. �Color online� Elastic part of the potential of mean force
�PMF� for two spherocylindrical nanoparticles immersed in a nem-
atic liquid crystal, as a function of the minimum surface-to-surface
interparticle distance d. �a� Parallel x-y array; �b� linear array; and
�c� parallel x-z array. White triangles: one-elastic-constant approxi-
mation; black triangles: total elastic PMF from the three-elastic-
constant expression of Edwards et al. �38–40�. Diamonds, squares,
and circles represent the partial contributions from the L1, L2, and
L3 terms.
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proximation �Figs. 5 and 6�. These results strongly suggest
that removing the degeneracy K11=K33, and therefore distin-
guishing between splay and bend elastic constants, does not
affect the main conclusions outlined in the previous section
for the two-particle systems, within the framework of the
one-elastic-constant approximation. These results also sug-
gest that such an approximation is sufficient to capture the
essential physics of the problem. We expect that removing
the degeneracy K11=K33 will be very important for sphero-
cylindrical particles of larger aspect ratio L /� �in our case,
L /�=3�, and possibly for systems of �m-sized spherocylin-
drical particles. These studies, however, are beyond the
scope of the current manuscript.

It is of interest to compare our PMF results for elongated
nanoparticles with those obtained for two spherical particles
of comparable diameter �24�. Using the simulation param-

eters from that study to map the energy scales, we obtain an
estimate of �40 kBT for the maximum interparticle interac-
tion when an orthogonal disclination ring is observed. This
energy is comparable to the value obtained for spherocylin-
ders in a linear array �35 kBT�. This is expected since the
particles have similar diameters, and thus the size of both the
orthogonal disclination ring and the interparticle region, and
the curvature effects in such a region, are similar in both
cases. However, the interparticle energy for the spherical
case is lower than that corresponding to spherocylinders in a
parallel x-y array, for which an energy of 80 kBT was ob-
tained. These results can be explained by considering that the
spherocylinders’ total length is 2.5 times the sphere diameter.
Therefore, in a parallel x-y array of spherocylinders, the size
of both the orthogonal disclination ring and the interparticle
region are larger, and the curvature effects in such region are
smaller than those corresponding to an array of two spheres.

We can also elaborate on the possible effects of varying
the spherocylinder dimensions, by comparing the results of
Figs. 4 and 5 with those obtained in previous studies for two
spherical particles �23,24�. On the one hand, the free energy
difference between the linear and parallel x-y arrays for two
elongated nanoparticles is expected to decrease as the sphere
limit is approached �where both arrays would be equivalent�,
namely by reducing the spherocylinder total length L+�, or
by increasing the spherocylinder diameter �. On the other
hand, we anticipate that increasing the total length or de-
creasing the diameter will yield larger differences in free
energy between the linear and parallel x-y arrays. We expect

FIG. 9. Potential of mean force �PMF� for three spherocylin-
drical nanoparticles immersed in a nematic liquid crystal, as a func-
tion of the minimum surface-to-surface interparticle distance d. �a�
Total PMF; �b� Landau–de Gennes contribution; and �c� elastic con-
tribution. Squares, linear array; diamond, parallel x-y array; circles,
parallel x-z array; triangles, triangular array. Visualizations of the
configurations corresponding to the points colored in grey and black
are presented in Figs. 10 and 11, respectively.

FIG. 10. �Color online� 3D visualization of the defect structure
�represented as the contour S=0.25, top�, and contour map of the
scalar order parameter S superimposed with the director field in the
x-y plane �bottom�, for three elongated nanoparticles in a triangular
array, d=11.6 nm. These visualizations correspond to the maxima
in the Landau–de Gennes contribution to the PMF �the point col-
ored in grey in Fig. 7�.
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that the results for the parallel x-z array would remain unper-
turbed upon variations of the particle dimensions.

C. Three-particle systems

Four cases were considered for three-particle systems: �a�
a linear array, �b� a parallel array in the x-y plane, �c� a
parallel array in the x-z plane, and �d� a triangular array. The
director field n is parallel to the z axis far away from the
spherocylinders, as in the two-particle systems, and the one-
elastic-constant approximation was used. As before, the de-
fect structures and the potential of mean force were deter-
mined as a function of the minimum surface-to-surface
interparticle distance d. Results for the potential of mean
force are presented in Fig. 9. In analogy to the two-particle
systems, all the total PMF curves �Fig. 9�a�� become nega-
tive as the interparticle separation d is reduced. The parallel
x-y array is again the most stable configuration, followed by
the triangular, linear and parallel x-z arrays. Both the
Landau–de Gennes �LdG� and elastic contributions to the
PMF �Figs. 9�b� and 9�c�, respectively� follow the same
trends described before for the two-particle systems. The
curves for the LdG PMF exhibit maxima at distinct values of
d in each array, and these maxima are on the order of 6, 19,
24, and 30 kBT for the linear, triangular, parallel x-y, and
parallel x-z arrays, respectively. On the other hand, the elas-
tic contributions to the PMF show minima also at different
values of d for each array, and these minima are larger in
magnitude �33, 53, 94, and 141 kBT for the parallel x-z, lin-
ear, triangular, and parallel x-y arrays, respectively� as com-
pared to the maxima in the LdG PMF. The maximum inter-
particle attractive energy is on the order of 170, 100, 60, and
4 kBT for the parallel x-y, triangular, linear, and parallel x-z
arrays, respectively.

