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Abstract
Propagation of sound in a medium where the rate of local heat addition is a
function of gas density is analysed theoretically and the results are applied
for modelling the experimentally observed effect of amplification of
acoustic waves by an extended glow discharge in air. The model adequately
describes the experimental dependences of the gain on the wave frequency
and discharge power density and predicts that the amplification of sound by
an unconfined glow discharge in air increases with discharge current density
but does not change noticeably with gas pressure when the current density is
kept constant. Quantitative estimates indicate that a gain of as high as 1 m−1

(or 9 dB for a 60 dB wave passing through 1 m of plasma) could be realized
using a discharge in air with a current density of 100 mA cm−2.

1. Introduction

Advances in glow discharges have yielded a number of
technical solutions that realized sizeable glow discharge
plasmas at atmospheric pressures in air. One of the
applications for such technologies is aerodynamic flow control
and management of aeroacoustic noise. Experiments [1–3]
demonstrated that acoustic waves propagating through a
plasma formation may undergo significant attenuation, and
the effect has been associated with reflection of the wave in
the non-uniform regions of the plasma boundary [4]. With
plasma dimensions increased, mechanisms that describe the
interaction of the wave with uniform plasma should also be
brought into account. On the other hand, in a number of
experiments that studied propagation of sound in low-pressure
cylindrical discharge tubes, amplification of sound waves has
been observed [5–8]. The effect of sound amplification by
glow discharge plasma was recently proposed as an enabling
tool for stimulating precipitation in atmospheric clouds
[9].

For practical purposes, discharges in air with high
energy inputs in plasma are of particular interest while
most theoretical work related to the problem dealt with
low-energy plasmas of inert gases [5–8,10]. Interaction of
acoustic waves with vibrationally excited molecular gas was
analysed theoretically in [11] where a case of vibrational
energy relaxation time significantly exceeding the wave period

was discussed. When the latter condition is satisfied, the
stationary plasma parameters are established in compressions
and rarefactions of the wave and therefore the effect on the
wave is determined by gas temperature variations that are
caused by density variations. But for higher-power air plasmas,
as well as for wave frequencies below approximately 1 kHz,
the vibrational energy relaxation time is typically smaller than
the period of the wave and the approach [11] is not adequate.

Summarizing the results of prior theoretical discussions,
one may conclude that glow discharge plasma can be gen-
erally described as a medium with continuously distributed
source of energy addition where the local rate of energy addi-
tion is a function of gas density. A mechanism of plasma–
wave interaction in such a medium (referred here to, fol-
lowing our earlier publication [11], as Rayleigh mechanism
and medium) may lead to either attenuation or amplification
of a travelling acoustic wave, depending on the phase shift
between the gas density profile and the heat addition rate.
This sign of the effect (amplification or attenuation) is deter-
mined by mutual orientation of the plasma electric field and
wave vectors: the wave amplitude increases if these vectors
are orthogonal and it decreases when the vectors are parallel
[12, 13].

The objective of this paper is to analyse a one-dimensional
problem of acoustic wave propagation in a Rayleigh
medium and to evaluate the effect for unconfined plasma in
air.
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2. Governing equation

Without a wave, the Rayleigh medium is a fluid where
the distributed energy addition is balanced with similarly
distributed energy loss; thus, the net energy addition to the
media is zero. The appearance of a wave in such a medium
leads to local non-uniformities where the energy balance shifts
to one direction or the other, depending on how the rate of
net energy addition Q(x, t) changes with density. Assuming
that the propagation of a disturbance in a Rayleigh medium is
sufficiently described by Euler’s equations, and following the
approach reported elsewhere [4], one may obtain the following
set of equations connecting mass velocity U(x, t), speed of
sound a and gas density ρ:

∂F

∂t
+ U

∂F

∂x
= γ (γ − 1)

2
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Here the disturbance is assumed to propagate in the direction
of mass velocity and γ = cp/cv . Functions �(x, t) and

F(x, t) are related to a and ρ through a = F(x, t)ρ
γ−1

2 and
a = �(x, t) ± ((γ − 1)/2)U . Linearizing equations (1)
and applying a variational approach described earlier in [4],
the system is reduced to a single equation that governs the
propagation of a disturbance in a Rayleigh medium:

a2
0
∂2U

∂x2
− (γ − 1)a2

0
∂g

∂x
= ∂2U

∂t2
, (2)

where g = Q/γp0 and a0 and p0 are the speed of sound
and pressure in the undisturbed medium. Assuming that the
rate of net heat addition is a function of a single variable
(∂g/∂x = (dg/dρ)(∂ρ/∂x)), and introducing dimensionless
coordinates τ = ω0t; z = k0x (ω0/k0 = a0), the latter
equation becomes

