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accessed conventionally, such as a transition state,% to 

Concluding Remarks 
In this Account, we have shown how neutralized ion 

beam techniques complement the more traditional 
methods of spectroscopy to obtain a substantial body 
of information on the simplest polyatomic radical, H3. 
In particular, the combination of optical and neutralized 
ion beam techniques has allowed for the determination 
of excited-state lifetimes by time resolved emission 
experiments. Further, the existence of a unique met- 
astable excited state, first identified in nonoptical 
neutralized ion beam experiments, has provided access 
to the absorption and photoionization spectra of the 
radical. Considering the generality of neutralized ion 
beam techniques, future work in this area can be ex- 
pected to obtain information on an almost limitless 
number of chemically interesting species. Additionally, 
the vertical nature of the neutralization process allows 
regions of a neutral potential energy surface not readily 

be probed directly by the appropriate choice of the 
precursor ion. In particular, emission spectra for species 
such as H30 and H2F, which have yet to be observed 
by conventional methods, may be obtainable by the 
techniques outlined in this Account. Further, as met- 
astable states of the perdeuterated analogues, D30 and 
D2F, can be produced by ion beam neutrali~ation,~~ 
their absorption and photoionization spectra should be 
similarly obtainable through application of the tech- 
niques that have been so successfully applied to HB. 
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Simple and effective methods for solving problems 
in nonequilibrium statistical mechanics are scarce and 
valuable. In the absence of elementary textbooks in this 
area, such methods tend to be reinvented many times. 
I review here one particular example: a method for 
treating rate processes when a rate constant is replaced 
by a random function of time (hence “dynamical 
disorder”). In particular, the rate constant is taken to 
be a function of some control variable which may either 
jump between discrete values according to exponential 
waiting time distributions, or else fluctuate according 
to a Langevin equation. Generalizations of the method 
are described. The method usually leads to a decay in 
time that is nonexponential. My emphasis will be on 
the method, with just enough about ita applications to 
show how general and useful it can be. 

The class of problems for which this method is ef- 
fective are conveniently called “rate processes with 
dynamical disorder”. But to set the stage it will be 
helpful first to discuss rate processes with static dis- 
order. A typical rate equation, for the concentration 
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C of some species undergoing chemical reaction, is 

- -k(B)C dC 
dt 
_ -  

where k(B) is a rate constant that depends on a barrier 
height B, 

In a widely discussed example, due to Frauenfelder and 
co-workers,l the reaction is ligand binding to myoglobin. 
They claim that different conformational substrates 
have different barriers to rebinding; the probability of 
finding a barrier with height B in the interval dB is p(B) 
dB. Then the average time dependence of the con- 
centration is 

k(B) = ko exp(-B/kT) (2) 

(C(t)) = c(o)J~B p(B)e+(B)t (3) 

In this example of static disorder, the course of the 
reaction clearly is no longer exponential in time. 

While this illustration makes use of a particular pair 
of variables, the concentration C and the barrier height 
B, a much more general point of view is possible. C may 
denote any physical quantity that satisfies a rate 
equation, B may be any “control variable”, and k(B) 
may be any function of B. This general point of view 
is taken in much of what follows. 

When B is a random function of time, B(t ) ,  one has 
dynamical disorder. The time-dependent solution of 
the rate equation is 

(1) Austin, R. H.; Beeson, K. W.; Eisenstein, L.; Frauenfelder, H.; 
Gunsalas, I. C. Biochemistry 1975, 14,  5355. 
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C(t) = C(0) exp[- i tds  k ( B ( s ) ) ]  (4) 

and clearly involves the entire history of B in the in- 
terval between 0 and t. If B fluctuates very rapidly, 
then we may reasonably expect that k(B(s))  can be 
replaced by its time average (k), and exponential decay 
is recovered, 

C(t) r C(0) exp(-(k)t) ( 5 )  

If B fluctuates very slowly, we may reasonably expect 
that eq 3, the static disorder result, is correct. The 
problem is how to handle the intermediate cases, where 
the fluctuations are neither very slow nor very fast. 

Examples 
This is a brief list of some places in which questions 

of dynamical disorder have arisen. It is not intended 
to be comprehensive, but only to show a variety of ap- 
plications. 

