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We report the binding energies of a hydrogenic-donor impurity in a cylindrically symmetric
GaAs/Ga1−xAlxAs-coupled quantum disk in the presence of a uniform magnetic field for different
disk and barrier thicknesses, disk radii, and donor ion positions within the disk. The magnetic field
is assumed to be applied parallel to the disk axis. The calculations were performed using a
variational procedure for finite-confinement potentials within the effective-mass approximation. The
calculated results show that the binding energy is dependent on the interplay of the spatial
confinement and magnetic-field confinement: A high magnetic field significantly enhances the
binding energy in the case of weak spatial confinement. The binding energy of a hydrogenic-donor
impurity in two coupled quantum disks is found to be smaller than that in a corresponding single
quantum disk, due to the coupling effect between the disks. In the limits of coupled quantum wells,
the results we obtain are in good agreement with those previously obtained for the case in which the
donor ion is located at the center of the quantum disk. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2764232�

I. INTRODUCTION

With the development of molecular-beam epitaxy and
metal-organic chemical-vapor deposition,1–6 we can now
precisely control the distance between two material layers of
particular compositions and doping profiles to within a few
angstroms. If the layers are thin enough, the coupling effects
between adjacent quantum disks become significant and can
result in the formation of a superlattice. The effects of quan-
tum confinement on the electronic and optical properties then
become more obvious. An external perturbation of a system,
such as the application of a magnetic field, is a powerful tool
for studying the properties of matter, and it leads to many
investigations in semiconductor systems. The optical proper-
ties associated with a shallow-donor impurity in coupled
quantum disks under a magnetic field are of interest for their
relevance to the application of a magnetic field perpendicular
to the semiconductor layers.

Coupled pairs of quantum dots, which could be referred
to as artificial molecules, have been the subject of much
research.7–21 Understanding the physics of impurity states in
quantum wires,22–24 double quantum wells,25–30 and quantum
dots31–43 is also an important problem in semiconductor
physics. Several factors affect the binding energies of a
shallow-donor impurity44 in coupled quantum disks, includ-
ing the applied magnetic field, the sizes of the quantum
disks, the barrier thickness, and the position of the donor ion.
The interplay of the spatial confinement and magnetic-field
confinement of the electron and the donor ion in the coupled
quantum disks leads to complex behavior of the binding en-
ergy. The binding energies in such a system are expected to
be smaller than those in a single quantum disk due to the
coupling effect between the two disks.

Extensive theoretical work on the coupling effect has
been reported.45–50 Troiani and Hohenester carried out theo-
retical investigations of correlated electron-hole states in ver-
tically coupled quantum dots.51 Excitonic trions in quantum
dots with a Gaussian confinement potential were studied by
the variational method.52 The ground- and excited-state prop-
erties of vertically coupled quantum dots were studied by
exact diagonalization.53 Ugajin calculated the optical transi-
tion coefficient of two electrons confined in a square-well
quantum dot in the presence of a magnetic field.54 The co-
herent manipulation of a double quantum dot system by an
external driving field was analyzed using a controlled rota-
tion method.55 Li et al. studied the binding energies of a
hydrogenic-donor impurity in cylindrical quantum disks us-
ing a variational approach.56 The calculated results show
stronger confinement and larger binding energies for a
hydrogenic-donor impurity in cylindrical disks than in corre-
sponding quantum wires and quantum wells. The binding
energy increases as the radius and thickness of the quantum
disk decrease, while a high magnetic field markedly en-
hances the binding energy in the case of weak spatial con-
finement, especially for larger disk radii. However, there has
been no report of the calculation of the binding energy of a
hydrogenic-donor impurity in a double cylindrical quantum
disk in the presence of a uniform magnetic field. The study
of the behaviors of binding energies and electron probability
of such systems under applied magnetic fields will lead to a
better understanding of the electronic and optical properties
of low-dimensional semiconductor systems.

