An Extension of Greendlinger's Results on the Word Problem Author(s): Seymour Lipschutz
Source: Proceedings of the American Mathematical Society, Vol. 15, No. 1 (Feb., 1964), pp. 3743
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2034346
Accessed: 14/01/2010 02:14

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@ jstor.org.

[^0]
AN EXTENSION OF GREENDLINGER'S RESULTS ON THE WORD PROBLEM

SEYMOUR LIPSCHUTZ

1. Introduction. In 1960 Greendlinger [3] solved the word problem for sixth-groups (see §2). In this paper we first solve the extended (generalized) word problem for certain subgroups of sixth-groups. We are then able (using results of Neumann [6]) to solve the word problem for generalized free products of sixth-groups with the above subgroups amalgamated.

The author conjectures that analogous results can be proven for classes of groups similar to sixth-groups-groups studied by Britton [2], Schiek [7] and Tartakovskii [8].
2. Notations and definitions. Capital letters denote words and lower case letters denote generators. We say that W is fully reduced if it does not contain more than half of a relator and it is freely reduced. We say that W is cyclically reduced if every cyclic transform of W is freely reduced, and that W is cyclically fully reduced if every cyclic transform of W is fully reduced.

We say that the words A_{i} satisfy the one-sixth condition if they have the following two properties: (i) the A_{i} are cyclically reduced, and (ii) if B_{i} and B_{j} are cyclic transforms of A_{i} and A_{j}, then less than one-sixth of the length of the shorter one cancels in the product $B_{i}^{ \pm 1} B_{j}^{ \pm 1}$, unless the product is unity.

We now have (cf. Lipschutz [5] or Greendlinger [3]) the
Definition. A group G is a sixth-group if it is finitely presented in the form

$$
G=\operatorname{gp}\left(a_{1}, \cdots, a_{n} ; R_{1}\left(a_{\lambda}\right)=1, \cdots, R_{m}\left(a_{\lambda}\right)=1\right)
$$

where the set of relators R_{i} satisfy the one-sixth condition.
We use the notation:
$l(W)$ for the legnth of W,
$A=B$ means A and B are the same element of G,
$A \approx B$ means A is freely equal to B,
$A \equiv B$ means A is identical to B,
$A \wedge B$ means A does not react with B, that is, nothing cancels in the product $A B$.

Note. There is no loss in generality if we assume that, in the pres-
Received by the editors December 7, 1962.
entation of a sixth-group, the cyclic transforms and inverses of relators are also included in the set of relators.
3. Preliminary lemmas. We state without proof a main result (cf. Greendlinger [3, p. 82, generalization (1)]) on sixth-groups:

Lemma 1. If W is freely reduced and $W=1$, then W contains more than $\frac{5}{6}$ of a relator or W contains disjointly two subwords, each containing more than $\frac{3}{6}$ of a relator.

Remark. The extended word problem of a given subgroup H of a group G is to decide whether or not an arbitrary given element of G is also in H. Usually G is given by generators and defining relations, and H is the subgroup generated by a given set of words in the generators of G. The extended word problem reduces to the word problem when $H=1$, hence is unsolvable in general (cf. Boone [$1, \S 35]$).

We easily prove the next lemma using results of Neumann [6]:
Lemma 2. Let G be the free product of the groups

$$
\begin{aligned}
G_{i}=\operatorname{gp}\left(a_{i 1}, \cdots, a_{i n}, b_{i 1}, \cdots, b_{i n_{i}} ; R_{i 1}=\cdots=\right. & \left.R_{i m_{i}}=1\right) \\
& (i=1,2, \cdots)
\end{aligned}
$$

with the subgroups $H_{i}=\operatorname{gp}\left(a_{i 1}, \cdots, a_{i n}\right)$ amalgamated in the obvious way, that is, the presentation of G consists of the union of the generators and the defining relations of the G_{i} and the added defining relations

$$
a_{1 \lambda}=a_{2 \lambda}=\cdots \quad(\lambda=1,2, \cdots, n) .
$$

Then G admits a solution to its word problem if the following are known:
(a) The word problem has been solved for the groups G_{i}.
(b) The extended word problem has been solved for the subgroups H_{i} in G_{i}.