(1) Theory of Spectral Line Shapes. While this 
is not strictly a rate process, the spirit is similar. A time 
correlation function C(t) satisfies the equation dC(t)/dt 
= iw(t) C(t), and the frequency w ( t )  is a random func- 
tion of time. Anderson2 treated this problem in a quite 
general way in 1954, although others had the right idea 
earlier? 

(2) Self-Diffusion in Water. Singwi and Sjolander4 
studied a dynamical model in which a water molecule 
jumps randomly between states; in one state, its motion 
is oscillatory about an equilibrium position, and in the 
other state, its motion is diffusive. 

(3) Gated Diffusion. Szabo, Shoup, Northrup, and 
McCammon5 treated a model of diffusion-controlled 
reactions where the reaction occurs only at  the surface 
of an object. The reactivity, expressed by a boundary 
condition, fluctuates in time, or the “gate” opens and 
closes. 

(4) Protein Dynamics. Agmon and Hopfield6 
presented a model theory for ligand rebinding in myo- 
globin, in which the rate constant depends on a protein 
coordinate, and the time dependence of that coordinate 
is described by Brownian motion of a harmonic oscil- 
lator. 

(5) Fluorescence Depolarization. Szabo7 consid- 
ered a class of problems where the nonradiative decay 
constant of a fluorophore may depend on its orientation, 
local environment, and electronic state. These fluctuate 
because of rotational, conformational, and state-to-state 
dynamics. 

(6) Dynamical Percolation. Harrison and Zwanzig 
gave an approximate treatment of a random walk on 
a lattice in which the lattice bonds open and close 
randomly in time. 

(7) Barrierless Relaxation. Bagchi and Flemingg 
considered models of relaxation in which a particle 

(2) Anderson, P. W. J .  Phys. SOC. Jpn. 1954, 9, 316. 
(3) Slichter, C. P. Principles of Magnetic Resonance, 2nd ed.; 

Springer-Verlag: Berlin, 1978. Appendix F contains early history of the 
procedure. 

(4) Singwi, K. S.; Sjolander, A. Phys. Reu. 1960, 119, 863. 
(5) Szabo, A.; Shoup, D.; Northrup, S. H.; McCammon, J. A. J .  Chem. 

Phys. 1984, 77, 4484. 
(6) Agmon, N.; Hopfield, J. J. J .  Chem. Phys. 1983, 78, 6947. 
(7) Szabo, A. J. Chem. Phys. 1984,81, 150. 
(8) Harrison, A. K.; Zwanzig, R. Phys. Reu. 1985, A32,1072. 
(9) Bagchi, B.; Fleming, G. R. J .  Phys. Chem. 1990,94,9. 
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undergoes Brownian motion on a potential surface until 
it reaches a reactive sink. 

In all of these examples, the main point is that some 
property that is decisively important to a rate process 
is fluctuating in time. 

Kinds of Dynamical Disorder 
Two specific kinds of dynamical disorder are known 

to be easily handled by the methods to be described 
here. 

The first is discrete disorder; B(t) takes on only the 
discrete set of values {Bl,B2,B3, ...}. Each value corre- 
sponds to a “state”. Transitions or “jumps” between 
states occur at time intervals that are chosen from ex- 
ponential waiting time distributions. Alternatively, as 
in writing a program for computer simulation, the 
probability of a jump from Bj to Bk in the small time 
inverval dt is W k j  dt. This leads eventually to a master 
equation for the time dependence of the probability pi 
that a given state is occupied: 

The general theory of this kind of process is explained 
in many places, for example, by van KampenlO in his 
textbook Stochastic Processes in Physics and Chem- 
istry. 

