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The effect of an in-plane magnetic field upon open quasi-two-dimensional electron and hole systems is
investigated in terms of the carrier ground-state spectrum. The magnetic field, classified as weak from the
viewpoint of correlation between size parameters of classical electron motion and the gate potential spatial
profile is shown to efficiently cutoff extended modes from the spectrum and to change singularly the mode
density of statessMDOSd. The reduction in the number of current-carrying modes, right up to zero in magnetic
fields of moderate strength, can be viewed as the cause of magnetic-field-driven metal-to-insulator transition
widely observed in two-dimensional systems. Both the mode number reduction and the MDOS singularity
appear to be most pronounced in the mode states dephasing associated with their scattering by quenched-
disorder potential. This sort of dephasing is proven to dominate the dephasing which involves solely the
magnetic field whatever level of the disorder.
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I. INTRODUCTION

The apparent metallic state widely observed in two-
dimensionals2Dd systems of Si metal-oxide-semiconductor
field effect transistor sMOSFETd type as well as in
GaAs/AlGaAs heterostructures1,2 obviously contradicts the
well-known one-parameter scaling theory3 and as yet has not
received generally accepted theoretical explanation. The ex-
istence of such a state is mostly believed to result from Cou-
lomb interaction of carriers, which is rather strong in the
systems of low electron and hole density. Estimations of this
interaction indeed can cause the surmize that just this inter-
action should lead to quite a strong dephasing effect upon
electrons which otherwise would be localized due to scatter-
ing by the disorder potential, thus residing in coherent states.
However, at the present time the lack of a comprehensive
theory for Coulomb interaction in solids precludes from
making certain conclusions about its predominant role in
forming the metallic ground state of 2D electron systems. In
particular, a considerable challenge in this connection is pre-
sented by commonplace observations of the dephasing time
saturation in different systems, including 2D ones, at tem-
peratures very close to zerossee, e.g., Ref. 4, and references
thereind.

Besides the unexpected conduction state of quench-
disordered 2D systems, the metal-insulator transitionsMIT d
is normally observed there, which currently has not been
proven unambiguously to be determined exclusively by the
level of the disorder. No less puzzling is also the abnormally
large response of 2D electron and hole systems to the rela-
tively weak in-plane magnetic field,5 which is known to sig-
nificantly suppress the metallic behavior of the carriers and
even to drive the system into the insulating regime.6–9

Insofar as the electrons confined to move in a narrow
near-surface potential well are weakly coupled to the in-
plane magnetic field through their orbital degree of freedom,
it is widely believed that such a field promotes localization
of carriers, and thus the MIT, mainly due to strong spin-

related effects.10–12 The relatively rare papers where orbital
coupling was analyzed by taking into account the finite width
of potential wells forming real two-dimensional systems are
not rated by now as fully convincing. Specifically, the rela-
tively simple model suggested in Ref. 13 do not exhibit suf-
ficiently abrupt transition between metallic and dielectric re-
gimes, whereas in Ref. 14 onlycorrectionscaused by weak
localization of carriers are studied, which can hardly serve as
the conclusive proof for the physical mechanism of the ob-
served effects.

Previously in Refs. 15 and 16, the one-particle theory ca-
pable of explaining the metallic ground state as well as MIT
in disordered 2D systems not subjected to magnetic field was
developed starting from basic positions essentially different
from those of scaling theories. Specifically, the conductance
of a strictly 2D15 and a quasi-2D16 system was calculated in
terms of quantum states pertinent to a perfect finite-size open
system of waveguide geometry. In this approach, the metallic
value of the conductance is bound up with the primary exis-
tence of coherent extended waveguide modes rather than
one-particle electronic states originally localized by the dis-
order. Energy levels of thesecollectivemode states can be
widened by quenched disorder provided that scattering is
ensured betweenextendedmodes having differentlongitudi-
nal energies. This type of scattering can be viewedsmath-
ematicallyd as inelastic, although it is physically provided by
a static random potential. In the suggested approach, all ex-
tended modes other than the particular one, if any, can be
regarded as the dephasing bath. With gradual strengthening
of the disorder, the conductance transforms from its ballistic
value in a perfect system, which equals the number of ex-
tended modes times the conductance quantum, to the diffu-
sive value coincident with standard Drude conductance if the
system possesses the number of extended modes noticeably
greater than unity.

In the present work, we apply the mode approach of Refs.
15 and 16 to examine the influence of thein-planemagnetic
field upon spectrum of the electrons restricted to move in a
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planar, yet three-dimensional,openquantum well. It will be
shown that at large values of the transverse aspect ratio of
such an electron waveguide a relatively weak magnetic
field17 can significantly affect the electron spectrum. This
appears in considerable magnetic-field responsivity of the
number of extended modes, the latter being normally identi-
fied as conducting channels, as well as in MDOS sensitivity
to the magnetic field. The former factor is well known to
control the value of the ballistic conductance of the confined
current carriers whereas the lattersMDOSd governs substan-
tially the mode states dephasing associated with scattering of
the electrons by the disorder potential. Interestingly, mode
entanglement solely due to the magnetic field, with no disor-
der whatsoever, leads to electron mass renormalization and
does not affect the width of the energy levels of the collec-
tive electron states.

