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Spectrum of an open disordered quasi-two-dimensional electron system: The mode reduction
effect of a classically weak in-plane magnetic field
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The effect of an in-plane magnetic field upon open quasi-two-dimensional electron and hole systems is
investigated in terms of the carrier ground-state spectrum. The magnetic field, classified as weak from the
viewpoint of correlation between size parameters of classical electron motion and the gate potential spatial
profile is shown to efficiently cutoff extended modes from the spectrum and to change singularly the mode
density of state$MDOS). The reduction in the number of current-carrying modes, right up to zero in magnetic
fields of moderate strength, can be viewed as the cause of magnetic-field-driven metal-to-insulator transition
widely observed in two-dimensional systems. Both the mode number reduction and the MDOS singularity
appear to be most pronounced in the mode states dephasing associated with their scattering by quenched-
disorder potential. This sort of dephasing is proven to dominate the dephasing which involves solely the
magnetic field whatever level of the disorder.
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I. INTRODUCTION related effectd®12The relatively rare papers where orbital
coupling was analyzed by taking into account the finite width
The apparent metallic state widely observed in two-of potential wells forming real two-dimensional systems are
dimensional(2D) systems of Si metal-oxide-semiconductor not rated by now as fully convincing. Specifically, the rela-
field effect transistor(MOSFET) type as well as in tively simple model suggested in Ref. 13 do not exhibit suf-
GaAs/AlGaAs heterostructure% obviously contradicts the ficiently abrupt transition between metallic and dielectric re-
well-known one-parameter scaling theband as yet has not gimes, whereas in Ref. 14 onbgorrectionscaused by weak
received generally accepted theoretical explanation. The execalization of carriers are studied, which can hardly serve as
istence of such a state is mostly believed to result from Couthe conclusive proof for the physical mechanism of the ob-
lomb interaction of carriers, which is rather strong in theserved effects.
systems of low electron and hole density. Estimations of this Previously in Refs. 15 and 16, the one-particle theory ca-
interaction indeed can cause the surmize that just this intepable of explaining the metallic ground state as well as MIT
action should lead to quite a strong dephasing effect upoim disordered 2D systems not subjected to magnetic field was
electrons which otherwise would be localized due to scatterdeveloped starting from basic positions essentially different
ing by the disorder potential, thus residing in coherent statesrom those of scaling theories. Specifically, the conductance
However, at the present time the lack of a comprehensivef a strictly 20 and a quasi-2E system was calculated in
theory for Coulomb interaction in solids precludes fromterms of quantum states pertinent to a perfect finite-size open
making certain conclusions about its predominant role insystem of waveguide geometry. In this approach, the metallic
forming the metallic ground state of 2D electron systems. Invalue of the conductance is bound up with the primary exis-
particular, a considerable challenge in this connection is pretence of coherent extended waveguide modes rather than
sented by commonplace observations of the dephasing tin@ne-particle electronic states originally localized by the dis-
saturation in different systems, including 2D ones, at temorder. Energy levels of theseollective mode states can be
peratures very close to zefsee, e.g., Ref. 4, and referenceswidened by quenched disorder provided that scattering is
therein. ensured betweeextendednodes having differenbngitudi-
Besides the unexpected conduction state of quenchaal energies. This type of scattering can be viewstth-
disordered 2D systems, the metal-insulator transitdiT ) ematically as inelastic, although it is physically provided by
is normally observed there, which currently has not beera staticrandom potential. In the suggested approach, all ex-
proven unambiguously to be determined exclusively by théended modes other than the particular one, if any, can be
level of the disorder. No less puzzling is also the abnormallyregarded as the dephasing bath. With gradual strengthening
large response of 2D electron and hole systems to the relaf the disorder, the conductance transforms from its ballistic
tively weak in-plane magnetic fiefiwhich is known to sig- value in a perfect system, which equals the number of ex-
nificantly suppress the metallic behavior of the carriers andended modes times the conductance quantum, to the diffu-
even to drive the system into the insulating regfirie. sive value coincident with standard Drude conductance if the
Insofar as the electrons confined to move in a narrowsystem possesses the number of extended modes noticeably
near-surface potential well are weakly coupled to the in-greater than unity.
plane magnetic field through their orbital degree of freedom, In the present work, we apply the mode approach of Refs.
it is widely believed that such a field promotes localization15 and 16 to examine the influence of theplane magnetic
of carriers, and thus the MIT, mainly due to strong spin-field upon spectrum of the electrons restricted to move in a
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FIG. 1. The geometry of Q2D electron waveguide subject towhere(bo—hc{e is the magnetic flux quqntgmﬁ(r) .IS the
in-plane magnetic field. vector potential of the_ external magnetllc flekld(,r) is the
scalar random potential due to, say, impurities or rough
boundaries of the confining potential well. We adopt herein-
ter the system of units with=2m=1, m denoting the elec-
on effective mass.
With the magnetic field gauged so a&(r)=(B,z,
B,z,0), Eq. (2) takes the form
{Vz +k2+i0-V(r) - 4—m<Byzi - szi)
d X ay