In this paper we report the calculation of the binding
energy of a hydrogenic-donor impurity in coupled quantum
disks in the presence of a magnetic field along the disk axis
for different positions of the donor ion under the condition of
electron effective-mass mismatch. The Hamiltonian of oura�Electronic mail: liujj@mail.hebtu.edu.cn
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system, including the kinetic energy term, the spatial con-
finement term, and the term of the Coulomb interaction be-
tween the electron and donor ion, is too complex to be
solved directly. Thus, a variational technique is applied to
obtain numerical results. Following the theory of Li et al.,56

we obtain a trial wave function that includes the appropriate
confining confluent hypergeometric functions term, a func-
tion term from the z-direction spatial confinement, and a hy-
drogenic term. This paper is organized as follows. In Sec. II,
the theoretical framework is given for known applied
magnetic-field and spatial-confinement potentials. We also
present explicit formulas for calculating the binding energy.
In Sec. III, we present and discuss our results. Finally, our
conclusions are presented in Sec. IV.

II. THEORETICAL FRAMEWORK

Within the effective-mass approximation, the Hamil-
tonian for a shallow-donor impurity in cylindrically symmet-
ric coupled quantum disks surrounded by a finite-potential
barrier, in the presence of a magnetic field parallel to the
disks axis, is given by

H = �p� +
e

c
A��2� 2mb,d

* −
e2

�d,b�r� − r�0�
+ V��,�,z� , �1�

where �r�−r�0�= ��2+�0
2−2��0 cos��−�0�+ �z−z0�2�1/2 is the

distance between the electron and the donor ion, A� �r�� is the
magnetic-field vector potential, r�0 is the position of the donor
ion, and the subscripts d and b stand for the quantum disk
and barrier-layer materials, respectively. mb,d

* and �b,d are the
conduction effective masses and the dielectric constants of
the barrier and the quantum disk layer materials, respec-
tively. The barrier effective mass, dielectric constant, and
potential barrier height depend on the aluminum concentra-
tion �x�, mb

*=md
*+0.083xm0, �b=13.13� �1−x�+10.1x,57 and

the finite-potential barrier height Vi=Qe�1.36x

+0.22x2� �eV�,58 where Qe=0.6 and m0 is the free-electron
mass.

The dielectric constant mismatch between �b and �d af-
fects the binding energy mainly for small sizes of the quan-
tum disks and high aluminum concentrations.59 Strictly
speaking, the image potential in coupled quantum disks can-
not be neglected when considering electronic and impurity
states, especially when the sizes of the disks are small. How-
ever, in our calculations the structures of the coupled quan-
tum disks are generally large and the aluminum concentra-
tion is taken as x=0.3. In addition, since we focus on the
effect of the magnetic field on the binding energy, dielectric
constant mismatch between the disk and barrier can be ne-
glected. This means that in our calculations �b=�d. The
V�� ,� ,z� is the spatial confinement that confines the electron
in the quantum disk, and is given by

V��,�,z� = 	0, for 0 � � � R and Lc � �z� � Lb/2,

V0, for � � R ,

Vi, for 0 � � � R, �z� � Lb/2 and �z� � Lc,



�2�

where Lc=Lb /2+Ld and V0=Vi �the aluminum concentration
for the barrier materials outside the disk is assumed to be x
=0.4�.

The quantities Ld, Lb, Vi, and R denote the thickness of
the quantum disk, the thickness of the barrier, the barrier
height, and the radius of the coupled quantum disks, respec-
tively.

It is observed that the trial wave function is divided into
two parts here in order to obtain the converging solutions for
R=� and R=0. Following Li et al.,56 we obtain a trial wave
function that includes confluent hypergeometric function
terms 1F1�−a01,1 ;	� and U�−a01� ,1 ;	� from radial confine-
ment, an f�z� term due to the z-direction confinement, and a
hydrogenic term. The trial wave function is therefore chosen
as


�r� = 	N1F1�− a01,1;	�f�z�exp�−
	

2
− ���2 + �z − z0�2�1/2� , for 0 � � � R ,

N 1F1�− a01,1;	R�
U�− a01� ,1;	R�

U�− a01� ,1;	�f�z�exp�−
	

2
− ���2 + �z − z0�2�1/2� , for � � R , 
 �3�

where �c= �c /eB�1/2 is the cyclotron radius, z0 gives the donor ion position along the z-direction, 	=�2 /2�c
2, 	R=R2 /2�c