II. THE MODEL

Two-dimensional electron and hole systems in practical
applications can be modeled, in view of their open property
in the direction of current flow, as planar quantum
waveguides whose transverse structure is governed by lateral
sdepletiond potential. The exact form of the confining poten-
tial well is of minor importance for its principal application
which reduces to the restriction of electron transport in the
direction normal to the interfacial area and, consequently, to
the “transverse” quantization of the electron spectrum. In this
study, we assume the open quasi-two-dimensionalsQ2Dd
system of carriers having the form of three-dimensional
“electron waveguide” of rectangular cross section, which oc-
cupies the coordinate region

x P s− L/2,L/2d,

y P f− W/2,W/2g,

zP f− H/2,H/2g, s1d

as shown in Fig. 1. The lengthL, the widthW, as well as the
heightH, of the model system will be regarded as arbitrary
except that the thicknessH will be assumed to serve as a
small length parameter which will be specified below. The
electron system will be thought of as open at the endsx
= ±L /2 and closed by infinite-wall potentials at all lateral
boundaries. The magnetic fieldB is taken to point parallel to
x-y plane at arbitrary angle with respect tox axes.

Since main transport coefficients, in particular the con-
ductance, are expressed in terms of one-particle propagators
of carriers, we will analyze the equation for the retarded
Green function of Fermi particles with energy«F=kF

2. In the
Fermi-liquid approximation it has the form

HF¹−
2pi

F0
Asr dG2

+ kF
2 + i0 − Vsr dJGsr ,r 8d = dsr − r 8d,

s2d

whereF0=hc/e is the magnetic flux quantum,Asr d is the
vector potential of the external magnetic field,Vsr d is the
scalar random potential due to, say, impurities or rough
boundaries of the confining potential well. We adopt herein-
after the system of units with"=2m=1, m denoting the elec-
tron effective mass.

With the magnetic field gauged so asAsr d=sByz,
−Bxz,0d, Eq. s2d takes the form

F¹2 + kF
2 + i0 − Vsr d −

4pi

F0
SByz

]

]x
− Bxz

]

]y
D

− S2p

F0
D2

B2z2GGsr ,r 8d = dsr − r 8d. s3d

At this stage it is expedient to go over from the initially
three-dimensional problem to a set of strictly one-
dimensional problems, individual for each of the modes. To-
wards this end, as a first step one should carry out Fourier
transformation of Eq.s3d over the transverse radius vector
r '=sy,zd. The appropriate set of eigenfunctions has the form

ur ';ml =
2

ÎWH
sinFS y

W
+

1

2
DpnGsinFS z

H
+

1

2
DpmG ,

s4d

where m=sn,md, with n,mPN, is the vector mode index
conjugate to the coordinate vectorr '. With functions s4d,
Eq. s3d is readily transformed to the set of coupled equations
for mode Fourier components of the functionGsr ,r 8d, viz.

F ]2

]x2 + km
2 + i0 −VmsxdGGmm8sx,x8d − o

nÞm

ÛmnsxdGnm8sx,x8d

= dmm8dsx − x8d. s5d

Here,

km
2 = kF

2 − Spn

W
D2

− Spm

H
D2

s6d

is the unperturbed mode energy

Vmsxd = Vmmsxd +
H2

12lB
4S1 −

6

p2m2D s7d

is the diagonal-in-mode-indices matrix element of the total
potential which includes the impurity partVsr d and both
of the magnetic terms in square brackets of Eq.s3d,
lB=ÎF0/2puBu is the magnetic length. The termVmmsxd in
Eq. s7d is the diagonal element of the mode matrixiVmni
whose components are evaluated as

Vmnsxd =E
S

dr 'kr ';muVsr dur ';nl, s8d

integration is over cross-sectionS of the quantum well. Off-

diagonal mode matrix elementsÛmnsxd in Eq. s5d also in-

FIG. 1. The geometry of Q2D electron waveguide subject to
in-plane magnetic fieldB.
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clude both the disorder and the magnetic-field originated po-
tentials, viz.

Ûmnsxd = Vmnsxd + 2iHFSmn
sxd

lx
2W

−
Smn

syd

ly
2

]

]x
G + Cmn

H2

lB
4 . s9d

In Eq. s9d, l i is the partial magnetic length given byl i
2

=F0/2puBiu, numerical coefficients, which are specifical for
the geometry of the quantum well, have the form

Smn
sxd = §x

4nn1

n2 − n1
2 sin2Fp

2
sn − n1dGs1 − dmm1

d

3
8mm1

p2sm2 − m1
2d2 sin2Fp

2
sm− m1dG , s10ad

Smn
syd = §ydnn1

s1 − dmm1
d

8mm1

p2sm2 − m1
2d2 sin2Fp

2
sm− m1dG ,

s10bd

Cmn = dnn1
s1 − dmm1

d
8mm1

p2sm2 − m1
2d2 cos2Fp

2
sm− m1dG ,

s10cd

with §i =Bi / uBiu=sgnBi. In expressionss10d, mode indices
are designated such thatm=sn,md andn=sn1,m1d.

The potentialsVmsxd and Ûmnsxd in Eq. s5d may be
thought of as responsible for coherent intramode and inco-
herent intermode scattering, respectively. We thus adopt in
this work the approach where interactions of the electron
system with both the impurities and the magnetic field are
exploited on equal footing, that is they are treated as the
problems of scattering by additive static potentials which are
basically different in correlation properties only.

III. REDUCTION TO ONE-DIMENSIONAL DYNAMIC
PROBLEMS

A set of Eqs.s5d, though describing mode propagation in
one spatial dimension, cannot certainly be regarded as a re-
ally one-dimensional dynamical problem by virtue of strong
correlation of different modes via intermode potentialss9d.
Formally, this manifests itself in coexistence ins5d of purely
intramode propagators, i.e., the Green functions having iden-
tical mode indices, and intermode propagatorsGnmsx,x8d
with nÞm.

