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Uniaxial strain, having a larger number of irreducible components, yields in principle more informa- 
tion than its hydrostatic counterpart. It has, however, the drawback that its magnitude is limited 
by sample fracture. We discuss the methods of application of uniaxial stress to solid samples for the 
purpose of performing spectroscopic measurements. We then present some of the highlights of such 
measurements, concerning phonons and electronic states in semiconductors. 

1. Introduction 

The strain tensor 6, being symmetric, has in general six independent components. Its 
trace determines the hydrostatic component of the strain (eH = tr 6/3). When e H .  1 (1 
is the unit matrix) is subtracted from 6, a traceless tensor with five independent com- 
ponents is obtained which represents the most general traceless strain (sometimes 
called a “pure shear”). The tensor e H  . 1, being invariant under all point group opera- 
tions, leads to effects which exhibit the full space group symmetry of the crystal 
(changes of the lattice parameters can be taken care of by means of the Pikus and Bir 
transformation [l]). Hence the hydrostatic strain is said to belong to the irreducible 
representations A or rl of the space group (A, or r: if the system is centrosym- 
metric). A similar symmetry analysis can be made for the five components of the 
traceless strain. In the cases of cubic symmetry the off-diagonal components of 6 trans- 
form according to a three-dimensional irreducible representation which is labeled T25, 

or T2, for the diamond structure (r4, r15 or T2 for zincblende) while the remaining 
two independent components 1/& (ew - ezz)  and l/& (2ezz - eyy - ezz)  belong to 
Tlz(E,) in diamond and r12, r, or E in zincblende. Hence, in the crystals with dia- 
mond and zincblende structure a general strain has three irreducible components 
which lead to three independent sets of spectra (one hydrostatic and two pure shear). 
The T2 shear corresponds to a uniaxial deformation along the [ill] direction while its E 
counterpart corresponds to a uniaxial deformation along [loo]. The shear components 
are 
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For simplicity we shall use here and in what follows the zincblende notation Al ,  E, TZ 
for both diamond and zincblende. 

The magnitude of the hydrostatic strain that can be applied to a crystal is limited by 
the experimental equipment available and has received a big boost with the develop 
ment of the diamond anvil cell (DAC). The sample is usually embedded in a fluid med- 
ium which transmits to it a hydrostatic stress. Only in cubic materials a hydrostatic 
stress corresponds to a hydrostatic strain. Moreover, most standard pressure transmit- 
ting fluids become viscous, glassy or even crystallize under the action of stress: The 
stress applied to the sample becomes then nonhydrostatic, its shear components being 
usually irreproducible. This problem is avoided, at least up to stresses of the order of 
100 GPa, by using helium as pressure transmitting fluid. Within this range phase transi- 
tions occur. They may be irreversible and lead to destruction of the sample. Except for 
this fact, samples are usually found to be intact after releasing the hydrostatic stress. 

When a uniaxial stress is applied to a sample with equipment such as that of Fig. 1 
[a] (stress X along only one direction, all other components of the stress tensor 6 equal 
to zero) only a relatively low stress (yield stress) can be reached before the sample 
breaks. The yield stress is usually not a material property but is determined by surface 
conditions, defects, details of the equipment, etc. It reaches typical values of 3 GPa for 
Si, 1.5 GPa for Ge, and 1 GPa for GaAs. Within this range, and contrary to the case of 
the much higher hydrostatic stresses reached in the DAC, most (but not all) effects 

PULL FRAME 

BRASS STRESS FRAME 
CUPS 7 

Fig. 1. Rig used for optical measurements under uniaxial stress. The applied force is measured by 
measuring the elongation of the spring with a linear variable differential transformer (LVDT) [2] 
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observed are linear in the stress (or strain). Nevertheless the stress, if kept below the 
yield value, often breaks the crystal symmetry without breaking the sample. For the 
zincblende structure, e.g., a IlOO] stress lowers the T d  cubic symmetry to the tetragonal 
Dad while a [lll] stress lowers it to the trigonal CsV. Thus, degenerate states split and 
transitions forbidden to a given type of spectroscopy may become allowed. 

In this paper we discuss the highlights of the effects of uniaxial stresses along [loo] 
and ill11 on the phonons and electronic states of crystals with diamond and zincblende 
structure. From these data the effects of the three irreducible components of the strain 
can be extracted. They suffice to calculate linear (sometimes even quadratic) effects of 
strain along any arbitrary direction. 