2, N
is the normalization constant, and � is a variational parameter. The terms 1F1�−a01,1 ;	� and U�−a01� ,1 ;	� are the confluent
hypergeometric functions �Kummer functions�, which are obtained by solving the Schrodinger equation for a cylindrical
double quantum disk, in the presence of a magnetic field along the disk axis. Equation �3� satisfies the boundary condition,
while a01 and a01� are the ground-state eigenvalues of the electron inside and outside the coupled quantum disks, respectively,
being calculated numerically by using the expressions

1

md
* � exp�− 	/2�1F1�− a01,1;	�

��


�=R

=
1

mb
* 1F1�− a01,1;	R� � exp�− 	/2�

U�− a01� ,1;	R� � �
U�− a01� ,1;	�

�=R

�4�

and
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�d�a01 +
1

2
� − �b�a01� +

1

2
� = V0. �5�

In addition, f�z� is the eigenfunction along the z direction,60

f�z� =	
+ A exp���z + Lc�� , for z � − Lc,

− B sin���z + Lb/2�� + C cos���z + Lb/2�� , for − Lc � z � − Lb/2,

+ cosh��z� , for �z� � Lb/2,

+ B sin���z − Lb/2�� + C cos���z − Lb/2�� , for Lb/2 � z � Lc,

+ A exp�− ��z − Lc�� , for z � Lc,

 �6�

where

� = �2md
*

2 Ez�1/2

, � = �2mb
*

2 �vi − Ez��1/2

. �7�

The coefficients A, B, and C are also obtained from the
boundary conditions of the eigenfunction f�z� at the inter-
faces. The corresponding eigenvalue associated with f�z�, Ez,
may be obtained as the first root of the transcendental equa-
tion

2 cos��Ld� + �� −
1

�
�sin��Ld� − �� +

1

�
�sin��Ld�

� exp�− �Lb� = 0, �8�

where �=md
*� /mb

*�.
The expectation value of the Hamiltonian H is given by

E =
� 
*H
d�

� 
*
d�

. �9�

In order to obtain a lower bound to the ground state of the
system, we search for the minimum of E with respect to � by
using a variational method. In order to calculate this, we
normalize the expression for the binding energy in units of
meV, and define the angstrom as the unit of length. The
explicit formula for calculating the binding energy is