Proof. Let W be in G. Then we can write

$$
W \equiv W_{1} \cdots W_{n}
$$

where each "factor" W_{i} is in some group G_{j} and no successive pair of factors W_{i}, W_{i+1} belong to the same group. If the factors W_{i} are not contained in the amalgamated subgroups then the (generalized free product) length of W is $n>0$ (cf. Neumann [6]) and $W \neq 1$. If a factor, say W_{j}, is in an H_{i} then we can find a word $V\left(a_{i \lambda}\right)$ such that $W_{i}=V$. Then

$$
W=W_{1} \cdots W_{j-1} V\left(a_{k \lambda}\right) W_{j+1} \cdots W_{n}
$$

is a product of less then n factors. By continuing this process we can find the "length" of W and, in particular, determine if $W=1$.

The next two lemmas are about sixth-groups G. As the proofs are relatively long and combinatorial, we give them in §5 and §6.

Lemma 3. Let $l(W)=n$ and $W \neq 1$. If U is fully reduced and $U=W$, then $l(U) \leqq r n$, where r is the length of the largest relator in the sixthgroup G.

Lemma 4. Let W be cyclically fully reduced and of infinite order. If W^{2} is also cyclically fully reduced then W^{n} is fully reduced for all n. If W^{2} is not cyclically fully reduced then there exists a relator

$$
R \equiv W_{1} W_{2} W_{1} T^{-1}
$$

where $W_{1} W_{2}$ is a cyclic transform of $W, l(T)<\frac{1}{2} l(R)$ and $\left(T W_{2}\right)^{n}$ is fully reduced for all n.

4. Main results.

Theorem 1. Let

$$
G=\operatorname{gp}\left(a_{1}, \cdots, a_{n}, b_{1}, \cdots, b_{m} ; R_{1}=\cdots=R_{p}=1\right)
$$

be a sixth-group, where every freely reduced word $W=W\left(a_{\lambda}\right)$ is fully reduced. Then $H=\operatorname{gp}\left(a_{1}, \cdots, a_{n}\right)$ is a free subgroup of G with the a_{i} as free generators and one can solve the extended word problem with respect to H.

Proof. By Greendlinger's Lemma 1, every word $W\left(a_{\lambda}\right) \neq 1$ so H is free. Let V be in G. If V is in H, that is, if $V=W\left(a_{1}, \cdots, a_{n}\right)$ then, by Lemma 3, we know the maximum length of W. Since there are only a finite number of words $W\left(a_{\lambda}\right)$ of any given length and since the word problem has been solved for sixth-groups, the theorem is true.

Theorem 2. Let W be any element in a sixth-group G. Then one can solve the extended word problem with respect to the subgroup $H=\operatorname{gp}(W)$.

Proof. By a theorem of Greendlinger [3, p. 668], we can find the order of W. If the order of W is finite, say n, then any word V in G is also in H iff there exists an $m, 1 \leqq m \leqq n$, such that $V=W^{m}$. Since the word problem is solvable in G, this case is decidable.

Suppose W has infinite order. Since V is in $\mathrm{gp}(W)$ iff $A V A^{-1}$ is in $\mathrm{gp}\left(A W A^{-1}\right)$, we can reduce our problem, by taking an appropriate conjugate of V and W, to the case where W is cyclically fully reduced and has the properties of Lemma 4.

If W^{n} is fully reduced for all n, then our theorem, as in Theorem 1, follows from Lemma 3. If W^{n} is not fully reduced then, by Lemma 4,

$$
W^{n} \equiv\left(W_{1} W_{2} W_{1} W_{2}\right)^{m} W^{\epsilon}=\left(T W_{2}\right)^{m} W^{\epsilon},
$$

where $\epsilon=1$ or $\epsilon=0$. Hence V is in $\mathrm{gp}(W)$ iff V or $V W^{-1}$ is in $\mathrm{gp}\left(T W_{2}\right)$. But $\left(T W_{2}\right)^{m}$ is fully reduced for all m. So the theorem is true for this case also.

The next two theorems follow directly from the previous theorems and Lemma 2.

Theorem 3. In the notation of Lemma 2 suppose that each G_{i} is a sixth-group and any freely reduced word $W\left(a_{i \lambda}\right)$ is fully reduced. Then the generalized free product G of the G_{i} amalgamating the subgroups H_{i} has a solvable word problem.

Theorem 4. Let G_{1}, G_{2}, \cdots be sixth-groups. Let H_{i} be a cyclic subgroup of G_{i} generated by $W_{i}(i=1,2, \cdots)$. If the orders of the W_{i} are equal then the generalized free product G of the G_{i} amalgamating the subgroups H_{i} has a solvable word problem.