One can obviate these complications using the method
suggested in Refs. 15 and 16. In the above papers, nondiago-
nal elements of the mode matrixiGmm8i were proven to be
expressed, by means of some linear operation, through the
respective diagonal elements only. Substitution of thus rep-
resented intermode propagators into Eq.s5d results in the
following set of strictly one-dimensional equations for intra-
mode propagatorsGmmsx,x8d:

F ]2

]x2 + km
2 + i0 −Vmsxd − T̂mGGmmsx,x8d = dsx − x8d,

for ∀ m. s11d

Here, T̂m is theoperator sintegrald potential, well-known as
the T matrix in the quantum theory of scattering,18,19 which
acts in thex-coordinate spaceX. It has the form

T̂m = PmÛs1 − R̂d−1R̂Pm, s12d

whereÛ and R̂are the operators acting in the mixed mode-

coordinate spaceM̄m constructed as a direct product of the
spaceX and the truncated mode space which incorporates
the whole set of mode indices except the unique mode index

m. The operatorÛ is specified inM̄m by its matrix elements

kx,nuÛux8,n8l = Unn8sxddsx − x8d, s13d

matrix elements of the operator Rˆ have the form

kx,nuR̂ux8,n8l = Gn
sVdsx,x8dÛnn8sx8d. s14d

The functionGn
sVdsx,x8d in s14d will be thought of as thetrial

mode Green function which satisfies the equation resulting
from Eq. s5d provided that all intermode potentials are put
identically equal to zero

F ]2

]x2 + km
2 + i0 −VmsxdGGm

sVdsx,x8d = dsx − x8d. s15d

The operatorPm in s12d is the projection operator whose
action reduces to assigning the given valuem to the nearest
mode index of an arbitrary operator standing next to itseither
to the left or rightd, without affecting the product in theX
space.

With intramode Green functions found from the set of
Eqs. s11d, all intermode propagators are expressed via the
operator relation

Ĝnm = Pns1 − R̂d−1R̂PmĜmm, s16d

Ĝnm and Ĝmm being thought of as matrices inX space. The
initially three-dimensional problem thus reduces to the set of
separate one-dimensionals1Dd equationss11d, each repre-
senting the closed problem provided that trial Green func-
tions are independently found from Eq.s15d.

To analyze the mode states spectrum, i.e., the spectrum of
differential operator in Eq.s11d, it is worthwhile to renormal-
ize mode energies in Eqs.s11d and s15d by extracting from
the initial mode energys6d the nonrandom “magnetic” part
of the intramode potentialVmsxd, thus defining the new “un-
perturbed” mode energy

ûm
2 = km

2 −
H2

12lB
4S1 −

6

p2m2D . s17d

In such a way one is led to solve, in place of Eqs.s11d and
s15d, a couple of different, though equivalent, equations,
namely

F ]2

]x2 + ûm
2 + i0 − Vmmsxd − T̂mGGmmsx,x8d = dsx − x8d

s18ad

and
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F ]2

]x2 + ûm
2 + i0 − VmmsxdGGm

sVdsx,x8d = dsx − x8d,

s18bd

which must be supplied with correct boundary conditions at
open ends of the system, to be discussed in the next section.

IV. SPECTRUM OF THE MODE STATES

To examine differential operators18ad, which is of prin-
cipal import for our purpose, one should first solve Eq.s18bd
for the truly one-dimensional trial Green function. In the
absence of magnetic field, this problem was resolved in
Ref. 15 where arbitrary statistical moments of the function
Gm

sVdsx,x8d were found in the case of open system subject to
weak disorder potential by applying the averaging technique
appropriate for causal-type random functionals. The condi-
tion for weak impurity scatteringsWISd, which we assume to
hold in this study as well, can be cast to the form of the
inequality pair

kF
−1,rc ! ,, s19d

wererc is the correlation radius of the random potential,, is
the electron mean free path relating to it.

In the case of nonzero magnetic field the solution to Eq.
s18bd is much more involved than that accomplished in Ref.
15. This will be thoroughly examined in a separate publica-
tion, while here we outline the solution along with criteria of
its applicability.

Given the magnetic potentials, to adequately take into ac-
count the open property of one-dimensional system governed
by Eq. s18bd one should explore this equation on the ex-
tendedx axis rather than on disordered and subject to mag-
netic field intervalL=s−L /2 ,L /2d. Being considered on the
whole axis, Eq.s18bd describes the motion of a quantum
particle created with energykm

2 at point x8 and then propa-
gating in two-component scalar potential with bounded sup-
port. The regular component of this combined potential is
due to the magnetic field. It has the formVsregdsxd=usL /2
− uxudsH2/12lB

4df1−s6/p2m2dg, whereas the random compo-
nent, which is of impurity origin, is covered by the function
Vsrandsxd=usL /2−uxudVmmsxd.

To perform configurational averaging over the random
part of the potential it is worthwhile to express the trial
Green function in terms of wave functions ofcausal type
rather than functions that meet the initially stated boundary-
valuesBVd problem. This may be achieved by employing the
formula sfor the sake of clarity we omit mode indexmd:

GsVdsx,x8d =
1

W fc+sxdc−sx8dusx − x8d

+ c+sx8dc−sxdusx8 − xdg, s20d

wherec±sxd are two different solutions of homogeneous Eq.
s15d with boundary conditions specified for each of them at
only one end of the system, viz.x→ ±`, depending on the
sign index,W is the Wronskian of those solutions. With this
representation, the trial propagator itself meets, as it must,
the initial BV problem.