planar, yet three-dimensionapenquantum well. It will be
shown that at large values of the transverse aspect ratio Q
such an electron waveguide a relatively weak magnetic
field'” can significantly affect the electron spectrum. This _
appears in considerable magnetic-field responsivity of the
number of extended modes, the latter being normally identi-
fied as conducting channels, as well as in MDOS sensitivity
to the magnetic field. The former factor is well known to
control the value of the ballistic conductance of the confined _ (2_77>sz22 G(r,r’)=o(r-r") (3)
current carriers whereas the lattétfDOS) governs substan- ON o '

tially the mode states dephasing associated with scattering of o . I
the electrons by the disorder potential. Interestingly, modé't this stage it is expedient to go over from the initially

entanglement solely due to the magnetic field, with no disoriNfee-dimensional problem to a set of strictly one-

der whatsoever, leads to electron mass renormalization ancamensmnal problems, individual for each of the modes. To-

does not affect the width of the energy levels of the collecWards this end, as a first step one should carry out Fourier

tive electron states. transformation of Eq(1_3) over the _transvers_e radius vector
r . =(y,2). The appropriate set of eigenfunctions has the form

0

Il. THE MODEL 2 . y 1 . z 1
Ir;my=——=—sin| | =+ |mn|sin| | = + = |7m|,
Two-dimensional electron and hole systems in practical VWH w2 H 2
applications can be modeled, in view of their open property (4)

in the direction of current flow, as planar quantum ) ) )
waveguides whose transverse structure is governed by laterdere #=(n,m), with n,me N, is the vector mode index
(depletion potential. The exact form of the confining poten- conjugate to the coordinate vector. With functions (4),

tial well is of minor importance for its principal application Ed. (3) is readily transformed to the set of coupled equations
which reduces to the restriction of electron transport in thefor mode Fourier components of the functiGitr,r’), viz.
direction normal to the interfacial area and, consequently, t ]

the “transverse” quantization of the electron spectrum. In this| — + ki +10 =V, (X) |G (X,X") = > Z:{ﬂ,,(x)G,,M,(x,x’)

study, we assume the open gquasi-two-dimensidD) vEp
system of carriers having the form of three-dimensional _ s L S(x=xX'). (5)
“electron waveguide” of rectangular cross section, which oc- e
cupies the coordinate region Here,
X e (-L/2,L/2), k2:k2_(w_n)2_<1n)z ©
v\ w H

y e [=Wi2Wi2], is the unperturbed mode energy

- H? 6
ze [-H/2,H/I2], (1) V() = V() + E(l - W) 7
as shown in Fig. 1. The length the widthW, as well as the B
heightH, of the model system will be regarded as arbitraryis the diagonal-in-mode-indices matrix element of the total
except that the thicknegd will be assumed to serve as a potential which includes the impurity pai(r) and both
small length parameter which will be specified below. Theof the magnetic terms in square brackets of H8),
electron system will be thought of as open at the erds lg=\®o/27|B| is the magnetic length. The terM,,(x) in
=+L/2 and closed by infinite-wall potentials at all lateral gq. (7) is the diagonal element of the mode matjiit,,, |
boundaries. The magnetic fieRlis taken to point parallel to  whose components are evaluated as
X-y plane at arbitrary angle with respectxaxes.

Since main transport coefficients, in particular the con- _ . i
ductance, are expressed in terms of one-particle propagators Vi¥) = Ler<rl’M|V(r)|rL’V>’ ®
of carriers, we will analyze the equation for the retarded o )
Green function of Fermi particles with energy= kﬁ. Inthe integration is over cross-secti@of the quantum well. Off-

Fermi-liquid approximation it has the form diagonal mode matrix elemenfaéﬂ,,(x) in Eq. (5) also in-
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tentials, viz. the T matrix in the quantum theory of scatterittt® which
R gy g H2 acts in thex-coordinate spac#. It has the form
0, (0 =V ,,(x)+2iH{ﬂ——’ﬂ’—} Cor (9) L
* * Bw 12 ax ] IR T,=P,U1-R)RP,, (12)

In Eqg. (9), |; is the partial magnetic length given Uﬁ
=®d,/2m|B;|, numerical coefficients, which are specifical for
the geometry of the quantum well, have the form

wherel{ and hargthe operators acting in the mixed mode-

coordinate spac#, constructed as a direct product of the
spaceX and the truncated mode space which incorporates

%) ann | the whole set of mode indices except the uniqgue mode index
SX) = sy S| —(N=ny) {(1 = S n A ,
[ n°-—nj 2 M p. The operatot/ is specified inM, by its matrix elements
smm,_ o7 XU vy = U, (X) (X = X') (13)
X555 S|n2 —(m-m , 10 ’ ) vy’ y
- [ 2( 1)} (108 ’
matrix elements of the operator liRave the form
8mrn_|. H m C- ! I\ — ! ;> !
Sy = 5y, (1 - o) 2 =t 8|n2[5<m— mp} , X PRIX,2') = GY X Uy (X). (14)

The functionG'(x,x") in (14) will be thought of as therial
(10b) v
mode Green function which satisfies the equation resulting