The second kind of disorder is continuous; B(t) is 
determined by a Langevin equation, as in Brownian 
motion theory: 

(7) 

where h is a decay rate and F(t) is Gaussian white noise. 
In the prototypical Langevin equation, B is the mo- 
mentum of a Brownian particle, h is a friction coeffi- 
cient (divided by the particle mass), and F is a fluctu- 
ating force on the particle. But many other dynamical 
processes may be described by equations of this kind. 
Along with the Langevin equation, one requires thermal 
equilibrium information about the first and second 
moments of B and F(t), 

d -p) = -XB(t) + F( t )  

(B),q = 0 (B2>eq = 0 (F(t))eq = 0 

(F(t) F(t3),, = 2he a(t-t? (8) 

The last equation is the fluctuation-dissipation theorem. 
This leads eventually to a Fokker-Planck equation for 
the probability distribution of B as a function of time, 
which will be written down later. The general theory 
of this kind of process is explained in many places, e.g., 
by van Kampen and by Risken” in his monograph The 
Fokker-Planck Equation. 

Direct Approach 

we start with the integrated form as in eq (4): 
In a direct approach to calculating the average of C(t), 

C(t) = C(0) exp[- l tds  0 k(B(s) ) ]  

(10) van Kampen, N. G. Stochastic Processes in Physics and Chem- 
istry; North-Holland: Amsterdam, 1981. See especially pp 203-208 for 
his treatment of dynamical disorder in a jump model. 

(1,l) Risken, H. The Fokker-Planck Equation; Springer-Verlag: 
Berlin, 1984. See especially Appendix A1 for a treatment of dynamical 
disorder in a Langevin model. 
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Consider first how this can be obtained with jump 
dynamics. For simplicity, only two states will be used: 
kl = k(Bl) and kz = k(B.J. If one starts out in state 1, 
and no jump has occurred during the time interval t ,  
the integral in the exponent is just tlt,. If one jump has 
occurred, at time t l ,  the integral is tlkl + ( t  - t l )k z .  If 
two jumps have occurred, at times tl and t2, the integral 
is tlkl + ( t2  - t , )kz  + (t - t2 )k l ;  and so on. To complete 
the calculation one must average each exponential over 
the waiting-time distribution for each time interval and 
then sum over all possible numbers of jumps that can 
occur between 0 and t .  van Kampen shows how this 
can be done in a formal way, making use of Laplace 
transforms and matrix algebra; but the calculation is 
not a pleasant one, especially when there are many 
states. 

When the direct approach is used for Langevin dy- 
namics, i.e., starting with eq 7, the task is even more 
unpleasant. We still have the integral representation 
of C(t ) ,  but now B(t)  is given by the solution of the 
Langevin equation, 

B(t)  = B(0)e-xt + L‘dt ’  e-A(c-tf)F(t? (10) 

Some of the time dependence comes from relaxation of 
the initial value B(O), and some comes from the noise 
F(t ) .  This expression for B(t)  has to be put into k(B),  
and then the time integral has to be done. Finally we 
have to perform Gaussian averages of what are generally 
extremely complicated nonlinear functions of the noise. 

Unless one is willing to invest in a computer simu- 
lation to get the average, as was done by Henry and 
Hochstrasser,12 the direct approach is essentially im- 
practical. 
Indirect Approach 

In the last illustration of the direct approach, the 
main difficulty was to calculate averages of complicated 
functions of the noise. But this can be accomplished 
at a much earlier stage of the theory, by using proba- 
bility distributions. We denote by f(C,B;t) the proba- 
bility distribution that the variables C and B have 
specified values at time t. This function satisfies a kind 
of Liouville (or conservation) equation, analogous to 
what one does in statistical mechanics. 

There one starts with a phase space in which values 
of momentum p and position x specify a phase point. 
The number density of systems at the location (p,x) at 
time t is f (p ,x; t ) .  Systems can be neither created nor 
destroyed, so f satisfies a conservation law, in whjch 
af /& is minus the divergence of a f l ~ x  vector, -0.J = 
-dJ,/ap - aJ,/dx. The flux vector J = ( J  ,J,) is the 
product fv’ of the number density f and a vefocity v’. In 
the usual case, the velocity in the x direction is u, = 
dx/dt = dH/dp,  and the velocity in the p direction is 
u = dp/dt = -dH/dx, where H is the Hamiltonian. In 
t i e  present case, the momentum p is replaced by the 
variable C ,  and the position x is replaced by B. There 
is no Hamiltonian, but it is not needed anyway because 
we already know what the two velocities are. Then the 
appropriate Liouville equation is 

Zwanzig 

(12) Henry, E. R.; Hochstrasser, R. M. R o c .  Natl. Acad. Sci. U.S.A. 
1987,84, 6142. 

or, on putting in the velocities explicitly, 
a a af = --(-k(B)Cf) - z(-ABf + F ( t ) f )  (12) 

at ac 
The final term, containing time-dependent noise, makes 
this a stochastic Liouville equation. 