Eb�R,B,Lb,Ld� =
2

2mb,d
* ��2AA − 2�BB − 2�CC

− 2�DD� � AA +
e2

�b,d
�BB/AA� , �10�

where

AA = �
0

R

d�1F1
2�− a01,1;	�exp�− 	 − 2���2 + �z − z0�2�1/2��

��
−�

+�

f2�z�dz + 1F1
2�− a01,1;	R�

U2�− a01� ,1;	R� �R

+�

d�U2�

− a01� ,1;	�exp�− 	 − 2���2 + �z − z0�2�1/2���
−�

+�

f2�z�dz ,

BB = �
0

R

d�1F1
2�− a01,1;	�exp�− 	 − 2���2 + �z − z0�2�1/2��

��
−�

�

f2�z�/��2 + �z − z0�2�1/2dz

+ 1F1
2�− a01,1;	R�

U2�− a01� ,1;	R� �R

+�

d�U2�− a01� ,1;	�

�exp�− 	 − 2���2 + �z − z0�2�1/2��

��
−�

�

f2�z�/��2 + �z − z0�2�1/2dz ,

CC = �
0

R

d�1F1�− a01,1;	�exp�−
	

2
� �

��
�1F1�− a01,1;	�

�exp�−
	

2
��exp�− 2���2 + �z − z0�2�1/2��2

��
−�

+�

f2�z�/��2 + �z − z0�2�1/2dz + 1F1
2�− a01,1;	R�

U2�− a01� ,1;	R�

��
R

+�

d�U�− a01� ,1;	�exp�−
	

2
� �

��
�U�− a01� ,1;	�

�exp�−
	

2
��exp�− 2���2 + �z − z0�2�1/2��2

��
−�

+�

f2�z�/��2 + �z − z0�2�1/2dz ,

DD = �
0

R

d�1F1
2�− a01,1;	�exp�− 	 − 2���2 + �z − z0�2�1/2��

��
−�

+�

f�z�f��z�/��2 + �z − z0�2�1/2dz + 1F1
2�− a01,1;	R�

U2�− a01� ,1;	R�

��R
+�d�U2�− a01� ,1;	�exp�− 	 − 2���2 + �z − z0�2�1/2��

��
−�

+�

f�z�f��z�/��2 + �z − z0�2�1/2dz .

The above integrations are performed numerically.
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III. RESULTS AND DISCUSSION

We have calculated the ground-state binding energy for
different positions of the donor ion, in the presence of a
uniform magnetic field applied along the z direction. The
values of the physical parameters for GaAs used in our cal-
culation are md

*=0.067m0 and �d=12.5.
In Fig. 1 we compare the binding energy of a donor ion

as a function of barrier thickness in symmetrical coupled
quantum disks for Ld=100 Å and R=100 Å with the result
for a donor ion located at the center of the barrier in the
absence of a magnetic field. The behavior of the binding
energy as a function of the barrier thickness for coupled
quantum disks is similar to that of Ref. 20. However, our
results are different from those of Wang,20 because the po-
tentials of the two structures are not completely identical.

The ground-state theoretical results of the binding en-
ergy with the zero-magnetic-field limit, for a barrier thick-
ness of 100 Å, are compared in Fig. 2 with the correspond-
ing results of Thoai,61 as functions of the disk thickness and
well thickness for the donor ion positions at the center of the
disk and well. Due to the large values of R considered here,
the structure of the coupled quantum disks is practically at
the limiting case of the double quantum wells. It is exciting
that the results of the coupled quantum disks are in quite
good agreement with those of Ref. 61.

In Fig. 3 we present results for the binding energy as a
function of the disk radius and for several values of the ap-
plied magnetic field when the donor ion is located at the
center of the disk. As the disk radius decreases, the binding
energy increases sharply at the beginning of the curves until
a maximum value is obtained, and then it begins to drop
quickly. This is due to the fact that the electron wave func-
tion is compressed into a small disk size by the finite-
potential barrier for a small disk radius, and the leakage of
the wave function into the barrier region becomes stronger,
thus leading to a decrease of the binding energy. It is exciting
to note that the positions at which the maximum value occurs

for all curves are independent of the values of the applied
magnetic field. This phenomenon stems from the compli-
cated interplay of the spatial confinement and the Coulomb
interaction, and the magnetic-field confinement for the small
disk size. It is well known that the wave function can be
compressed by the magnetic field, thus leading to a higher
binding energy for large disk radius, and the effect of the
magnetic field on the binding energy becomes more sensitive
especially for the case of weak spatial confinement. In the
infinitely large radius limit, our results converge asymptoti-
cally to those of the corresponding quantum-well structures
because the effect of the radial confinement potential disap-
pears, and the electron cyclotron radii are much smaller than
the disk radii. In addition, binding energies in our work are
smaller than those of a single quantum disk due to the cou-
pling effect between the two quantum disks. It is interesting
to note that our results are larger than that of a quantum wire

FIG. 1. Shallow-donor binding energies as functions of the barrier thickness
in coupled quantum disks with a disk thickness of 100 Å and a disk radius
of 100 Å in the absence of a magnetic field for the donor ion located at the
center of the barrier. The solid curve is the results of the coupled quantum
disks; the dashed curve is the result in Ref. 20.

FIG. 2. Comparison of results for the binding energy of a hydrogenic-donor
impurity in the coupled quantum disks for R=2000 Å, Lb=100 Å, and B
=0 kG with those of the double quantum well in Ref. 61. The donor ion is
located at the center of the quantum disk.