8mm o from Eq. (5) provided that all intermode potentials are put
Cpr= 5nn1(1 - 5m”h)ﬂz(mz——mi)2 cog[g(m_ ml)] , identically equal to zero
& .
(100 L—Xz + klzu +i0 - V,(x) G;Y)(X'X') =8(x-x"). (15
with s;=B;/|B;|=sgnB;. In expressiong10), mode indices ] , o
are designated such that=(n,m) and »=(ny,m,). The operatorP,, in (12) is the projection operator whose

action reduces to assigning the given vajugo the nearest

The potentialsvﬂ(x)_ and U,,(x) in I_Eq. (5) may be_ mode index of an arbitrary operator standing next teither
thought of as responsible for coherent intramode and inCogy he |eft or right, without affecting the product in tha
herent intermode scattering, respectively. We thus adopt i

this work the approach where interactions of the electron Witﬁ intramode Green functions found from the set of

system with both the impurities and the magnetic field ar%=qs. (12), all intermode propagators are expressed via the
exploited on equal footing, that is they are treated as th%perator relation

problems of scattering by additive static potentials which are

basically different in correlation properties only. ém =P, (- é)—lﬁqpﬂéﬂw (16)

Ill. REDUCTION TO ONE-DIMENSIONAL DYNAMIC

PROBLEMS G,, andG,, being thought of as matrices ik space. The

initially three-dimensional problem thus reduces to the set of
A set of Egs.(5), though describing mode propagation in Separate one-dimensionélD) equations(11), each repre-
one spatial dimension, cannot certainly be regarded as a réenting the closed problem provided that trial Green func-
ally one-dimensional dynamical problem by virtue of strongtions are independently found from E@5).
correlation of different modes via intermode potentiéds To analyze the mode states spectrum, i.e., the spectrum of
Formally, this manifests itself in coexistence(B) of purely  differential operator in Eq(11), it is worthwhile to renormal-
intramode propagators, i.e., the Green functions having iderizeé mode energies in Eq&l1) and (15) by extracting from
tical mode indices, and intermode propagat@s,(x,x’) the initial mode energy6) the nonrandom “magnetic” part

with »# . of the intramode potentiab,(x), thus defining the new “un-
One can obviate these complications using the metho@erturbed” mode energy

suggested in Refs. 15 and 16. In the above papers, nondiago- H2 6

nal elements of the mode matrjG,,, || were proven to be %fl: ki- —4(1 _—>_ (17)

expressed, by means of some linear operation, through the 123 mm?

respective diagonal elements only. Substitution of thus repy, sych a way one is led to solve, in place of E¢iL) and

resented intermode propagators into E5). results in the (15 5 couple of different, though equivalent, equations,
following set of strictly one-dimensional equations for intra- namely

mode propagator§,,,,(x,x’):

P 5 R i2+%2+iO—VMM(X)—§'M]GﬂM(X,X'):5(X—X')
%+ku+i0—vﬂ(x)—7'ﬂ GuuX,X') = 8(x=x"), oxsH
(183

for O u. (11) and
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&> 5 Mro or ) The openness of the finite-size system under consider-
22 10V |G (XX = 8(x = x), ation implies that far from the source coordinate specifi-
cally at x— +%, Green functionG)(x,x’) must have the
(18b) form of outgoingfree waves. In view of boundedness of the

which must be supplied with correct boundary conditions aSupport of the potentials, at large values [gff functions
open ends of the system, to be discussed in the next sectiof:(X) have to be taken as

IV. SPECTRUM OF THE MODE STATES (x) = ¢, exdzik(x - L/2)]. (21)

To examine differential operatdd8a), which is of prin- Inside the _magnetically biased intervdl, in ordgr to
cipal import for our purpose, one should first solve Efb) properly taike into account the elei:tron backscattering from
for the truly one-dimensional trial Green function. In the the potentialV"®”(x), it is worthwhile to seek wave func-
absence of magnetic field, this problem was resolved ifions ¢x(x) in the form
Rg/f). 15 where arbitraiy statistical moments of the fur_iction e(X) = ﬂ_t(x)eix(ix—L/Z) —i ,yi(x)e—ix(ix—L/2), (22)

G, (x,x") were found in the case of open system subject to - -

weak disorder potential by applying the averaging techniquavith »* specified in(17). Under WIS conditiong19), enve-
appropriate for causal-type random functionals. The condilope functionsm.(x) and y.(x) in (22) can be regarded as
tion for weak impurity scatteringWI1S), which we assume to  smooth factors in comparison with near-standing fast expo-
hold in this study as well, can be cast to the form of thenentials, which leads to the following coupled dynamic equa-
inequality pair tions:

Kro< ¢, (19) L (X) +in()m(0) + L0 y:(0)=0, (233

werer . is the correlation radius of the random potentfais Ty -
the electron mean free path relating to it. £y, (%) = i9(X) y:(X) + {e(X) m(x) = 0. (23b)

In the case of nonzero magnetic field the solution to EqRandom functionsz(x) and £.(x) in Egs. (23) are con-
(18b) is much more involved than that accomplished in Ref.structed as normalized packets of spatial harmonics of the
15. This will be thoroughly examined in a separate publicaimpurity potentialV(x)=V,,,(x), which have the form
tion, while here we outline the solution along with criteria of ]
its applicability. _ _ _ n(X) = 1 gva), (243