∂

∂τ

{
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∂τ 2
− ∂2U

∂z2

}
= 2b

∂2U

∂z2
, (3)

where b = (γ − 1)/2(ρ0/ω0)(dg/dρ)
∣∣
ρ=ρ0 is the parameter

of the problem that can also be expressed in terms of a
characteristic frequency νg = ((γ − 1)ρ0/2)(dg/dρ)

∣∣
ρ=ρ0

(the heating frequency). And if the net heat addition rate
is sufficiently low, so that for a wave with a frequency of
ν0 = ω0/2π and a wave number of k0

b � 1

4π
or ν0 � 2νg, (4)

equation (3) can be further simplified to

∂2U

∂τ 2
− ∂2U

∂z2
= 2b

∂U

∂τ
. (5)

3. Acoustic wave in Rayleigh medium

A solution for equation (3) is

U(x, t) = exp [(β + iµ) τ − iz] , (6)

where β, µ are arbitrary parameters and Imβ = Imµ = 0.
The general solution for equation (3) is given by a linear
combination of partial solutions, and the coefficients for the
series are found from the initial and boundary conditions [14].
Substituting (6) in (3) results in two sets of cubic equations for
parameters β and µ, with only one of those corresponding to
a travelling harmonic wave. It yields

µ = ±
√

1 + 3β2,

(7)

β = 1

2

[ (
b +

√
b2 +

1

27

) 1
3

+

(
b −

√
b2 +

1

27

) 1
3 ]

.

Similarly, a travelling wave solution for equation (5) is

µ1 = ±
√

1 + 3b2,

β1 = b.
(8)

A linear dependence of β versus b, similar to that given by
equation (8), was obtained earlier [5, 6].

4. Plasma effect

The effect of the medium on the wave is determined by the
factor dg/dρ

∣∣
ρ=ρ0 = (1/ρ0a

2
0)(dQ/dρ)

∣∣
ρ=ρ0

. In air plasmas,
most of the electrical energy deposited in the gas accumulates
in the vibrational states of nitrogen molecules. This energy is
released predominantly into the translational mode (the V–T
process or heating of the gas) or on the boundaries confining
the plasma [15]. The energy εVT that is stored in the vibrational
continuum should satisfy the following equation:

dεVT

dτ
+

εVT

τVT(ρ(τ ))ω0
= gH (ρ(τ))

ω0
, (9)

where τVT is the V–T relaxation time and gH (ρ(τ)) is the rate
of energy deposition into the vibrational states measured in the
units of ρ0a

2
0 = γp0; εVT is normalized similarly. The solution

is

εVT(τ ) = exp

{
− 1

ω0

∫ τ

0

dτ ′

τVT

} {
εVT0 +

1

ω0

∫ τ

0
exp

{
1

ω0

∫ τ ′

0

dτ ′′

τVT

}
gH (τ ′)dτ ′

}
. (10)

In this model, the rate of heat addition to the gas is simply
the difference between the current rate of V–T relaxation and
that in the undisturbed plasma: g = (εVT/τVT)− (εVT0/τVT0).
Assuming that variations of plasma parameters in the wave
are small, so that (2π/ω0τVT0)|ρ − ρ0|/ρ0 � 1, gH ≈
gH0+ dgH

dρ
[ρ − ρ0] and τVT ≈ τVT0+ dτVT

dρ
[ρ − ρ0], equation (10)
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yields

g(τ) = −gH0
1
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]
. (11)

Here we see that the original assumption of g(ρ) being a
function of a single argument is satisfied only in the peripheral
regions of the parameter ω0τVT0 domain:

when ω0τVT0 � 1, g(ρ) ≈ −(ρ − ρ0)gH0
1

τVT0

dτVT

dρ

∣∣∣∣
ρ=ρ0

, (12)

and

when
2π

ω0τVT0
� 1, g(ρ) ≈ (ρ − ρ0)

dgH

dρ

∣∣∣∣
ρ=ρ0

. (13)

In the interior of the domain, g is a function of both
ρ(τ) and τ ; therefore it would be more accurate for the
propagation equation (3) to have a source term proportional
to ∂g (ρ(τ), τ )/∂τ |ρ=const. Instead of introducing such a
correction, we will note that g(τ) is a monotonic function of
ω0τVT0; thus, an interpolation that satisfies ∂g/∂τρ=const = 0
and asymptotically relaxes to (12) and (13), respectively,
should be sufficient to describe g(τ) in the total domain of
parameter ω0τVT0.