Theorem 5. Let \mathcal{G}_{1} consist of groups G which admit solutions to their word problems and to their extended word problems with respect to the infinite cyclic group generated by any element W in G of infinite order. Let $\mathcal{G}_{k}, k>1$, consist of groups G which are the generalized free products of groups in G_{k-1} with an infinite cyclic group amalgamated. Then any group G in \mathcal{G}_{k} admits a solution to its word problem, and the extended word problem with respect to any infinite cyclic subgroup is solvable.

Proof. In view of Lemma 2, we need only solve the extended word problem for G in $\mathcal{G}_{k}, k>1$, with respect to the infinite cyclic group generated by, say,

$$
W \equiv W_{1} W_{2} \cdots W_{n}
$$

where the W_{i} are not in the amalgamated subgroups and W_{i}, W_{i+1} do not belong to the same group in \mathcal{G}_{k-1}, that is, the length of W is $n>0$. By taking an appropriate transform of W, we can further assume, without loss in generality, that W is cyclically reduced, that is, W_{1} and W_{n} are also in different groups. Then the length of W^{m} is precisely $m n$. Let V be in G. By the process of Lemma 2, we can determine the length of V. Since the word problem has been solved in G by Lemma 2 and the inductive hypothesis, we can decide if $V=W^{m}$ for some m, that is, if V is in $\operatorname{gp}(W)$.

Corollary 1. If \mathcal{G}_{1} is the class of sixth-groups and $\mathcal{G}_{k}, k>1$, is defined as in Theorem 5, then group G in \mathcal{G}_{k} admits a solution to its word problem.
5. Proof of Lemma 3. Let W be a word of minimum length for which the lemma is not true, that is, $W=V^{-1}$, where $l(V)>n r$ and
V is fully reduced. So

$$
\begin{equation*}
W V=1 \tag{1}
\end{equation*}
$$

The minimality of W guarantees that W is also fully reduced and that (1) is freely reduced. Thus (1) must satisfy Lemma 1 ; in particular, since W and V are fully reduced, $W V$ must contain $>\frac{5}{6}$ of a relator R. Say $W \equiv A B, \quad V \equiv C D, S \equiv B C$, where $R \equiv S E^{-1} \equiv B C E^{-1}$ and $l(S)>\frac{5}{6} l(R)$.

Now, substituting in (1), we have

$$
W V \equiv A B C D \equiv A S D=A E D=1
$$

Notice that:
$l(D)>r(n-1)$,
$D \neq 1$ since $l(D)>0$ and D is fully reduced,
$l(C) \leqq \frac{3}{6} l(R)$ since V is fully reduced,
$l(B)>\frac{2}{6} l(R)$ since $l(S)>\frac{5}{6} l(R)$,
$l(E)<\frac{1}{6} l(R)$ since $l(S)>\frac{5}{6} l(R)$.
Thus $l(E)<l(B)$, which implies $l(A E)<l(A B)=l(W)$. But $A E=D^{-1}$ also violates Lemma 3. This contradicts the minimality of W, so our lemma is true.
6. Proof of Lemma 4. The following remark is easily proven for sixth-groups. Suppose there is a relator $R^{\prime} \equiv A^{n} B$, where $n>1$. Then either

$$
l(A) \leqq l\left(A^{n-1}\right)<\frac{1}{6} l\left(R^{\prime}\right)
$$

or there exists a word C such that $A \equiv C^{s}, B \equiv C^{t}$ and, therefore, $R^{\prime} \equiv C^{m}$. For the cyclic transform $A^{-1} B^{-1} A^{1-n}$ of $R^{\prime-1}$ absorbs A^{n-1} from R^{\prime}.

Let W^{n} contain more than half of a relator, say S, where $R \equiv S T^{-1}$ and $l(S)>\frac{1}{2} l(R)$. If we show that S must be contained in V^{2}, where V is a cyclic transform of W, then this proves the first part of the lemma. Suppose S is not contained in any V^{2}. Then $S \equiv V^{r} A$, where $r>1$ and $V \equiv A B$. Consequently $R \equiv V^{r} A T^{-1}$. By the previous remark, either

$$
l(S)=l\left(V^{r} A\right)=l\left(V^{r-1}\right)+l(V)+l(A) \leqq \frac{3}{6} l(R)
$$

or, for some $C, V \equiv C^{s}$ and $R \equiv C^{m}$. In the first case we contradict the fact that S is more than half of R and in the second case we contradict the fact that W is of infinite order. Thus S must be contained in V^{2}.