Given the magnetic potentials, to adequately take into ac- 2x)y 2
count the open property of one-dimensional system governed
by Eqg. (18b one should explore this equation on the ex- X+
tendedx axis rather than on disordered and subject to mag- Zi(x) = —f —V(exd2ix(tx—-L/2)]. (24b
netic field intervalZ=(-L/2,L/2). Being considered on the 2% ) 2

whole axis, Eq.(18b describes the motion of a quantum Spatial averaging ii24) is carried out over the interval »f

particle created with energy, at pointx’ and then propa-  grhitrary length intermediate between small leng#h and
gating in two-component scalar potential with bounded SUPt . on the one hand, and the large scattering lerigihbe

port. The regular component of this comt:ian)ed potential iSjetermined self-consistenilyon the other. In view of these
due to 2the magnetic field. It has the for¥°?(X)=6(L/2  jimitations, the “potentials™p(x) and £,(x) provide forward
=Ixh(H /,125)[1_.(6/7’2?‘2)]' ‘whereas the random compo- 4nq hackward scattering of harmonics,respectively.
nent, which is of impurity origin, is covered by the function By joining the solutiong22) and(21) at the end points of

vran (x)=g(L/ 2—|X|)\I/W(X).- ) the intervalZ we arrive at the exact boundary conditions for
To perform configurational averaging over the randomthe envelopesr,(x) and y.(x), viz.

part of the potential it is worthwhile to express the trial

Green function in terms of wave functions ofusal type m.(£L/2) = const, (253
rather than functions that meet the initially stated boundary-
value(BV) problem. This may be achieved by employing the Ye(£L/2) = R® 7, (£L/2). (25b)

formula (for the sake of clarit it mode indgx): ;
ormula (for the sake of clarity we omit mode indeu) The quantity

K=

K+ s’

1
GV(x,x") = L P 00U () B = x) RE = |

(26)

)P 8 = X1, (20 as it follows from(22), is the amplitude reflection coefficient
where . (x) are two different solutions of homogeneous Eg.from the boundary between magnetically biased and unbi-
(15) with boundary conditions specified for each of them atased regions. This reflection will be hereinafter referred to as
only one end of the system, vix— +, depending on the “magnetic scattering” associated with the above introduced
sign index,V is the Wronskian of those solutions. With this potential V(®9(x).
representation, the trial propagator itself meets, as it must, Below in this paper, scattering associated with both of the
the initial BV problem. potentials,V@(x) and V®9(x), will be regarded as weak.
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The weakness of the impurity scattering implies the inequali- -

ties (19) whereas the magnetic scattering will be thought of (IR ~ PR (313
as weak provided that the requirement is nigt®|<1. F

From (25b) and (17) one can make sure that in terms of

appropriate physical parameters the condition for weak mag- ~ H\2
netic scatteringWMS) may be expressed as the inequality (IR®|? ~ (E) <1. (31b
2
(E) <1, (27) Inequalities(31) permit simplification of the operator poten-

tial 7, since the inverse operator {12) can be approxi-
mately replaced with the unit operator. The intermode poten-
tial thus reduces to the relatively simple form

where RC:kplé is the maximal classical cyclotron radius of
the electron orbit. It is just from the viewpoint of this con-
straint that we will regard the in-plane magnetic field to be
weak. R

As far as the impurity scattering is concerned, to do the T,~P ugVup,,, (32
averaging over realizations of the potentiét) this random

function will be thought of to possess the following correla- V) — o g
tion properties: whereG""’ stands for the operator ik, which is specified

by the matrix elements of the following form:
(V(r))=0, (283
, xGVIX vy = GV(x,X) 8, (33)
(V(NV(r')) = QW(x=x")8(r . =), (28b) _ _ _ _

_ _ _ Unlike quasilocal intramode potenti#,, (), the opera-
angular brackets denote configurational averaging. Undepr potential(32) possesses, even in the absence of magnetic
WIS conditions(19), the equalitieg28) are sufficient to ad-  field, the nonzero mean value. Therefore, to apply further a
equately accomplish the averaging for rather wide class oferturbation theory it is reasonable to represent this operator

the random potential statistics, since in this case functio . o /5
V(r) may be regarded as approximately Gaussiar?" s @ sum of averaged and fluctuating parts, 5 (7,)

distributed?® +A7,. With regard to Eq(9), the mean operatdr?’ w can be

By applying the averaging technique outlined in the Ap-Splitted(though quite conventionallyinto the local impurity
pendix the average trial Green function is obtained in thednd essentially nonlocal magnetic terms. The action of short-
following form, which is valid provided WIS and WMS con- correlated impurity part of this operator reduces to multipli-
ditions hold simultaneously: cation of the mode propagator by the complex self-energy

_ factor>16
My x')) ~ —
(G, (x,x')) = 2

" (TUm)G,,J(xx) =-3U"G, (xX),  (34)
1 1
Xexp Yix,— =| —w— '
p({ * 2[ L () WhereEime):Axi+i/Tif) and the notations are used
1 H )
+—— | ([x=X'] . (29 ~
(V) Q * daW(g+ x
Lb (M) A%i: = 2 P _q (3 2#), (353)
Here, Sivin Jx2T G2,
W =(3) 2 (308 L o—1
3/ Q 5 == > Wi, = ,) + Wi, + %,)]. (35D
T A4S, 2, #u
and " ®
" LV () SymbolP in (353 stands for the integral principal value, the
Ly (p) == (30D par over the summation index {85 signifies that the sum-
W(2,) mation is carried out over extended modes only. The condi-