In terms of parameter b, the asymptotic solutions (12) and
(13) are written as

b = −γ − 1

2

ρ0

ω0
gH0

1

τVT0

dτVT

dρ

∣∣∣∣
ρ=ρ0

for ω0τVT0 � 1,

(14)

b = γ − 1

2

ρ0

ω0

dgH

dρ

∣∣
ρ=ρ0 for

2π

ω0τVT0
� 1. (15)

Change in the relaxation time with density occurs in
compressions predominantly due to two factors: first, the
increased gas density leads to higher collision rates between
molecules and, second, compression leads to temperature rise,
and the rate coefficient for V–T relaxation is a strong function
of temperature; the relaxation time decreases due to both these
factors. The opposite trend is expected in rarefactions.

At higher wave frequencies, the vibrational energy density
does not change over the wave period, and the energy addition
rate varies due to change in τVT as given by equation (14).
When the wave frequency is low (15), the V–T relaxation is
fast and the rate of energy addition into the gas is determined
by the rate of energy deposition into the vibrational continuum.
Change in the energy deposition rate with density occurs
predominantly due to the change in the collision rate between
molecules and electrons that affects the magnitude of the
electric field in plasma and thus the energy deposition rate.

To find 1
τVT0

dτVT0
dρ

∣∣∣
ρ=ρ0

≡ y, we will consider an energy

equation:
dT

dρ
= (γ − 1)

T

ρ
+

1

CV ω0ρ

dQ

dρ
(16)

with dQ

dρ
= −QH0y and QHO = γgH0p0. Assuming that the

relaxation time is expressed as τVT ∝ 1/ρ exp
{
B0/T

1/3
}

with
B0 ≈ 234.9 [16], the parameter of interest is

y = − 1

ρ0

1 + (γ−1)B0

3T
1/3

0

1 − B0QH0

3T
3/4

0 ρ0CV ω0

. (17)

When the electron energy relaxation and ionization
frequencies significantly exceed the frequency of the wave
(such conditions are realized in air plasmas at p0 > 10 Torr
and for wave frequencies of ω0 < 10 kHz), compressions
(or rarefactions) occur slowly enough for plasma parameters,
such as electron density and electric field, to establish their

stationary values. The value of dgH

dρ

∣∣∣
ρ=ρ0

can then be calculated

from [5, 12, 13]

dgH

dρ

∣∣∣∣
ρ=ρ0

= ±gH0

ρ0
= ± jE

γPρ0
. (18)

The rate of net energy addition increases in compressions and
decreases in rarefactions if the density gradient and electric
field vectors are collinear (upper sign in (18)). The opposite
effect takes place when sound propagates in the direction
perpendicular to the electric field [12].

5. Discussion

Relations (7) indicate that the speed of sound in plasma always
exceeds that in the gas heated to the same temperature by a
factor of µ > 1. This effect has been qualitatively explained
in [17]. Acoustic waves in plasma are amplified when β > 0
and attenuated when β < 0. The gain (that is negative for
attenuation) per unit length of plasma is

K = ω0

a0
β. (19)

This coefficient was estimated by other authors [5, 6] as

K1 = ω0

a0
b = νg

a0
; (20)

however, the latter equation is only valid if the heating
frequency is sufficiently low (criterion (4)).

While K1 does not depend on the wave frequency,
K increases with ω0 at a given b and is always below
its asymptotic value, K1. Dependences of K and K1

on the wave frequency are given in figure 1 for three
different values of heating frequency νg. Dependence
K versus ω0 qualitatively agrees with experimental
observations [7] where amplification of standing acoustic
waves was studied in a low-pressure (below 80 Torr) argon
plasma at wave frequencies of up to 1 kHz. Lack of
experimental detail reported in [7] does not allow for a
quantitative comparison; however, the observed increase

2509



V Soukhomlinov et al

0

50

100

150

200

250

100 1000 10000

νg = 50 Hz

νg = 100 Hz

νg = 200 Hz

ω0, s
-1

a0K,
a0K1,

s-1

a0K
a0K1

Figure 1. Gain versus acoustic wave frequency for a range of heating frequencies, νg .
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Figure 2. Gain versus discharge power density for a range of wave frequencies. Experimental data are taken from [7]. Calculations used
plasma parameters of the experiment [7]. Dotted line indicates gain based solely on mechanism (15).

in the gain with frequency is consistent with the current
result.