In Fig. 10 we present visualizations of the defect structure
obtained at the maximum of the LdG PMF for the triangular
array �the point colored in gray in Fig. 9; the corresponding
defect structures for the other arrays are similar to those ob-
served for two-particle systems�. In addition, in Fig. 11 we
show the defect structures obtained close to the minima of
the elastic PMF for all arrays �the points colored in black in
Fig. 9�. In close analogy to their two-particle counterparts,
for the linear and parallel x-y arrays we can observe the same

sequence of defect structures as the nanoparticles are brought
together. First we observe distinct Saturn rings, followed by
distorted cores, and then formation of additional rings or-
thogonal to the original ones �Figs. 11�a� and 11�b��. The
same sequence of defect structures is observed for the trian-
gular array. The original Saturn rings fuse together at the
triangle vertices �Fig. 10�, and upon further reduction of d,
the central triangular interparticle region fills with a melted
nematic �Fig. 11�d��. Finally, for the parallel x-z array we do
not observe the formation of additional orthogonal disclina-
tion rings; at small separations, the original Saturn rings start
to fuse together �Fig. 11�c��, again in analogy to the two-
particle system.

The PMF results of Fig. 9 and thus the relative stability of
the different arrays can be analyzed again by considering
some of the factors discussed above in the context of two
particles, namely whether orthogonal disclination rings are
present or not, their relative size, and the size and curvature
effects in the interparticle region. The parallel x-z array does
not form orthogonal rings; the minimum and maximum in
the elastic and LdG PMF take place at the same distance d,
and their magnitudes are similar. As before, the minimum in
the total PMF for this configuration is on the order of a few
kBT. In contrast, two and three small orthogonal disclination
rings, and two large rings appear in the linear, triangular, and
parallel x-y arrays, respectively. Among these configurations,
the curvature effects in the interparticle “bridging” regions
are more important in the linear and triangular arrays, as
compared to the parallel x-y configuration. As a result, the
interparticle interaction energies are considerably large in
these three cases, and increase from �60 kBT in the linear
array, to �100 kBT in a triangular configuration, and to
�170 kBT in a parallel x-y array.

We have done similar calculations for the three-particle
systems using the three-elastic-constant expression �Eqs.
�7�–�11��. For the linear and parallel arrays, the main effects
in the PMF and defect structures are very similar to those
observed in their two-particle counterparts. For the triangular
array, the effects are intermediate between those observed for
the linear and parallel arrays, i.e., a very slight reduction in
the total and elastic PMF. Therefore, the one-elastic-constant
approximation is again sufficient to capture the essential
physics of the three-particle systems.

FIG. 11. �Color online� 3D visualizations of
the defect structures �represented as the contour
S=0.25�, for three elongated nanoparticles in �a�
linear array, d=2.4 nm, �b� parallel x-y array, d
=3.1 nm, �c� parallel x-z array, d=3.1 nm, and
�d� triangular array, d=2.1 nm. A contour map of
the scalar order parameter S superimposed with
the director field in the x-y plane is also included
for the triangular array. These visualizations cor-
responds to points close to the minima in the
PMF curves �the points colored in black in Fig.
9�.
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Guzmán et al. �25� found that a triangular array of spheri-
cal nanoparticles immersed in a nematic liquid crystal was
more stable than a three-particle linear array. Based on their
simulation parameters, we obtain an estimate of 72 and 50
kBT for the sphere interparticle interaction energy in triangu-
lar and linear arrays. These quantities are to be compared
against energy values of 170, 100, and 60 kBT, for parallel
x-y, triangular, and linear arrays of three spherocylinders. As
in the two-particle case, the energies for the linear arrays are
similar, because the particles have similar diameters and thus
the size of both the orthogonal disclination rings and the
interparticle regions, and the curvature effects in such re-
gions, are very similar. Those effects are different when com-
paring the other cases, since the spherocylinders total length
is about 2.5 times the sphere diameter. Therefore, the or-
thogonal disclination rings and the interparticle regions are
larger, and the curvature effects in such regions are smaller
when comparing both triangular arrays, and when the paral-
lel x-y configuration of spherocylinders is compared with the
spheres’ arrays.