tional char?ct)er of the term “impurity self-energy” with ref-

. . ~ . erence ta2'" is related to the mere fact that this factor is
vyard (b) scattering by t-he potentisf, , (), W(q) is the Fou- actually determined by both the impurity potential, whose
rier transform of functionV(x) from (280). With the result o rejator is proportional to the factor o, and the magnetic
(29), the average square norm of the operdkoirom (12)  field, which renormalizes the wave numbers, and also

can be represented as a sum of “impurity” and “magnetic’adjusts the number of extended modes, see next subsection.
terms, Viz‘<|||’:\2||2>z<|||’:\2(imp)||2>+<|||’:\{(B)||2>’ which are estimated The action of the expressly nonlocal magnetic part of the

as operator@',) is specified by the formula

are the extinction lengths related to forwaid and back-
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“ S(X) S(Y) J HZ N,
TG, ](x,Xx') = 2H| 2% -2 — |+ C, —
[< 3 > MM]( ) Eﬂ W|)2< Ii IX mv lg 60
ii() 50 k W/n=20.5
X[ dx(GY)(x,%q))q 2iH {—&
f Lot ! WP 40 — k,H/n=5.1
-4 S H/n=3.1
y) 2 - ky
YA H 30
- — | + CV — G x, ), v £ k H/n=1.5
I§ o"Xl:| " |é} ILM( 1X) 20  ——
(36) 10
wherefrom the magnetic self-energy, which is applicable un- | L . .
der WS conditions, is immediately deduced 10 20 30 v
?& . gﬁ, % . %‘Z FIG. 2. The magnetic-field dependence of the number of effec-
WE 1% 12 WE 1y 12 tive conducting channels, the curves from E@8). The parameter
SE=_gy2 X ¥ 2 — v is the Landau filling factor.
# vFEp 2 2 1 1
XKy~ X, Yoo, Y Ty,
“ v v L(V)(v) L(V)(v) . . s
f b The sum(383a can be easily evaluated in the limiting case

(37)  where the number of extended modes relating to both of the
transverse axes of the quantum waveguide is large as com-
pared to unity. By replacing the sum with the integral one

. . ) ) readily gets
Both the impurity and the magnetic self-energies are

complex-valued quantities, whose real parts renormalize ) )

mode energies whereas the imaginary parts determine the N. ~ kLS< _H_> (39)
uncertainty of energy levels. The requirement for mode en- ¢ A4x 12R§ '

ergies to be positive defined specifies the number of ex-

tended modes in the quantum system, which is normally regnerefrom it is evident that application of the in-plane mag-
ferred to as the number of conducting channelé, netic field can significantly reduce the number of extended
Computation of exact number of these modes, though clegfoqes, even though inequalit®?) holds true. This reduc-

in principle, is an mtnpate problem in general. For the SYS+ion is definitely the geometrical effect which is due to the
tem under consideration the numkéy can be most easily - cying of the electron orbits in the magnetic field, and thus
found in the particular case of the magnetic field oriented; can pe only taken into consideration within the model of a
lengthwise with respect to the current direction, i.e., forsinite-width quantum well that forms a 2D system.

BIIOx. In this case mode energy renormalization due to the |, Fig 2, the numerical results for the number of effective
intermodemagnetic scattering, which is covered by the mag-conduycting channels calculated from E@9) as a function
netic self-energy(37), is small as compared with thetra- ot the inverse magnetic field scaled as the Landau filling
modemagnetic correction present in the mode ene®).  factor v=(kelg)2=k:R, are presented. The collapse of the
Taking account of this fact, one can calculate the number of ,mber of current-carrying modes with a growth in the mag-

A. Mode content of the open quantum system

extended modes as netic field is apparent, regardless of the quantum waveguide
N thicknessH, the widthW is assumed constant. The in-plane
N, = > N(Cy)(m), (389 rotation of the magnetic field smoothly changes the pre-
m=1 sented picture because the real part of self-en€@ycan at
most reach the sanien the order of magnitudevalue as the
where intramode magnetic addend {@7).2
keH H2 In Fig. 3, the relation between the number of channels and
NZ =int| =——1/1-—= (38b)  the effective thickness of the quantum waveguide is pre-
™ 1R, sented, which actually demonstrates the dependenisg arf

is the number of quantization levels indirection, whose the depletion voltage adjusting the width of the near-surface
energies lie beneath the Fermi energy, and potential well. In the extremely low magnetic fieldolid
5 > curve the number of channels increases nearly linear with
N (m) = int[kF—W\/l B (W_m) B H—(l _i)} growing H, in accordance with standard geometrical consid-
¢ T keH 12R§ w2 eration applicable to systems of waveguide configuration,
(380) and alsq with the conventional Oh.m’s law wh|c_h is undoubt-
edly valid for bulk conductors. With the growing magnetic
is the number of/-directional quantization levels pertinent to field, the conventional geometric increase in the number of
the mth level of z quantization. Symbol ifit..] in (38b) and  channels gets slower, gradually indicating the trend for low-
(380 denotes the integer part of the number enclosed irering the number of conducting modes. This unusual depen-
square brackets. dence of the mode content of the electron waveguide on its
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N: . 0]
X, W/r=20.5 ) KN/n=20.5 KH/n=1.5
100 | —_— v=50 2+ —_— p=(1,1)
..... v=10 - —eeeee #=(10,1)
X [ v=5
. -
l'--F'--"--- ---\--"n
50 B ,.-"/'-
d - 1 1 i L 1 L i
a ol 2 3 4 5 Vv
v .\-.\"‘. ............
. . . “"“*-rm FIG. 4. The dephasing rat@5b) for two particular modes vs
] inverse magnetic field.
2 4 6 k H/n