The openness of the finite-size system under consider-
ation implies that far from the source coordinatex8, specifi-
cally at x→ ±`, Green functionGsVdsx,x8d must have the
form of outgoingfree waves. In view of boundedness of the
support of the potentials, at large values ofuxu functions
c±sxd have to be taken as

c±sxd = c± expf± iksx − L/2dg. s21d

Inside the magnetically biased intervalL, in order to
properly take into account the electron backscattering from
the potentialVsrandsxd, it is worthwhile to seek wave func-
tions c±sxd in the form

c±sxd = p±sxdeiûs±x−L/2d − ig±sxde−iûs±x−L/2d, s22d

with Æ2 specified ins17d. Under WIS conditionss19d, enve-
lope functionsp±sxd and g±sxd in s22d can be regarded as
smooth factors in comparison with near-standing fast expo-
nentials, which leads to the following coupled dynamic equa-
tions:

±p±8sxd + ihsxdp±sxd + z±
* sxdg±sxd = 0, s23ad

±g±8sxd − ihsxdg±sxd + z±sxdp±sxd = 0. s23bd

Random functionshsxd and z±sxd in Eqs. s23d are con-
structed as normalized packets of spatial harmonics of the
impurity potentialVsxd;Vmmsxd, which have the form

hsxd =
1

2û
E

x−l

x+l dt

2l
Vstd, s24ad

z±sxd =
1

2û
E

x−l

x+l dt

2l
Vstdexpf2iûs±x − L/2dg. s24bd

Spatial averaging ins24d is carried out over the interval 2l of
arbitrary length intermediate between small lengthsÆ−1 and
rc, on the one hand, and the large scattering lengthsto be
determined self-consistentlyd, on the other. In view of these
limitations, the “potentials”hsxd and z±sxd provide forward
and backward scattering of harmonics ±Æ, respectively.

By joining the solutionss22d ands21d at the end points of
the intervalL we arrive at the exact boundary conditions for
the envelopesp±sxd andg±sxd, viz.

p±s±L/2d = const, s25ad

g±s±L/2d = RsBdp±s±L/2d. s25bd

The quantity

RsBd = − i
k − û

k + û
, s26d

as it follows froms22d, is the amplitude reflection coefficient
from the boundary between magnetically biased and unbi-
ased regions. This reflection will be hereinafter referred to as
“magnetic scattering” associated with the above introduced
potentialVsregdsxd.

Below in this paper, scattering associated with both of the
potentials,Vsrandsxd and Vsregdsxd, will be regarded as weak.
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The weakness of the impurity scattering implies the inequali-
ties s19d whereas the magnetic scattering will be thought of
as weak provided that the requirement is metuRsBdu!1.
From s25bd and s17d one can make sure that in terms of
appropriate physical parameters the condition for weak mag-
netic scatteringsWMSd may be expressed as the inequality

S H

Rc
D2

! 1, s27d

whereRc=kFlB
2 is the maximal classical cyclotron radius of

the electron orbit. It is just from the viewpoint of this con-
straint that we will regard the in-plane magnetic field to be
weak.

As far as the impurity scattering is concerned, to do the
averaging over realizations of the potentialVsr d this random
function will be thought of to possess the following correla-
tion properties:

kVsr dl = 0, s28ad

kVsr dVsr 8dl = QWsx − x8ddsr ' − r '8 d, s28bd

angular brackets denote configurational averaging. Under
WIS conditionss19d, the equalitiess28d are sufficient to ad-
equately accomplish the averaging for rather wide class of
the random potential statistics, since in this case function
Vsr d may be regarded as approximately Gaussian
distributed.20

By applying the averaging technique outlined in the Ap-
pendix the average trial Green function is obtained in the
following form, which is valid provided WIS and WMS con-
ditions hold simultaneously:

kGm
sVdsx,x8dl <

− i

2ûm

3expSHiûm −
1

2F 1

Lf
sVdsmd

+
1

Lb
sVdsmdGJux − x8uD . s29d

Here,

Lf
sVdsmd = S4

3
D2 S

Qû2 s30ad

and

Lb
sVdsmd =

Lf
sVdsmd

W̃s2ûmd
s30bd

are the extinction lengths related to forwardsfd and back-

wardsbd scattering by the potentialVmmsxd, W̃sqd is the Fou-
rier transform of functionWsxd from s28bd. With the result

s29d, the average square norm of the operatorR̂ from s12d
can be represented as a sum of “impurity” and “magnetic”

terms, viz.kiR̂i2l<kiR̂simpdi2l+kiR̂sBdi2l, which are estimated
as

kiR̂simpdi2l ,
1

kF,
! 1, s31ad

kiR̂sBdi2l , S H

Rc
D2

! 1. s31bd

Inequalitiess31d permit simplification of the operator poten-

tial T̂m since the inverse operator ins12d can be approxi-
mately replaced with the unit operator. The intermode poten-
tial thus reduces to the relatively simple form