FIG. 3. Binding energy of a donor impurity as a function of the disk radius
in symmetrical coupled quantum disks with Lb=Ld=100 Å, for B=0 kG,
B=100 kG, and B=200 kG, for the case in which the donor ion is located
at the disk center.
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in the presence of a magnetic field applied along the wire
axis,58 due to the effect of the confining potentials of the z
direction.

In Fig. 4 we display the variation of the ground-state
binding energy as a function of the disk thickness in cylin-
drically symmetric coupled quantum disks with Lb=100 Å
and R=200 Å, when the donor ion is located at the barrier
center, barrier edge, disk center, and disk edge. As a general
feature, the binding energies increase as the disk thickness
increases until they reach maximum values, and then they
begin to diminish monotonically. The values of the binding
energy, which depend on the complex interplay of the spatial
confinement, Coulomb interaction, and the magnetic field
confinement, are not the largest for the smallest disk sizes
due to the contribution of the left disk. It is well known that
the distance between the electron and the donor ion reaches
its minimum value when the maximum value of the binding
energy is obtained. Comparing curves “3” with the others, it
is found that the binding energy is insensitive to the variation
of disk thicknesses for large disk thickness when the donor
ion is located at the center of the right disk. This can be
explained by the fact that the electron is strongly confined
into the right disk by the donor ion and has less freedom to
penetrate into the second, since the effect of the left disk on
the binding energy is relatively weak and the average dis-
tance between the electron and the donor ion remains almost
constant. If the disk thickness is very large, the distribution
of the electron cloud approaches that of a single quantum
disk for the donor ion at the disk center. When the disk
thickness goes to zero, we note that the binding energy ap-
proaches the bulk value characteristic of the barrier material
for all the lines, as expected. With decreasing disk radius, the
electron wave function is squeezed and begins to penetrate
into the radial barrier region, which is equivalent to reducing
the radial confinement. On the other hand, the effect of the
radial confinement on the leakage of the wave function be-
comes inconspicuous for large disk radii. Due to the large

values of the disk radius �R=200 Å� considered here, the
effect of leakage of the wave function on the binding energy
becomes very weak while the influences of the Coulomb
interaction and applied magnetic field on the binding energy
are accordingly enhanced. These calculations show that the
values of the disk thickness at which the binding energy
reaches its maximum value are about the same positions for
all values of the applied magnetic field. This is due to the
fact that the portion of the wave function in cylindrically
symmetric coupled quantum disks is determined primarily by
the wave function including the z component, which is inde-
pendent of the magnetic field. In addition, in the limit of
infinitely large disk thickness values, it is interesting to note
that the binding energy for the donor ion located at the disk
center goes to the exact limit of the donor ion in a single
quantum disk.

The binding energy of a donor ion as a function of the
thickness of the central barrier for several donor ion posi-
tions and two values of the applied magnetic field along the
disk axis are presented in Fig. 5. It is interesting that the pair
of the two quantum disks becomes a single quantum disk of
thickness 200 Å when the central barrier thickness ap-
proaches zero, since the central barrier disappears and the
electron can occupy a larger free space. The two curves la-
beled “1” and “2” with solid lines �dashed lines� reach the
same values of the binding energy for small barrier thickness
�Lb�20 Å�. This can be understood by noting that the effect
of the different positions of the donor ion on the binding
energy becomes very weak when the donor ion is located at
the barrier center and barrier edge. It is clear that for a large
barrier thickness �Lb�200 Å�, the values of the binding en-
ergy converge to the results of a single quantum disk due to
the weak coupling effect between the two quantum disks for
the case in which the donor ion is at the disk center. The
binding energy always decreases monotonically with increas-
ing barrier thickness for the case of the donor ion at the
barrier center. In addition, the effect of the applied magnetic
field on the binding energy becomes weaker as the barrier

FIG. 4. Binding energy of a donor ion as a function of the thickness of the
disks in cylindrically symmetric coupled quantum disks with Lb=100 Å
and R=200 Å, for B=0 kG �solid lines� and B=100 kG �dashed lines�.
The labels 1, 2, 3, and 4 correspond to the donor ion at the barrier center,
barrier edge, disk center, and disk edge, respectively.