FIG. 3. The number of conducting channels vs the width of the:nZr?oﬁ)g(ﬁ:lse:g?ﬁ%i%%?t&/gtl:aggﬁ:dgjr}essay\,/vlfz?cphu::lgﬁsn?erdi-
near-surface potential well at different values of the Landau fiIIingate the dephasing effect of the magnetic f7ield. The specific
factor, from Eqs(38) role of the magnetic field, as far as the mode entanglement is
] ] ) ] concerned, reduces to the change in collective parameters of
effective thickness is due to nonmonotonic dependende on the electron motion, such as the mode content of the confined
of the mode energyl?). o system and the mode density of states, and in such an indi-

Obviously, on a further increase of the magnetic field thergct way to modification ocattering parameterpertinent
tendency towards lowering the number of conducting chang, random generators of intermode transitidhs., the im-
nels must be stabilized owing to terms&;” in square brack- ity scattering cross section, the polar pattern of electron
ets in right-hand sidérhs) of Eq. (36). However, this can eflection from rough boundaries, etc.
happen only in the domain of relatively strong magnetic The influence of the magnetic field upon transport param-
fields, where the WMS condition is violated and the approxi-gters manifests itself directly through the mode dephasing
mate expressiofB2) for the intermode potential is no longer rate Analytically, the estimate of this quantity can be most
applicable. In such magnetic fields, the bulk quantum Hallgasily deduced from Eq35b) in the case where the number
effect is expected to come in the foreground, which is beyt quantization levels related to both of the transverse direc-
yond the scope of this paper. tions is large as compared to unity and the sum in(Bgb)

can be replaced with the integral. The dephasing rate for the
B. Dephasing of the mode states: The magnetic-field driven  particular modeu in this case reads

disorder
2
Besides the impact on the number of extended quantum )1 ~ )l A[1- H 5, (41)
modes whose transverse energies are beneath the Fermi UG A(0) 12R¢

level, the in-plane magnetic field can significantly affect the (0 _ _ )
coherent properties of the conducting channels. This field?here 1/,7(0)=ksQ/4 is the uth mode level width attrib-
controls the imaginary parts of both the impurity-governedUted to scattering dye to the disorder po_tentlal o_nly, with no
self-energy(35) and the magnetic self-energg7). Both of ~ €xternal magnetic fielél The value of this zero-field level
these self-energies arise due to the intermode scattering. OMAdth equals exactly half the inverse mean free time calcu-
should bear in mind, however, that™ is basically deter- lated within the framework of classical kinetic theory. Note

mined by scattering from the impurity potential whereas the_that in t'he domain of Weqk magnetic fields corresponding to
magnetic self-energ)Z(B), originates in the main from mode inequality (27) the dephasing ratel1) decreases nearly qua-

mixing due to the orbital effect of in-plane magnetic field. dratically in the magnetic field and has universal value, the

It is important to note that intermixing of channels which same for each of the extended moé®s.

is controlled solely by the magnetic field cannot result in.t Jhe rﬁsug(ﬁ'tl)’t\j’hmh IS a_ctue}[lrl]y sem|clat§3|lga:a|?hof lim-
significant dephasing of mode states. By comparing th €d applicabiiity. tJpon varying the magnetic e € hum-

imaginary part of self-energ{87) and the level width(35h) er of extended modes changes stepwise. Therefore the ma-

one can determine that the ratio of “purely magnetic” and)or't.3{I tOf pgyﬁlca_ll q“ﬁf‘tg'?s lare Iboulnttj dt(i exhlllbll(t the
“impurity-governed” dephasing rates is evaluated as osciliatory behavior, which 1S closely refated 1o wefl-known

van Hove singularities in MDOS. In Fig. 4, the dephasing
jzf) H B,\? H B, 22 rates obtained numerically from E@5b) for two specific
3 (imp) -~ Rk W E + EC B <1. (40 modes of the electron waveguide are shown as functions of
® the inverse magnetic field. Square-root singularities mani-
This implies that under WMS conditio(27) the magnetic- festly develop on both of the curves. One can also notice that
field originated dephasing is negligible, whatever strength obcattering frequencies for different modes start to noticeably
the disorder. The conclusion is thus unavoidable that strongeviate from one another only in the range of relatively
intermode mixing resulting from the magnetic field cannotstrong magnetic fields, where the number of extended modes
give rise to significantly widening the mode levels unlessassumes the value comparable with unity.
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©(0) in-plane magnetic field is the more noticeable the larger is
el X W/n=20.5 | p=(10,1) the aspect ratio of the confining potential well forming the

electron waveguide.

Since the number of extended modes, according to the
Landauer theory, specifies the conductance of a bounded sys-
tem, the results presented in Figs. 2 and 3 can be directly
related to the experiment. In fact, they may be regarded as
showing the conductance dependence on the corresponding
parameters in the case ofparfectconfining potential well.