T̂m < PmÛĜsVdÛPm, s32d

whereĜsVd stands for the operator inM̄m which is specified
by the matrix elements of the following form:

kx,nuĜsVdux8,n8l = Gn
sVdsx,x8ddnn8. s33d

Unlike quasilocal intramode potentialVmmsxd, the opera-
tor potentials32d possesses, even in the absence of magnetic
field, the nonzero mean value. Therefore, to apply further a
perturbation theory it is reasonable to represent this operator

as a sum of averaged and fluctuating parts, i.e.,T̂m=kT̂ml
+DT̂m. With regard to Eq.s9d, the mean operatorkT̂ml can be
splittedsthough quite conventionallyd into the local impurity
and essentially nonlocal magnetic terms. The action of short-
correlated impurity part of this operator reduces to multipli-
cation of the mode propagator by the complex self-energy
factor15,16

fkT̂ m
simpdlGmmgsx,x8d = − Sm

simpdGmmsx,x8d, s34d

whereSm
simpd=Dûm

2 + i /tm
swd and the notations are used

Dûm
2 =

Q
S

o
nÞm

PE
−`

` dq

2p

W̃sq + ûmd

q2 − ûn
2 , s35ad

1

tm
swd =

Q
4S

o
nÞm

1

ûm

fW̃sûm − ûnd + W̃sûm + ûndg. s35bd

SymbolP in s35ad stands for the integral principal value, the
bar over the summation index ins35bd signifies that the sum-
mation is carried out over extended modes only. The condi-
tional character of the term “impurity self-energy” with ref-
erence toSm

simpd is related to the mere fact that this factor is
actually determined by both the impurity potential, whose
correlator is proportional to the factor ofQ, and the magnetic
field, which renormalizes the wave numbersûm,n and also
adjusts the number of extended modes, see next subsection.

The action of the expressly nonlocal magnetic part of the

operatorkT̂ml is specified by the formula
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fkT̂ m
sBdlGmmgsx,x8d = o

nÞm
H2iHFSmn

sxd

Wlx
2 −

Smn
syd

ly
2

]

]x
G + Cmn

H2

lB
4 J

3 E
L

dx1kGn
sVdsx,x1dlH2iHFSnm

sxd

Wlx
2

−
Snm

syd

ly
2

]

]x1
G + Cnm

H2

lB
4 JGmmsx1,x8d,

s36d

wherefrom the magnetic self-energy, which is applicable un-
der WS conditions, is immediately deduced

Sm
sBd = − 4H2 o

nÞm

FSmn
sxd

Wlx
2 − iûm

Smn
syd

ly
2 GFSnm

sxd

Wlx
2 − iûm

Snm
syd

ly
2 G

ûm
2 − ûn

2 − iûnF 1

Lf
sVdsnd

+
1

Lb
sVdsndG

.

s37d

A. Mode content of the open quantum system

Both the impurity and the magnetic self-energies are
complex-valued quantities, whose real parts renormalize
mode energies whereas the imaginary parts determine the
uncertainty of energy levels. The requirement for mode en-
ergies to be positive defined specifies the number of ex-
tended modes in the quantum system, which is normally re-
ferred to as the number of conducting channels,Nc.
Computation of exact number of these modes, though clear
in principle, is an intricate problem in general. For the sys-
tem under consideration the numberNc can be most easily
found in the particular case of the magnetic field oriented
lengthwise with respect to the current direction, i.e., for
B iOx. In this case mode energy renormalization due to the
intermodemagnetic scattering, which is covered by the mag-
netic self-energys37d, is small as compared with theintra-
modemagnetic correction present in the mode energys17d.
Taking account of this fact, one can calculate the number of
extended modes as

Nc = o
m=1

Nc
szd

Nc
sydsmd, s38ad

where

Nc
szd = intFkFH

p
Î1 −

H2

12Rc
2G s38bd

is the number of quantization levels inz direction, whose
energies lie beneath the Fermi energy, and

Nc
sydsmd = intFkFW

p
Î1 −S pm

kFH
D2

−
H2

12Rc
2S1 −

6

p2m2DG
s38cd

is the number ofy-directional quantization levels pertinent to
the mth level of z quantization. Symbol intf. . .g in s38bd and
s38cd denotes the integer part of the number enclosed in
square brackets.

The sums38ad can be easily evaluated in the limiting case
where the number of extended modes relating to both of the
transverse axes of the quantum waveguide is large as com-
pared to unity. By replacing the sum with the integral one
readily gets

Nc <
kF

2S

4p
S1 −

H2

12Rc
2D , s39d

wherefrom it is evident that application of the in-plane mag-
netic field can significantly reduce the number of extended
modes, even though inequalitys27d holds true. This reduc-
tion is definitely the geometrical effect which is due to the
curving of the electron orbits in the magnetic field, and thus
it can be only taken into consideration within the model of a
finite-width quantum well that forms a 2D system.

In Fig. 2, the numerical results for the number of effective
conducting channels calculated from Eqs.s38d as a function
of the inverse magnetic field scaled as the Landau filling
factor n=skFlBd2=kFRc are presented. The collapse of the
number of current-carrying modes with a growth in the mag-
netic field is apparent, regardless of the quantum waveguide
thicknessH, the widthW is assumed constant. The in-plane
rotation of the magnetic field smoothly changes the pre-
sented picture because the real part of self-energys37d can at
most reach the sameson the order of magnituded value as the
intramode magnetic addend ins17d.21

In Fig. 3, the relation between the number of channels and
the effective thickness of the quantum waveguide is pre-
sented, which actually demonstrates the dependence ofNc on
the depletion voltage adjusting the width of the near-surface
potential well. In the extremely low magnetic fieldssolid
curved the number of channels increases nearly linear with
growing H, in accordance with standard geometrical consid-
eration applicable to systems of waveguide configuration,
and also with the conventional Ohm’s law which is undoubt-
edly valid for bulk conductors. With the growing magnetic
field, the conventional geometric increase in the number of
channels gets slower, gradually indicating the trend for low-
ering the number of conducting modes. This unusual depen-
dence of the mode content of the electron waveguide on its

FIG. 2. The magnetic-field dependence of the number of effec-
tive conducting channels, the curves from Eqs.s38d. The parameter
n is the Landau filling factor.
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effective thickness is due to nonmonotonic dependence onH
of the mode energys17d.