What we would like to have is the average off over 
the noise. This will be denoted by g(C,B;t) = (f(C,- 
B;t))no+ There is a standard procedure, found in many 
textbooks and review articles,13 for converting the sto- 
chastic Liouville equation into a Fokker-Planck equa- 
tion for the noise-averaged distribution. A simple de- 
rivation is given in the Appendix. The result is 

ag a a 
at ac - = --(-k(B)Cg) - -(-mg) aB + 

The second derivative comes from the average over 
Gaussian white noise. 

What is really wanted is the full average of C(t), taken 
over noise and also over the initial distributions of C 
and B. In typical applications, the initial distribution 
of C might be taken as perfectly sharp, and the initial 
distribution of B might be thermal equilibrium. In the 
work of Agmon and Hopfield, a displaced thermal 
equilibrium is used. The noise average has already been 
taken; the additional ensemble average gives 

( C ; t )  = JdBJdC Cg(C,B;t) (14) 

There are occasions when it may be useful to look at  
fluctuations about the average, ( C 2 ; t )  - ( C;t)2. These 
can be defined in a similar way, but I will not pursue 
this here. It turns out to be convenient to do the above 
average in two separate stages. First, one does a partial 
average, over C for fixed B, 

(15) 

( C ; t )  = JdB c(B;t)  (16) 

The reason for going through this apparently cumber- 
some procedure can be seen readily when one uses the 
Fokker-Planck equation to obtain an equation for the 
partial average. To do this, we simply multiply the 
Fokker-Planck equation by C and integrate by parts 
over C ,  leading to 

C(B;t) = JdC C g(C,B;t) 

Then the complete average is 

a aC B -  ( o ) (17) 
- ” = - ~ ( B ) c  + xo - - + -c 
at aB aB 

The first term on the right is a sink, describing loss of 
C by the rate process k(B);  the second term is a par- 
ticular Smoluchowski operator, describing overdamped 
Brownian motion of a “harmonic oscillator” whose co- 
ordinate is B. 

In fact, this equation appeared in the paper by Ag- 
mon and Hopfield that was cited earlier. B corresponds 
to their protein coordinate x ,  k(B)  is their ligand 
binding rate ko exp(-ax), and the Langevin equation 
for x is obtained by dropping the acceleration term from 
the equation of motion of a damped noisy harmonic 
oscillator, 

(13) Chandrasekhar, S. Rev. Mod. Phys. 1943, 16, 1. Kittel, C. Ele- 
mentary Statistical Physics; John Wiley and Sons: New York, 1958. 
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(18) 0 r -mw?x - { - + F(t)  

So one finds X = m o t / {  and 6 = kT/mwo2. I will refer 
to eq 17 as an “Agmon-Hopfield” equation. 

What has been gained? The horribly complex task 
of performing the noise average in the direct approach 
is replaced in the indirect approach by the task of 
solving a partial differential equation. (This is very 
much in the same spirit as evaluating Feynman path 
integrals by solving the Schrodinger equation!) But 
solving partial differential equations of the Agmon- 
Hopfield type is almost trivial nowadays, by a variety 
of efficient numerical methods. Rate processes with this 
kind of dynamical disorder can now be handled easily. 