FIG. 5. Binding energy of a donor ion as a function of the barrier thickness
in cylindrically symmetric coupled quantum disks with Ld=100 Å and R
=200 Å for B=0 kG �solid lines� and B=100 kG �dashed lines�. The la-
bels 1, 2, 3, and 4 are the same as those in Fig. 4.
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thickness increases, and thus the results of the solid and
dashed lines reach the same values. In the infinitely large
barrier thickness limit, the binding energy will go to zero
because the wave function cannot easily penetrate into the
barrier region and the distance between the donor ion and the
electron becomes infinitely large, and thus the Coulomb in-
teraction between the donor ion and the electron disappears.
It is worth noting that for the curves labeled “2,” “3,” and
“4,” the change in the binding energy is not sensitive to
increases in the barrier thickness for Lb�200 Å, and the
effect of the left disk on the right disk can be neglected. This
is due to the fact that the effect of the left disk on the binding
energy is reduced by the increasing barrier thickness, and the
binding energy of the coupled quantum disks will approach
that of uncoupled quantum disks. When the donor ion is
located at the barrier edge, it is observed that the binding
energy diminishes until it reaches a minimum value, at which
point it then increases gradually, and finally coincides with
the curves labeled “4.” The merging of curves 2 and 4 is the
limiting case of a single quantum disk for sufficiently large
barrier thickness. In conclusion, the coupling effect between
the two quantum disks on the binding energy gradually be-
comes weaker for all positions of the donor ion and two
values of the applied magnetic field, when the barrier thick-
ness is larger than 200 Å. In this case, the barrier thickness
is large enough to impede the wave function penetration into
the other quantum disk, so the values of the binding energy
will converge to the results of a corresponding single quan-
tum disk and the distribution of the electron cloud becomes
symmetric like that of a single quantum disk with a donor
ion at the disk center.

Finally, we would like to mention that we have tested the
accuracy of our variational approach by considering the case
in which the applied magnetic field is zero and the potential
barriers are infinite, using the trial wave function in Ref. 24.
The variation in the binding energy thus obtained is within a
few percent of that calculated using our variational wave
function for small values of the magnetic field �B
�0.148 kG�.

IV. CONCLUSIONS

We have presented the binding energies of a hydrogenic-
donor impurity in cylindrical coupled quantum disks for dif-
ferent disk and barrier thicknesses, disk radii, and positions
of the donor ion in the presence of a uniform magnetic field
along the disk axis by using a variational procedure within
the effective-mass approximation.

By calculating the effect of the radial confinement on the
binding energy for several values of the magnetic field, it is
observed that the binding energy continues to increase as the
disk radius decreases until it reaches a peak value for a cer-
tain disk radius, and then drops sharply, while under the
magnetic-field conditions additional increases for the binding
energy are observed, especially for larger disk radii. In addi-
tion, in the limiting case of a corresponding double quantum
well, it is worth remarking that our results are in excellent
agreement with those in Ref. 61.

Calculations of the binding energy as a function of the

disk thickness have also been carried out. It is found that the
binding energy of the donor ion at the disk center is much
larger than for the case of the other positions of the donor
ion. For a given magnetic field, the change in the binding
energy is not sensitive to the increasing disk thickness when
the donor ion is located at the disk center. The reason is that
the electron cloud is strongly confined into the right disk by
the donor ion and the contribution of the left disk to the
binding energy is reduced, and thus the wave function begins
to diminish at the boundaries.

The coupling effect between the two disks becomes very
weak for all positions of the donor ion when the barrier
thickness is larger than 200 Å, and the wave function no
longer penetrates easily into the second quantum disk, thus
leading to a higher binding energy. In the limit of infinitely
large barrier thickness, we found that the binding energy
converges to the values of the binding energy of the corre-
sponding single quantum disk. In the limiting case of a cor-
responding double well, our results are in excellent agree-
ment with those in Ref. 61.
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