Obviously, on a further increase of the magnetic field the
tendency towards lowering the number of conducting chan-
nels must be stabilized owing to terms~lB

−4 in square brack-
ets in right-hand sidesrhsd of Eq. s36d. However, this can
happen only in the domain of relatively strong magnetic
fields, where the WMS condition is violated and the approxi-
mate expressions32d for the intermode potential is no longer
applicable. In such magnetic fields, the bulk quantum Hall
effect is expected to come in the foreground, which is be-
yond the scope of this paper.

B. Dephasing of the mode states: The magnetic-field driven
disorder

Besides the impact on the number of extended quantum
modes whose transverse energies are beneath the Fermi
level, the in-plane magnetic field can significantly affect the
coherent properties of the conducting channels. This field
controls the imaginary parts of both the impurity-governed
self-energys35d and the magnetic self-energys37d. Both of
these self-energies arise due to the intermode scattering. One
should bear in mind, however, thatSm

simpd is basically deter-
mined by scattering from the impurity potential whereas the
magnetic self-energy,Sm

sBd, originates in the main from mode
mixing due to the orbital effect of in-plane magnetic field.

It is important to note that intermixing of channels which
is controlled solely by the magnetic field cannot result in
significant dephasing of mode states. By comparing the
imaginary part of self-energys37d and the level widths35bd
one can determine that the ratio of “purely magnetic” and
“impurity-governed” dephasing rates is evaluated as

ISm
sBd

ISm
simpd , F H

RckFW
SBx

B
D2

+
H

Rc
SBy

B
D2G2

! 1. s40d

This implies that under WMS conditions27d the magnetic-
field originated dephasing is negligible, whatever strength of
the disorder. The conclusion is thus unavoidable that strong
intermode mixing resulting from the magnetic field cannot
give rise to significantly widening the mode levels unless

there exists somerandompotential due to, say, impurities or
the roughness of quantum well boundaries, which can medi-
ate the dephasing effect of the magnetic field. The specific
role of the magnetic field, as far as the mode entanglement is
concerned, reduces to the change in collective parameters of
the electron motion, such as the mode content of the confined
system and the mode density of states, and in such an indi-
rect way to modification ofscattering parameterspertinent
to random generators of intermode transitionssi.e., the im-
purity scattering cross section, the polar pattern of electron
reflection from rough boundaries, etc.d.

The influence of the magnetic field upon transport param-
eters manifests itself directly through the mode dephasing
rate. Analytically, the estimate of this quantity can be most
easily deduced from Eq.s35bd in the case where the number
of quantization levels related to both of the transverse direc-
tions is large as compared to unity and the sum in Eq.s35bd
can be replaced with the integral. The dephasing rate for the
particular modem in this case reads

1

tm
swdsBd

<
1

tm
swds0d

Î1 −
H2

12Rc
2 , s41d

where 1/tm
swds0d=kFQ /4p is themth mode level width attrib-

uted to scattering due to the disorder potential only, with no
external magnetic field.16 The value of this zero-field level
width equals exactly half the inverse mean free time calcu-
lated within the framework of classical kinetic theory. Note
that in the domain of weak magnetic fields corresponding to
inequalitys27d the dephasing rates41d decreases nearly qua-
dratically in the magnetic field and has universal value, the
same for each of the extended modes.16

The results41d, which is actually semiclassical, is of lim-
ited applicability. Upon varying the magnetic field the num-
ber of extended modes changes stepwise. Therefore the ma-
jority of physical quantities are bound to exhibit the
oscillatory behavior, which is closely related to well-known
van Hove singularities in MDOS. In Fig. 4, the dephasing
rates obtained numerically from Eq.s35bd for two specific
modes of the electron waveguide are shown as functions of
the inverse magnetic field. Square-root singularities mani-
festly develop on both of the curves. One can also notice that
scattering frequencies for different modes start to noticeably
deviate from one another only in the range of relatively
strong magnetic fields, where the number of extended modes
assumes the value comparable with unity.

FIG. 3. The number of conducting channels vs the width of the
near-surface potential well at different values of the Landau filling
factor, from Eqs.s38d.

FIG. 4. The dephasing rates35bd for two particular modes vs
inverse magnetic field.
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Besides the magnetic-field singularities depicted in Fig. 4,
in Fig. 5 the dephasing rate of the particular mode versus
size parameters of the quantum waveguide is presented for
two distinct values ofuBu. Here, MDOS oscillations caused
by abrupt changes in the number of conducting channels also
make themselves very evident. We are led to conclude that
by means of the orbital coupling to the electrons in a Q2D
conducting system the in-plane magnetic field can take an
effect which in some sense is analogous to that of electro-
static confinement potential. At the same time, in contrast to
the magnetic-field-controlled singularities of the dephasing
rate, which are depicted in Fig. 4, oscillations of truly geo-
metrical origin are noticeably more complicated. The distinc-
tion is caused by substantially different response of the ef-
fective mode energys17d to the magnetic field, on the one
hand, and to size parameters of the confined electron system,
on the other. However, it should be noted that in both of the
graphssFigs. 4 and 5d the reduction of the dephasing by
quenched disorder is clearly visible as the magnetic field
grows. This fact can serve as the indication of increasing
coherence of electron transport in quench-disordered Q2D
systems if they are subjected to external magnetic field.