One should be aware that there are many processes 
that can lead to the same mathematical problem. Ag- 
mon and Hopfield had in mind for B a displaced real 
normal mode of a protein. But another scenario (sug- 
gested by Henry, Eaton, and Hoch~trasser’~) that il- 
lustrates my point is to suppose that the rate constant 
k(B) has the standard Arrhenius form, where B is a local 
temperature that fluctuates according to a Langevin 
equation. For example, one might imagine that a ligand 
is dissociated by a laser pulse that deposits a lot of 
energy locally in the protein, raising the local temper- 
ature. As the local temperature falls (with some re- 
laxation time, and the corresponding noise), the rate 
changes. The point is that C can be any property that 
obeys a rate equation, and k(B) can be any function of 
any control variable B that decays and fluctuates ac- 
cording to a Langevin equation. 
Indirect Approach. Jump Dynamics 

The corresponding treatment of dynamical disorder 
for jump dynamics is quite simple. The control pa- 
rameter is discrete, B1, Bz, ..., and the rate is ki = k(Bi). 
Dependence on B is replaced by dependence on the 
index i. The probability distribution f(CJ3;t) becomes 
fi(C;t). The probability per unit time of a transition 
from state i to state j is w The noise-averaged prob- 
ability distribution is gi(d;t) and satisfies a “Liouville- 
master” equation, 

dx 
dt 

This is analogous to eq 13 in the case of Langevin dy- 
namics. The last term on the right is a “master” op- 
erator in the present case and a “Smoluchowski” op- 
erator in the earlier case. 

As before, the average (C; t )  is found in two stages, 

Ci(t) = JdC C gi(C;t) 

(C; t )  = CCi(t) (20) 
I 

The partially averaged C satisfies the analogue of eq 17, 

This equation is intuitively quite obvious: changes 
in time either because of decay or because of a change 
in state. The special case where there are only two 
states is almost trivial and can be worked out analyti- 

(14) Henry, E. R.; Eaton, W. A,; Hochstrasser, R. M. h o c .  Natl. Acad. 
Sci. U.S.A. 1986, 83, 8982. 
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cally. For problems where the number of possible states 
is reasonably small, say less than 100, this equation is 
easily solved numerically by finding eigenvalues and the 
right and left eigenvectors of the matrix on the right 
hand side of this equation. 
Generalizations 

While the preceding discussion was based on a simple 
chemical reaction scheme, it is really much more gen- 
eral. In the first place, the quantity called C may be 
a multicomponent vector, for example, the concentra- 
tion of a diffusing species C(r,t), where the index is the 
position r. In the second place, the rate constant called 
k(B) may be a matrix or an operator acting on C .  An 
example is the diffusion operator +(E) - D(B)V2. If 
the control variable B is discrete, then one has an 
equation describing state-dependent diffusion, 

%i(R,t) = DiV2Ci(R,t) + C(wijCj(R,t) - wjiCi(R,t)) 
at I 

(22) 
This equation was discussed by van Kampen in con- 
nection with Singwi and Sjolander’s treatment of self- 
diffusion in water. 

There is a corresponding rotational problem, where 
C depends on the orientation of a molecule, and the 
orientation changes by rotational diffusion. This is one 
of the ways Szabo treated fluorescence depolarization. 

A final example is the study of dynamical percolation 
by Harrison and Zwanzig, in which C is the multidi- 
mensional probability of finding a random walker at  a 
particular lattice site. The state of all bonds in a lattice 
(individually open or closed) is the multidimensional 
control variable B; wij describes transitons between 
states of the entire lattice (bonds opening and closing); 
and -k(B) is a random walk operator that depends on 
the state of the lattice. 

The preceding review considered two specific kinds 
of dynamics, involving either jumps between discrete 
states or Brownian motion of a continuous variable. It 
is possible to generalize this also. (See, for example, the 
review by Bagchi and Fleming.g) Suppose that the 
dynamics of the control variable can be described by 
an equation for the probability distribution p(B;t), 

(23) 
a -p(B;t) = &p(B;t) at 

in which L is some dynamical operator. A trivial ex- 
ample is the simplest relaxation time approximation, 

where 1 / ~  is the rate of relaxation to the equilibrium 
distribution p9(B). Then the Liouville equation for the 
joint probability distribution g(  C,B;t) is 

The partial average C(B,t) obeys the equation 

(26) 

Whatever scheme is used to describe dynamical dis- 
order, all that is required is that L operates on func- 
tions of B only. 

a -  
at -C = -k(B)C + S C  
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I thank Att i la  Szabo for  helpful comments. 

Appendix 
There are many treatments of the transition from a 

Langevin equation to the corresponding Fokker-Planck 
equation. The following one appeals to  me as peda- 
gogically simple. 