2. Methods to Apply Uniaxial Stress 

Maybe the most commonly used, time tested method to apply uniaxial stress to solids 
for optical and electronical experiments is that of Cuevas and Fritzsche (see Fig. 1) [2].  
The stress is applied with a spring which acts on the sample via a 10/1 lever arm (to 
increase the force). One of the softest spots in the procedure is the point at which the 
force is applied to the sample (which has a typical cross section of ~2 mm2). If this 
application is not uniform, early fracture results at  points subjected to higher than aver- 
age strains. A time-tested procedure to minimize this problem consists of glueing the 
sample with epoxy resin to a pair of brass cups into which holes, which snuggly accom- 
modate the sample ends, have been drilled. These cups are mounted into a frame as 

Fig. 2. Frequenq shifts of the TA phonons of silicon upon application of a 1 GPa stress along 
[loo]. The k directions are [loo] (singlet) (- - -, A) and [OlO] (doublet) (-, 0) .  The points 
at X = 0 are ultrasonic velocity measurements; from [5] 
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Frequency (cm-') 

Fig. 3. Effect of a planar stress of 
5 GPa, applied with the schemati- 
cally drawn bending rig on a [ill] si- 
licon wafer, on the Raman phonons 
of silicon. The unstressed spectrum is 
labeled 1. The singlet and doublet, 
split by the stress, are labeled accord- 
ingly PI 

shown in Fig. 1. The force is applied to the lower cup through a pin mounted in a 
counterframe connected to the lever arm by means of a pullrod. 

Alignment of all parts mentioned with respect to the sample axis is very important. 
The pressure is measured by either measuring the (calibrated) elongation of the spring 
[2] or by means of a stress gauge placed at  a convenient spot along the system [3]. A 
long pullrod allows the fitting of the sample frame into a cryostat for work at  low tem- 
peratures. The force generating spring can be replaced by other devices such as a pneu- 
matic or hydraulic cylinder-piston system [4]. Stresses as high as 3 GPa can be reached 
(with Si samples). 

Nominal stress (GPa) 
Fig. 4. The points indicate the measured variation of the lasing wavelength of a GaAs laser sub- 
jected to a uniaxial stress in a DAC. The solid line represents the variation expected if complete 
slippage with respect to  the diamond faces takes place while the dash-dotted line represents the 
expectations for complete adhesion to the diamonds IS]. The dashed line shows the variation with a 
little friction present at the laser surfaces 
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The effects observed are usually linear in the strain components. In this case a given 
effect depends, in cubic materials, on three independent parameters (see (1)) which can 
be determined through measurements for stresses along [loo] and [lll] (plus sometimes 
hydrostatic pressure data). Redundant results are sometimes obtained, as a check, for 
stresses along [110]. Actually, a single parallelepiped with the stress direction along [ l l O ]  
and the side faces perpendicular to [ l l O ]  and [OOl] often suffices to obtain all the infor- 
mation required. 

A modified version of the frame of Fig. 1 has been used [5]  to investigate the depend- 
ence of the phonon dispersion relations on uniaxial stress by means of inelastic neutron 
scattering. Fig. 2 shows the frequency shifts measured for the T A  phonons of Si for k 
along the [loo] and [OlO] directions and an applied stress of 1 GPa along [loo]. Data are 
given for phonon polarizations parallel and perpendicular to the stress. The difference of 
the two slopes represents the effect of the pure shear stress while their weighted average 
(k 11 [loo] weight 1, k [I [OlO] weight 2) represents the effect of the hydrostatic stress 
component, which in this case is dominant. Note that the latter corresponds to a nega- 
tive mode Griineisen parameter y = -(d In o /d  In V )  = -1.7 i 0.2 from k = 2n/a,  in 
agreement with experiments at the X-point [6] and with ab initio calculations based on 
the electronic band structure [7]. 

The largest stresses have been reached by bending silicon slabs (30 mm diameter, 
0.2 mm thick). We show in Fig. 3 a schematic of the rig used by Baptizmanskii et al. [8] 
for planar stress applied to a [ill] Si wafer (isotropic planar stress is obtained when a 

I I I I I 

Energy (eV) 

0 .- - Fig. 5 .  Typical absorption spectra of a 
thin film of CuBr at 0, 2.03, 3.08, and 
5.36 GPa at T x 200 K. The film was 
deposited on one of the anvils of a 
DAC. The frozen pressure transmitting 
fluid generated a uniaxial stress in the 
film. The data at 2.03 and 3.08 GPa 
show clearly the splitting of the exciton 
Z12 into Z1 and Z2 due to the uniaxial 
component of the stress [lo] 

2 
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force is applied at  the center of the wafer). This figure also displays the Raman spectra 
of the k = 0 optical phonons for zero stress and for a tensile planar stress corresponding 
to 5 GPa. Notice that the phonon peak splits by about 15 cm-' while the main compo- 
nent (corresponding to a vibration perpendicular to [lll]) down shifts by ~ 2 2  cm-l. 