V. CONCLUSION

In this study we have demonstrated that the observed gi-
ant positive magnetoresistance of 2D electron and hole sys-
tems subject to parallel magnetic field can be reasonably ex-
plained in the framework of Fermi liquid theory being
applied to structures created by confining potential wells of
finite rather than zero width. The magnetic field coupling to
the carrier orbital motion which is due to finite thickness of
quasi-two-dimensional layers, even though rather weak from
semiclassical point of view, has been proven to influence
quite essentially thecollectiveelectron spectrum. The reduc-
tion in the number of extended modes with a growth of the
magnetic field, as seen from Fig. 2, is very significant, con-
tinuing right up to zero in moderately strong fields, whereas
individual electron trajectories in the plane normal to the
magnetic field can go far beyond the effective thickness of
the gated carrier system. The mode truncation effect of the

in-plane magnetic field is the more noticeable the larger is
the aspect ratio of the confining potential well forming the
electron waveguide.

Since the number of extended modes, according to the
Landauer theory, specifies the conductance of a bounded sys-
tem, the results presented in Figs. 2 and 3 can be directly
related to the experiment. In fact, they may be regarded as
showing the conductance dependence on the corresponding
parameters in the case of aperfectconfining potential well.
As the perfect we mean a waveguide-type structure in which
any mechanism ofcollectivescattering of properly defined
carrier modes does not exist. This actually implies that no
scattering fields other than those involved in the unperturbed
quasiparticle state formation in a particular system are taken
into account. Specifically, the collective states pertinent to
the problem considered in this study are specified by the
confining potential profile. In the absence of the disorder
potential thecollectiveelectron motion should be regarded as
ballistic, even though individual carriers do experience
strongsspeculard scattering at side boundaries of the poten-
tial well.

If some random potential is involved, e.g., impurities or
the roughness of quantum well boundaries, it should lead to
stochasticrather than regular scattering of the primordial
quasiparticles. It seems advantageous to separate this type of
scattering into two kinds, namely, intra- and intermode scat-
tering. The former type of scattering provides renormaliza-
tion of transport parameters and also gives rise to Anderson
localization of carrier statesin the direction of current. The
latter type, inelastic in form from the viewpoint of mode
theory, leads to stochastic spreading of mode energy levels,
or, in other words, tospatial dephasing of mode states. At
first glance, it may appear that intermode scattering caused
exclusively by the magnetic field is bound to produce the
dephasing effect analogous to that introduced by the
quenched disorder. However, the estimates40d is obviously
contradicting to this expectation. According to the evalua-
tion, in the absence of random potential, which ensures
probabilistic property of mode energy levels, no imaginary
part must be contained in the mode self-energy, in spite of
substantial intermode mixing due to the magnetic field.

Physically, this fact seems to be quite natural. Indeed, if
one chooses to model lateral confinement of a Q2D carrier
system by the quadratic rather than the rectangular potential,
eigenfunctions of the transverse Hamiltonian could be obvi-
ously selected so as to completely avoid the mode coupling
due to the magnetic field. The additional random potential,
though static, would be in this case the only cause of the
mode levels widening. At the same time, the quadratic con-
finement possesses the same symmetry of the confined sys-
tem as the rectangular well does. Therefore, it would be dif-
ficult to substantiate the drastic difference of the results
obtained within the framework of these two models if one is
guided by general considerations only.

Fortunately, the results40d reveals the lacksin the
asymptotic sensed of the magnetic-field-originated dephasing
of the natural carrier spectrum. Certainly, the magnetic field
does take part in the mode level spreading, yet mostly
through the dependence on this field of the number of ex-
tended modes and of the mode density of states. This param-

FIG. 5. The dephasing rate vs the quantum waveguide thickness
at different strengths of in-plane magnetic field. The broken fraction
of the lower curve falls into the range of parameters where WMS
condition s27d is violated.
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eters essentially determine the impurity-originated dephasing
rate s35bd, which can thus be viewed as being produced by
the magnetic-field-dependent disorder. The idea of the
“magnetic-field-driven disorder” was previously suggested in
Ref. 26, so the results35bd can be viewed as substantiating
the rationality of such an interpretation. Clearly, in order to
make a detailed comparison with experimental observations
it is necessary to derive required formulas for the magneto-
conductance. In view of size limitations, this work will be
postponed for the next publication.
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APPENDIX: DISORDER AVERAGING OF THE TRIAL
GREEN FUNCTION

After substitution of functionss22d into s20d, the trial
Green function inside magnetically biased intervalL can be
represented as a sum of four packets of spatial harmonics,
viz.