For evaluation of the efficiency of using a glow discharge
plasma as a sound amplification (attenuation) medium, it is
particularly important to know how the gain varies with the
power input in plasma. Amplification of an acoustic wave in
a cylindrical longitudinal discharge in air was measured at a
gas pressure of p0 = 12.3 Torr and a frequency of the wave
of ν0 = 5 kHz [5]. In figure 2, these experimental data are
compared with the predicted value of the gain. For relatively
low discharge power inputs that were realized in experiment
[5], criterion (4) was satisfied throughout the total range of
plasma power density η = (γ − 1)/2(jE/γPa0) (where j

and E are the electric current density and field, respectively);
therefore, K ≈ K1 and equation (20) is sufficient for the gain
estimate. To calculate parameter b, one needs to analyse which
of the two mechanisms discussed above ((14) and (15)) or
both of them are responsible for the gain at a given value of

η. The V–T relaxation time is sufficiently large for low power
inputs where condition ω0τVT0 � 1 is satisfied and mechanism
(14) is responsible for the plasma effect on the wave. With
energy inputs into plasma increasing, the temperature of the
undisturbed plasma rises, which causes τVT0 and, for a given
wave frequency, ω0τVT0 to fall. Eventually, at sufficiently high
energy inputs, mechanism (15) dominates.

To describe the dependence of K over the total range
of plasma power density realized in experiment [5], we
approximated parameter b with

b = b1F̄1 + b2F̄2, (21)

where b1 and b2 are found using relations (14) and (15),
respectively, and F̄1 = 1/(1 + f1), F̄2 = f1/(1 + f1), with
f1 = (A0/ω0) exp

{
25.89 − (234.9/T 1/3)

}
. A0 = 1.7 ×

10−5 s−1 is a fitting coefficient. Gas temperature was measured
in the experiment [7] only at η ≈ 0.23 m−1 (T0 ≈ 600 K).
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Having assumed that thermal conductivity is proportional
to the gas temperature, we approximated the temperature
dependence with T (K) = 300

√
13.333η + 1, which is a

solution for the heat conduction equation on the axis of a
cylindrical tube.

The model developed in [5] did not account for V–T
relaxation, and theoretical estimates of the gain were carried
out in [5] based solely on mechanism (15) that, for molecular
gases, dominates only at sufficiently high plasma energy
inputs. Under such an assumption, the gain is a linear function
of η shown with a dotted line in figure 2. The conversion of the
heat addition mechanism that occurs for acoustic frequencies,
as illustrated in figure 2, over the range 0.05 < η < 0.5 may
lead to a local maximum in the dependence K(η).

The above considerations did not account for energy loss
on the walls which is typical in experiments with cylindrical
plasma cells. Accounting for this effect will reduce the
magnitude of the gain predicted theoretically by equation (19),

albeit insignificantly. [5] The role of the walls decreases if
the characteristic size of thermal conduction, which for a
cylindrical tube is equal to its diameter, increases.

For practical applications, discharges at higher pressures
(p > 10 Torr) and current densities (j > 10 mA cm−2) are
of interest. Figures 3 and 4 demonstrate the dependence
of the gain on the discharge current density and pressure,
respectively, for an unconfined cylindrically symmetric
discharge in air. The gain for a wave propagating along the
discharge axis was found using equations (19) and (21). The
gas temperature on the axis of an unconfined discharge was
calculated based on the approach developed in [18]. The
gain grows steadily with discharge current density, almost
independently of the frequency of the wave (figure 3). This
effect is apparently related to the increase in energy input
into the plasma. In contrast, the gain does not noticeably
change with gas pressure if the discharge current density is kept
constant (figure 4). The power density increases with pressure
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just slightly, due to an increase in gas temperature that leads to
higher gas density and electric field in plasma. The temperature
increase also leads to a greater magnitude of speed of sound
that causes K to fall. A combination of these two factors results
in incremental lessening of the gain with pressure.

In conclusion, the model for acoustic wave propagation
in a medium where local energy addition is a function of
gas density that was developed here adequately described the
experimentally observed effect of sound amplification in low-
pressure glow discharges in air and molecular gases. The
analysis of a practically important case of glow discharges in
air at pressures between 10 and 50 Torr demonstrates that gains
(or attenuation coefficients) of as high as 1 m−1 are achievable.
For a plasma column as long as 1 m and a 60 dB acoustic
wave, this corresponds to amplitude amplification (reduction)
of 9 dB.
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