The DAC has also been used to apply uniaxial stresses, in particular to investigate 
the effect of such stresses on semiconductor lasers (frequency and threshold currents) [9]. 
Stresses of about 0.6 GPa have been reached by letting the diamonds bear directly on a 
parallelepiped sample. An interesting question is whether the in-plane strain is the same 
in the diamond faces which bear on the sample and in the corresponding sample faces 
(100% friction) or whether the sample glides with respect to the diamonds (no friction). 
This question is answered in Fig. 4: the laser wavelength of a GaAs laser shifts by an 
amount very close to the estimate for the no-friction, gliding case. 

Another example of uniaxial stress applied with a DAC is seen in Fig. 5 [lo]. In this 
case the DAC is operated with a standard gasket and alcohol as pressure transmitting 
fluid. The sample, in this case CuBr, is deposited as a thin film on one of the diamond 
faces and is in contact with the alcohol. The measurements are performed below 200 K: 
the alcohol freezes into a plastically deformable glass. Upon applying pressure, the fro- 
zen alcohol acts as a piston on the CuBr film and exerts a uniaxial stress which mani- 
fests itself by the splitting of the lowest edge exciton (21-22). The splitting increases 
linearly up to an applied stress of 3.5 GPa at  which the film begins to deform plastically 
and the splitting decreases. 

Another method to apply uniaxial stresses to thin films deposited pseudomorphically 
(i.e. with the same lateral lattice constant) on a substrate of similar structure has been 
used by the Missouri-Purdue group [ll, 121. A sample, consisting of film plus substrate, 

Fig. 6. Heavy and light hole exciton 
energies vs. pressure (in a DAC) of a 
ZnSe film on a GaAs substrate [ll] 

Pressure (GPa) 
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is placed in the conventional way in the DAC and the stress is applied hydrostatically to 
this composite sample (using argon as pressure transmitting fluid). While the thicker 
substrate is compressed hydrostatically, the difference in compressibilities (or bulk mod- 
uli) between substrate and sample film generates a uniaxial component of the strain in 
the latter. The film thus experiences a large hydrostatic and a smaller uniaxial strain as 
evidenced in Fig. 6 for a ZnSe film grown on GaAs. This figure shows the observed posi- 
tions of the light hole ( E k )  and heavy hole ( E F )  excitons of ZnSe versus applied pres- 
sure. The large blue shifts are due to the hydrostatic component of the strain: This 
average corresponds rather closely to the shift found for a bulk ZnSe sample. A hh-lh 
splitting is seen, however, even at  zero pressure. It is due to the differential in-plane 
compression induced by the fact that the lattice constant of ZnSe is larger than that of 
the GaAs substrate. The compressibility of ZnSe is also larger than that of GaAs and 
therefore the lattice constants of both materials become equal for an applied pressure of 
about 3.5GPa: at this point the hh-lh vanishes; at  higher pressures it even reverses 
sign (Fig. 6). In this manner in [ll] the deformation potential b, which represents the 
hh-lh splitting under a shear strain, was determined to be b = -1.14 eV. It was also 
shown that the magnitude of b increases significantly with increasing hydrostatic pres- 
sure, a fact which reflects similar trends among the zincblende semiconductors versus 
lattice constant at zero pressure. This technique has also been used to obtain informa- 
tion about phonon deformation potentials [13, 141. 

3. Internal Stress Parameters 

For crystals with more than one atom per primitive cell (PC), the lattice parameters 
often do not suffice to determine the details of the atoms in the PC [151. Likewise, the 
elastic constants do not suffice to determine the atomic displacements linear in stress: 
so-called internal strain parameters are needed. 