As the perfect we mean a waveguide-type structure in which
any mechanism o€ollective scattering of properly defined
carrier modes does not exist. This actually implies that no
scattering fields other than those involved in the unperturbed
_ ) _ uasiparticle state formation in a particular system are taken

FIG. 5. The dephasing rate vs the quantum waveguide th'Ckr,'esi%to account. Specifically, the collective states pertinent to
at different strengths of in-plane magnetic field. The broken fractiory, o problem considered in this study are specified by the
of th(_e_lower curve falls into the range of parameters where WMSconfining potential profile. In the absence of the disorder
condition(27) is violated. potential thecollectiveelectron motion should be regarded as

ballistic, even though individual carriers do experience

Besides the magnetic-field singularities depicted in Fig. 4strong(speculay scattering at side boundaries of the poten-
in Fig. 5 the dephasing rate of the particular mode versusial well.
size parameters of the quantum waveguide is presented for |f some random potential is involved, e.g., impurities or
two distinct values ofB|. Here, MDOS oscillations caused the roughness of quantum well boundaries, it should lead to
by abrupt changes in the number of conducting channels alsstochasticrather than regular scattering of the primordial
make themselves very evident. We are led to conclude thajuasiparticles. It seems advantageous to separate this type of
by means of the orbital coupling to the electrons in a Q2Dscattering into two kinds, namely, intra- and intermode scat-
conducting system the in-plane magnetic field can take arering. The former type of scattering provides renormaliza-
effect which in some sense is analogous to that of electrotion of transport parameters and also gives rise to Anderson
static confinement potential. At the same time, in contrast tdocalization of carrier statei the direction of currentThe
the magnetic-field-controlled singularities of the dephasingdatter type, inelastic in form from the viewpoint of mode
rate, which are depicted in Fig. 4, oscillations of truly geo-theory, leads to stochastic spreading of mode energy levels,
metrical origin are noticeably more complicated. The distinc-or, in other words, tespatial dephasing of mode states. At
tion is caused by substantially different response of the effirst glance, it may appear that intermode scattering caused
fective mode energyl7) to the magnetic field, on the one exclusively by the magnetic field is bound to produce the
hand, and to size parameters of the confined electron systemephasing effect analogous to that introduced by the
on the other. However, it should be noted that in both of theqguenched disorder. However, the estim@t) is obviously
graphs(Figs. 4 and % the reduction of the dephasing by contradicting to this expectation. According to the evalua-
quenched disorder is clearly visible as the magnetic fieldion, in the absence of random potential, which ensures
grows. This fact can serve as the indication of increasingrobabilistic property of mode energy levels, no imaginary
coherence of electron transport in quench-disordered Q2[part must be contained in the mode self-energy, in spite of
systems if they are subjected to external magnetic field.  substantial intermode mixing due to the magnetic field.

Physically, this fact seems to be quite natural. Indeed, if
one chooses to model lateral confinement of a Q2D carrier
system by the quadratic rather than the rectangular potential,

In this study we have demonstrated that the observed giigenfunctions of the transverse Hamiltonian could be obvi-
ant positive magnetoresistance of 2D electron and hole sysusly selected so as to completely avoid the mode coupling
tems subject to parallel magnetic field can be reasonably exdue to the magnetic field. The additional random potential,
plained in the framework of Fermi liquid theory being though static, would be in this case the only cause of the
applied to structures created by confining potential wells oimode levels widening. At the same time, the quadratic con-
finite rather than zero width. The magnetic field coupling tofinement possesses the same symmetry of the confined sys-
the carrier orbital motion which is due to finite thickness oftem as the rectangular well does. Therefore, it would be dif-
quasttwo-dimensional layers, even though rather weak fromficult to substantiate the drastic difference of the results
semiclassical point of view, has been proven to influenceobtained within the framework of these two models if one is
quite essentially theollectiveelectron spectrum. The reduc- guided by general considerations only.
tion in the number of extended modes with a growth of the Fortunately, the result(40) reveals the lack(in the
magnetic field, as seen from Fig. 2, is very significant, con-asymptotic sengeof the magnetic-field-originated dephasing
tinuing right up to zero in moderately strong fields, whereaof the natural carrier spectrum. Certainly, the magnetic field
individual electron trajectories in the plane normal to thedoes take part in the mode level spreading, yet mostly
magnetic field can go far beyond the effective thickness othrough the dependence on this field of the number of ex-
the gated carrier system. The mode truncation effect of théended modes and of the mode density of states. This param-

V. CONCLUSION
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eters essentially determine the impurity-originated dephasing As regards the functionB.(x), their physical meaning is
rate (35b), which can thus be viewed as being produced byreadily deduced from Edq22). They represent reflection fac-
the magnetic-field-dependent disorder. The idea of theors of spatial harmonicsatincident at the poink onto the
“magnetic-field-driven disorder” was previously suggested inlayers with end coordinates and #./2, respectively. This
Ref. 26, so the resul35b) can be viewed as substantiating factors meet the Riccati-type dynamic equations

the rationality of such an interpretation. Clearly, in order to
make a detailed comparison with experimental observations iM
it is necessary to derive required formulas for the magneto- dx
conductance. In view of size limitations, this work will be
postponed for the next publication.