Based on the results presented here and those published
earlier for spherical particles �25�, we can further elaborate
on the possible effects of changes in the spherocylinder di-
mensions. We expect the difference in interparticle energy
between the different arrays to become larger as we increase
the spherocylinders length or decrease their diameter. On the
other hand, as we approach the spherical particle limit �i.e.,
by reducing the spherocylinders length or increasing their
diameter�, we expect that the difference in PMF between the
parallel x-y and the linear arrays will decrease, until they
finally become equivalent in the spherical limit. Even though
we anticipate that the PMF curve for the triangular array will
also move to higher values as the spherical limit is ap-
proached, we expect that at some point the triangular array
will become the most stable configuration, as was observed
for the spherical case �25�.

IV. CONCLUDING REMARKS

Using a dynamic field theory for the tensor order param-
eter Q and a finite element method, we have determined the
defect structures and potential of mean force that arise when
spherocylindrical nanoparticles are immersed in a nematic
liquid crystal. Different configurations with one, two, and
three elongated nanoparticles with strong homeotropic an-
choring were analyzed, within the framework of the one-
elastic-constant approximation. For systems containing one
nanoparticle, the most stable configuration is achieved when
the spherocylinder is placed with its long axis perpendicular
to the far-field director, for which the defect structure con-
sists of a Saturn ring around the equatorial plane of such
axis. As the angle between the long axis of the particle and
the far-field director is reduced, the disclination ring be-
comes distorted and its width increases, until it eventually
surrounds the cylindrical section of a particle that is parallel
to the far-field director. These results for an isolated nano-
particle are in good agreement with those of molecular simu-
lations �31�.

For systems of two or three elongated nanoparticles hav-
ing their long axes perpendicular to the director field, at
small separations the defect structures consist of incomplete
Saturn rings fused with new disclination rings that are or-
thogonal to the original ones. These structures are similar to
those previously reported in systems of spherical nanopar-
ticles immersed in liquid crystal �23–25�, and give rise to an
important effective attraction between the nanoparticles. The
formation of these extra-ring disclination structures depends
on the way the elongated particles are brought together. If the
director field is parallel to the z axis, these defect structures
are observed in linear, parallel x-y, and triangular arrays; in
all these cases, the particles’ long axes are always perpen-
dicular to the director field. Such defect structures with ad-
ditional rings were not observed when the particles were ar-
ranged in a parallel x-z array. Results for the potential of
mean force indicate that in all cases, the most stable structure
is the parallel x-y array. These results can be fully rational-
ized by considering whether orthogonal disclination rings are
present or not, their relative size, and the size and curvature
effects in the interparticle regions.

In order to determine the possible effect of splay and bend
distortions in our systems, we have repeated our calculations
for the two- and three-particle systems using the elastic free
energy form proposed by Edwards et al. �38–40�, which in-
cludes three elastic coefficients and cubic terms in Q and its
gradients �Eqs. �7�–�11��. This expression for the elastic free
energy removes the degeneracy K11=K33 that is implicit in
the one-elastic-constant approximation. The potential of
mean force and the defect structures obtained using this
three-elastic-constant description were very similar to their
one-elastic-constant counterparts, thereby suggesting that the
latter approach is sufficient to capture the essential physics of
our systems.

The effective, liquid crystal-induced attractive interac-
tions between elongated particles were also compared to
those observed for nm-sized spheres of similar diameters.
Similar interparticle energies were observed for linear arrays;
in contrast, parallel and triangular arrays of spherocylinders
yielded interparticle interactions that were up to 3.4 times
larger than those observed in similar arrays of spherical
nanoparticles. Large liquid crystal-induced effective attrac-
tions between elongated nanoparticles could have implica-
tions in a number of emerging applications. As an example,
new composite materials could be developed where the nem-
atic director field points along the z axis, while the elongated
nanoparticles self-assemble with their long axes parallel to
each other and pointing along the x axis. Note that the results
presented in this work correspond to elongated, nanoscopic-
size particles immersed in a nematic liquid crystal. Equiva-
lent efforts for �m-sized anisotropic particles are currently
under way. Our future work will also focus on studying the
structure and dynamics of 3D nematic films confined be-
tween parallel walls in the presence of adsorbed nanopar-
ticles. We are also interested in systems where freely moving
particles are dispersed into a flowing liquid crystal. These
systems are relevant for practical applications in colloidal
dispersions and liquid crystal sensors, among others.
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