The starting point is the stochastic Liouville equation 
for f(C,B;t) as in eq 12, 

a a 
-f at = -Lf - -F(t)f aB 

in which L is an abbreviation for the operator 

Integration over time leads to  the operator equation 
f(C,B;t) = a 

e-”f( C,B;O) - tds e-(t-s)L -F(s) f (  C,B;s) (A3) aB 
By iterating, one can develop a series expansion off in 
powers of F. This is substituted in the last term of eq 
A1 7 

d a 
z f (C ,B; t )  = -Lf(C,B;t) - -e-tL F ( t )  f(C,B;O) + aB 

a T J ’ d s  e-(t-s)L -F(t)  F(s)  f(C,B;s) (A4) 
aB 0 aB 

Now we average over Gaussian white noise. The av- 
erage (f(C,B;t)) is g(C,B;t). Because the initial distri- 
bution f(C,B;O) does not contain any effects of noise, 
the average (F( t )  f(C,B;O)) is first order in the noise and 

vanishes. Then we need only the average ( F ( t )  F(s )  
f(C,B;s) ). 

Here is where the two properties “Gaussian” and 
“white” are used. The average of any product of an odd 
number of Gaussian random variables will vanish. The 
average of a product of an even number of Gaussian 
random variables, for example, (FlFzF,F4), can be 
found by taking all possible pairings of the variables, 
for example, (FlF2) ( F 3 F 4 )  + (FlJ’3) ( F 2 F 4 )  + 
(F1F4) (F2F3).  Next we use the ”white noise” property: 
( F ( t l )  F(t2)) is proportional to the 6 function 6(tl-t2), 

(F(tJ F ( t 2 ) )  = 2x6 6 ( t l - t 2 )  (A51 
Consider now the average (F( t )  F(s) f(C,B;s)). The first 
noise factor F ( t )  can be paired with the second, F(s) ,  
or it can be paired with noise factors contained in 
f(C,B;s). But f(C$~;s) can depend on F(s? only for those 
times s’ that are earlier than s. This pairing leads to 
6(t-s? and requires that a time t that is later than s 
must be equal to a time s’that is earlier than s. Thus 
there are no contributions from such pairings, and only 
the first pairing, of F(t )  and F(s),  will contribute. Then 
for present purposes we can write ( F ( t )  F(s )  f (C,B;s))  
= (F( t )  F(s))( f (C,B;s)) .  This introduces 2hB 6(t-s) and 
removes both the operator and the time integral. 
The time integral from 0 to picks up half of the 6 
function and removes the factor 2. The result is the 
Fokker-Planck equation, 

which is eq 13. 
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Royal purple, 6,6’-dibromoindigotin (DBI, structure 
I11 in Figure 1, X = Br), is the most renowned of ancient 
dyes.’ Even before Nero issued a decree in the first 
century A.D. that gave the emperor the exclusive right 
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to wear royal purple garments, the association of this 
dye with royalty and high ecclesiastics was well estab- 
lished. As one example, biblical texts2 incorporating 
Iron Age traditions prescribed that the tabernacle 
curtains and the high priest’s vestments were to be dyed 
with royal purple. 

The sociopolitical and religious significance of royal 
purple was closely tied to its economic value. In some 
periods, it was worth as much as 10-20 times its weight 
in gold., This circumstance can be traced to the fact 
that the precursors of DBI, which convert to the dye 
in air and light (see Figure l), are found in nature only 
in the hypobranchial secretions of certain marine 
mollusks (Figure 2) .4  As many as 10 000 animals are 

(1) Brunello, F. The Art of Dyeing in  the History of Mankind; Neri 
Pozza Editore: Venice, 1973; pp 13, 57, 79. 

(2) See: Exod. 26:1, 31; 2 8 4 4 ;  391, 28-29. 1 Kings 5:l-12; 7:13-14; 
9112-14, 26-28; 1011, 22. 2 Chron. 2:7, 14; 314. Ezek. 27:7, 16, 24. 

(3) Born, W. Ciba Reu. 1937, 1, 106-111, 124-128. 
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