GsVdsx,x8d = G1sx,x8deiûsx−x8d + G2sx,x8de−iûsx−x8d

+ G3sx,x8deiûsx+x8d + G4sx,x8de−iûsx+x8d.

sA1d

Here, smooth envelope functions are given as

G1sx,x8d =
− i

2û
AsxdFQ+

p−sx8d
p−sxd

− Q−
g+sx8d
p+sxd

G−sxde2iûLG ,

sA2ad

G2sx,x8d =
− i

2û
AsxdFQ−

p+sx8d
p+sxd

− Q+G+sxd
g−sx8d
p−sxd

e2iûLG ,

sA2bd

G3sx,x8d =
− 1

2û
AsxdeiûLFQ+

g−sx8d
p−sxd

+ Q−
p+sx8d
p+sxd

G−sxdG ,

sA2cd

G4sx,x8d =
− 1

2û
AsxdeiûLFQ−

g+sx8d
p+sxd

+ Q+G+sxd
p−sx8d
p−sxd G ,

sA2dd

where the notations are used

Asxd = f1 + G+sxdG−sxde2iûLg−1, sA3ad

G±sxd = g±sxd/p±sxd, sA3bd

Q± = uf±sx − x8dg. sA3cd

As regards the functionsG±sxd, their physical meaning is
readily deduced from Eq.s22d. They represent reflection fac-
tors of spatial harmonics ±û incident at the pointx onto the
layers with end coordinatesx and ±L /2, respectively. This
factors meet the Riccati-type dynamic equations

±
dG±sxd

dx
= 2ihsxdG±sxd − z±sxd + z±

* sxdG±
2sxd, sA4d

with boundary conditions stemming froms25d:

G±s±L/2d = RsBd. sA5d

The averaging technique for the functionals of random fields
s24d was elaborated in Refs. 15, 23, and 24. Here we only
briefly indicate the main peculiarities of dealing with func-
tionals of such a sort and present the result of the function
sA1d averaging.

Having regard to correlation relationss28d it was
proven15,23,24 that binary correlation functions of the effec-
tive random fieldss24d under WIS conditions can be cast to
the form

khsxdhsx8dl =
1

Lf
sVdFlsx − x8d, sA6ad

kz±sxdz±
* sx8dl =

1

Lb
sVdFlsx − x8d, sA6bd

whereLf andLb are the forward and the backward scattering
lengths given ins30d for the particular modem. The function
Flsxd has the form

Flsxd =E
−`

` dq

2p
eiqxsin2sqld

sqld2 =
1

2l
S1 −

uxu
2l
Dus2l − uxud

sA7d

and plays the role of underlimitingd function when averag-
ing smooth factors similar to the envelopessA2d. Before av-
eraging the functionsA1d it makes sense to go over from
functionsg±sxd, p±sxd andz±sxd to phase-renormalized func-
tions

g̃±sxd = g±sxdexpF± iE
x

±L/2

dx1hsx1dG , sA8ad

p̃±sxd = p±sxdexpF7 iE
x

±L/2

dx1hsx1dG , sA8bd

z̃±sxd = z±sxdexpF±2iE
x

±L/2

dx1hsx1dG , sA8cd

which enables one to remove the forward-scattering random
field hsxd from all dynamic equations and to separate it out
in the form of exponential factors. In particular, note then
that correlation relationsA6bd remains unchanged after
renormalizationsA8cd.

One can easily reveal that in view of short-range correla-
tion of random functionss24d and due to the causal nature of
functionals being averaged, the averaging of functionals with
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different sign indices insA2d can be done separately. By
averaging the equation

±
dG̃±sxd

dx
= − z̃±sxd + z̃±

* sxdG̃±
2sxd sA9d

using the Furutsu-Novikov formula for gaussian random
process25 we obtain

kG̃±sxdl = RsBd expF−
1

Lb
SL

2
7 xDG . sA10d

In view of smallness of the reflection coefficientRsBd this
allows one, when averagingsA1d, to retain insA2d only the

terms which do not contain factorsG̃±sxd and g̃±sxd.
In order to average the ratiop̃±sx8d / p̃±sxd, which is

present in the principal terms ofsA2d, it is worthwhile to
consider its Fourier transform overx8 which, in view of the
presence ofQ functions insA2d, takes the form

Fs±dsx,qd = ±E
x

±L/2

dx1
p̃±sx1d
p̃±sxd

expF− iqsx − x1d

+ iûux − x1u ± iE
x1

x

dx2hsx2dG , sA11d

where forward-scattering random fieldhsxd is already
singled out. The averaging over this field yields

KexpF± iE
x1

x

dx2hsx2dGL
h

= expS−
ux − x1u

2Lf
D , sA12d

and the functionsA11d, averaged beforehand overhsxd, is
found to obey the equation

7
dkF̃s±dsx,qdlh

dx
= 1 −S 1

2Lf
− iû 7 iqDkF̃s±dsx,qdlh

− z̃±
* sxdG̃±sxdkF̃s±dsx,qdlh, sA13d

which is to be solved along with Eq.sA9d. By averaging
sA13d over the effective backscattering fieldz̃±sxd we arrive
at the dynamic equations

7
dkF̃s±dsx,qdl

dx
= 1 −F1

2
S 1

Lf
+

1

Lb
D − iû 7 iqGkF̃s±dsx,qdl

sA14d

with obvious “initial” conditionskF̃s±ds±L /2 ,qdl=0. The so-
lution to Eq.sA14d has the form

kF̃s±dsx,qdl = F1

2
S 1

Lf
+

1

Lb
D − iû 7 iqG−1

3F1 − expH− F1

2
S 1

Lf
+

1

Lb
D − iû 7 iqG

3SL

2
7 xDJG , sA15d

finally yielding

kG1sx,x8dleiûsx−x8d + kG2sx,x8dle−iûsx−x8d

<
− i

2û
expHFiû −

1

2
S 1

Lf
+

1

Lb
DGux − x8uJ . sA16d

The envelopessA2cd and sA2dd can be averaged in the
same manner. Because both of them are proportional to re-
flection coefficientg±sxd, they prove to be relatively small in
the parameters27d and can thus be omitted, leaving the result
sA16d as the main approximation for the impurity-averaged
trial Green function.
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