We can now assume without loss in generality that $S \equiv W_{1} W_{2} W_{1}$, $V \equiv W_{1} W_{2}$ and $R \equiv W_{1} W_{2} W_{1} T^{-1}$. Since W is cyclically fully reduced,
$l(V) \leqq \frac{1}{2} l(R)$ which implies that $T \not \equiv 1$. Also, $W_{2} \not \equiv 1$ else $R \not \equiv V^{2} T^{-1}$ and, by the remark about sixth-groups, W will be of finite order. We can further assume, by maximizing the possible length of S, that $W_{2} \wedge T$ and $T \wedge W_{2}$. Note also that $W_{1} \wedge W_{2}$ and $W_{2} \wedge W_{1}$, since W is fully reduced.

Next we note that $W_{2}^{-1} W_{1}^{-1} T W_{1}^{-1}$, which absorbs W_{1} from R, cannot be the inverse of R since $T \wedge W_{2}$; hence $l\left(W_{1}\right)<\frac{1}{6} l(R)$. This last inequality can be used to show, by simple arithmetic arguments, that

$$
l\left(W_{2}\right), l(T)>\frac{1}{6} l(R)
$$

We are now ready to prove that $\left(T W_{2}\right)^{n}$ is fully reduced for all n, which will prove our lemma.

Suppose $\left(T W_{2}\right)^{n}$ contains Q, where Q is more than half of a relator, say $R^{*} \equiv Q P$ and $l(Q)>\frac{1}{2} l\left(R^{*}\right)$. There are four possibilities:

Case I. Q contains T, say $Q \equiv M T N$.
Then $R^{* \prime} \equiv T N P M$ is the inverse of $R \equiv W_{1} W_{2} W_{1} T^{-1}$ since more than one-sixth of R, i.e. T, is absorbed in the product of R with $R^{* \prime}$. But this contradicts:
$W_{1} \wedge W_{2}$ if N is not empty,
$W_{2} \wedge W_{1}$ if M is not empty,
$l(T) \leqq \frac{1}{2} l(R)$ if M and N are empty.
Thus Q does not contain T.
Case II. Q contains W_{2}.
Since W_{2} is more than one-sixth of R, this case is also impossible as in Case I.

Case III. $T W_{2}$ contains Q, say $Q \equiv T^{\alpha} W_{2}^{\alpha}$ where $T \equiv T^{\beta} T^{\alpha}$ and $W_{2} \equiv W_{2}^{\alpha} W_{2}^{\beta}$.

Note that $l\left(T^{\alpha}\right)$ or $l\left(W_{2}^{\alpha}\right)>\frac{1}{6} l\left(R^{*}\right)$. Then a cyclic transform of

$$
R \equiv W_{1} W_{2}^{\alpha} W_{2}^{\beta} W_{1}\left(T^{\alpha}\right)^{-1}\left(T^{\beta}\right)^{-1}
$$

will absorb more than $\frac{1}{6}$ of $R^{*} \equiv T^{\alpha} W_{2}^{\alpha} P$ or R^{*-1}. That these relators cannot be inverses follows either from the fact that $W_{1} \wedge W_{2}$ or from the fact that $W_{1} \wedge T^{-1}$. Accordingly, this case is impossible.

Case IV. $W_{2} T$ contains Q.
Impossible as in Case III.
Thus we have proven our lemma.

Bibliography

\rightarrow W. Boone, The word problem, Ann. of Math. (2) 70 (1959), 207-265.
2. J. L. Britton, Solution of the word problem for certain types of groups, Proc. Glasgow Math. Assoc. 3 (1956), 45-54.
3. M. Greendlinger, Dehn's algorithm for the word problem, Comm. Pure Appl. Math. 13 (1960), 67-83.
4. -_On Dehn's algorithm for the conjugacy and word problems, with applications, Comm. Pure Appl. Math. 13 (1960), 641-677.
5. S. Lipschutz, On powers of elements in S-groups, Proc. Amer. Math. Soc. 13 (1962), 181-186.
\rightarrow B. H. Neumann, An essay on free products of groups with amalgamations, Philos. Trans. Roy. Soc. London Ser. A 246 (1954), 503-554.
7. H. Schiek, Ahnlichkeitsanalyse von Gruppenrelationen, Acta Math. 96 (1956), 156-252.
8. V. A. Tartakovskiy, Solution of the word problem for groups with a k-reducible basis for $k>6$, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 483-494.

Polytechnic Institute of Brooklyn

[^0]: American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