=2 p(0T4(X) = (0 + L(OT2(x),  (Ad)

with boundary conditions stemming fro(g5):
I.(xL/2)=R®. (A5)

The averaging technique for the functionals of random fields
(24) was elaborated in Refs. 15, 23, and 24. Here we only
This work was partially supported by the Ukrainian Acad- briefly indicate the main peculiarities of dealing with func-
emy of sciences, Grant No. 12/04-H under the prograntionals of such a sort and present the result of the function

“Nanostructure systems, nanomaterials and nanotechnol¢Al) averaging.

gies.” Having regard to correlation relation§28) it was
provert®2324that binary correlation functions of the effec-
tive random field§24) under WIS conditions can be cast to
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APPENDIX: DISORDER AVERAGING OF THE TRIAL the form
GREEN FUNCTION 1
After substitution of functions22) into (20), the trial (X)X )>_WF'(X_X ), (AB3)
Green function inside magnetically biased interZatan be
represented as a sum of four packets of spatial harmonics, X 1
viz. (L) (X)) = 5 Fi(x=X), (A6b)

V)
Ly

(V) " = 1@l 4x=x") g i#(x-x")
GH(x.X') = Gy (XX )&+ Gplx, X )& whereL; andL,, are the forward and the backward scattering
+ X)) 4 X)) lengths given in30) for the particular modg. The function
Gs(xx') Gaux') Fi(x) has the form

(A1)
* dq . sirf(ql) 1( |x|)
. . = - M Aigx - = - 2| -
Here, smooth envel?pe functions are given as ] 1(X) B 27re Q)2 2 o) &( X])
Gixx) = a9 0, %) _g 2OV eain | (A7)
2x | 7-(X) 7+(X) ] N .
and plays the role of underlimiting function when averag-
(A23) ing smooth factors similar to the envelop@s2). Before av-
_ ; eraging the function(Al) it makes sense to go over from
—i . (X') y-X') functionsy.(x), 7.(x) and.(x) to phase-renormalized func-
" = — A -0,I, il , ) + y Ny +
Go(x,X") 2%A(X)_O (0 0.1.(x) %) e tions
(AZb) 5 . +L/2
Y:(X) = y2(x)exp| i J dxy (%) |, (A8a)
-1 [ X)) "
N = _— il N - B + r.
Ga(X,x") 2%A(X)e' _@ 00 +0 0 (X)_, ) o
(A2¢c) () = mL(X)exp I'J' dx; 7(xq) |, (A8Db)
X
N1 i [ () 7 (x') | g 112
Ga(X,X ):ZA(X)eI L ®_—’7T+(X) +®+F+(x)—ﬂ_(x) : LX) = é’i(x)exp|:12i f de(Xl)], (A8C)
- - X
(A2d)

. which enables one to remove the forward-scattering random
where the notations are used field »(x) from all dynamic equations and to separate it out
in the form of exponential factors. In particular, note then

— ixl]-1
A0 =[1+T.00T-(0e ], (A33) that correlation relation(A6b) remains unchanged after
renormalization(A8c).
Fe(X) = v () m(%), (A3b) One can easily reveal that in view of short-range correla-
tion of random function$24) and due to the causal nature of
0, =0=x(x-x)]. (A3c) functionals being averaged, the averaging of functionals with
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different sign indices in(A2) can be done separately. By

averaging the equation

o0 _

b — 200 + LT (%)
X

(A9)

using the Furutsu-Novikov formula for gaussian rando

proces$ we obtain

T.0)=R® exp[— i(% ¥ x)] :

In view of smallness of the reflection coefficieR(® this
allows one, when averagin@yl), to retain in(A2) only the
terms which do not contain factofs.(x) and¥y.(x).

In order to average the ratiar,(x')/.(x), which is
present in the principal terms @f2), it is worthwhile to
consider its Fourier transform ov&f which, in view of the
presence of) functions in(A2), takes the form

(A10)

+L/2 ~
dH(x,q) = + J dxlw exp[ —ig(x—xq)

X Ty (x)

+ixX—Xq| £ ifx dxzr;(xz)] , (Al11)

X1

where forward-scattering random fieldgy(x) is already
singled out. The averaging over this field yields

[ |X‘X1|)
+ d = -—, (Al12
<exp[+|fxl x27;(x2)1>77 ex;{ oL, (A12)

and the function(All), averaged beforehand ovexx), is
found to obey the equation

PHYSICAL REVIEW B 71, 125112(2005

_ KPP, _(i_- . )m
+ ix = 2L, iz ¥ iq (@™ (x,q)),

~LOL0@P(xq),  (AL3)
which is to be solved along with EqA9). By averaging

m(A13) over the effective backscattering fiezg(x) we arrive

at the dynamic equations

_ PP (x,q)) .
N dx B

1/ 1 1 =
‘[a(a*fb)"” ‘q]@&)(x’q”

(A14)
with obvious “initial” conditions(®®(+L/2,9))=0. The so-
lution to Eq.(A14) has the form

1

-1
RSB

1o | Y2+ L) -iv=ial
o\L, L)
(5]
Xl =—+X ,
2
finally yielding

<gl(x, X’)>el %(X—x’) + <g2(x, Xr)>e_i%(x_xr)

~2%ex 12 5 Lf Lb X=X .

The envelopegA2c) and (A2d) can be averaged in the
same manner. Because both of them are proportional to re-
flection coefficienty,(x), they prove to be relatively small in
the parametef27) and can thus be omitted, leaving the result
(A16) as the main approximation for the impurity-averaged
trial Green function.

(A15)
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