Little quantitative information is available for the internal strain parameters which 
relate to applied uniaxial stresses. We discuss here the case of diamond- and zincblende- 
type materials with two atoms per unit cell. No internal strain parameter is needed for a 
uniaxial stress applied along [loo] since the atomic planes perpendicular to this direction 
remain equidistant after the application of stress. For a [111] stress, however, an internal 
strain parameter is needed, for diamond as well as for zincblende, in order to specify the 
relative position of the two atoms in the unit cell. Note that two extreme cases are 
possible: either the bond length along [lll] remains constant upon application of the 
traceless stress (rigid bond length) or it deforms like the macroscopic crystal (affine 
deformation). The intermediate situation which usually obtains is represented by Klein- 
man’s internal strain parameter 5 :  5 = 1 corresponds to a rigid bond length while 5 = 0 
corresponds to the affine deformation of the crystal. Note that a change in bond length, 
i.e., of the separation between the two sublattices without macroscopic deformation, is 
equivalent to the displacement pattern of an optical phonon at  k = 0. A stress will in- 
duce such displacement if and only if the stress has a component of the same symmetry 
as such an optical phonon [15]. In the zincblende structure (similar reasoning applies to 
diamond) the phonon has r15 symmetry. Hence a [loo] stress (r12 symmetry) does not 
call for an internal strain parameter while a [111] stress, of r15 symmetry, does. 

The information available on < is not very precise. Experimental data are available 
only for germanium, silicon [16], diamond, and GaAs [17] while semiempirical [18 to 201 
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and ab initio [21] calculations are available for a wide range of materials of the family. 
In the latter, the total energy (electrons + ions) is computed, using band structure tech- 
niques, for the crystal under a [lll] stress with the bond length as parameter. The bond 
length, and thus 5, is then determined by minimizing the total energy. The experimental 
determination is based on the observation, by X-rays scattering, of the increase in inten- 
sity with stress of a forbidden or nearly forbidden reflection. 

The few available experimental and theoretical data reveal the following trend : 
1. Materials corresponding to the first row of the periodic table (diamond, BN) have 

5 = 0.1, i.e., they deform in an affine manner. 
2. Materials only with atoms not belonging to the first row have 5 = 0.5, i.e., the 

bond length shows considerable rigidity upon application of a [lll] stress. 
3. Materials with only one atom belonging to the first row show intermediate beha- 

vior (e.g., BP, 5 = 0.3 [21]). 
These trends can be easily understood by expressing 5 as a function of Keating’s valence 
force field parameters a (bond stretching) and p (bond bending) [18], 

The small values of 5 for diamond-row materials reflect the fact that a = B, i.e., that the 
resistance to bond bending is as large as that to bond stretching. For other materials 
5 M 0.5, i.e., B M 0.3a. In this case bond bending is much easier than bond stretching. 
The case a M p reflects the strong covalency of the bond in diamond (and BN). B = 0.3a 
reflects a loss of covalency which is not related to increasing ionicity but to increasing 
metallzcity. The structural description of semiconductor nanostructures (e.g., MQWs) 
requires a large number of unit cell parameters which become, upon application of 
stress, internal strain parameters. Very little information is available about them, a fact 
which hinders theoretical work on both electronic and vibronic properties. 

4. Phonons under Uniaxial Stresses 

4.1  The diamond structure 

We have already shown in Fig. 2 and 3 examples of effects of stress on phonons. Most 
of the available information has been obtained by Raman spectroscopy (phonons at  r) 
with stressing rigs similar to that in Fig. 1. Let us first discuss the diamond structure 
case. The hydrostatic component of the stress shifts the frequency W R  of the r-pho- 
nons without splitting them. This shift is represented by the mode Griineisen param- 
eter yR: 

where V is the sample volume. Either of the two irreducible shear components of (1) 
produces splittings into a singlet and a doublet. These splittings are observed by apply- 
ing a stress along either [loo] or [lll] with the rig of Fig. 1. We show the corresponding 
experimental frequencies versus applied stress for Si [20] and diamond I221 in Fig. 7. The 
singlet and doublet can be identified by means of polarization selection rules. Let us 
consider, as an example, the case of a [loo] stress of magnitude X .  The stress tensor can 
be decomposed into a hydrostatic and a pure shear (traceless) component, 
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Fig. 7. Shifts and splittings experienced by the Raman phonons of diamond [22] and silicon [20] 
under the action of a uniaxial stress along the [loo] and [Ill] directions. The dashed lines indicate 
the shift induced by the hydrostatic component of the stress. Note that the sign (singlet-doublet) 
of the splitting for [loo] stress in silicon is opposite to all other cases displayed (see text) 

The effect of the hydrostatic stress is related to yR by 

A@: = -@RyR(s11 + 2 S 1 2 )  X .  ( 5 )  

It corresponds in Fig. 7 to the weighted average (1 x singlet, 2 x doublet) of the shifts of 
Fig. 7. The effects of [loo] and [lll] shear are represented by the dimensionless deforma- 
tion potentials and K44, respectively (sometimes (pll - plz)/oi and p 4 4 / w i  

are used instead of 2 1 1  - l?12 and K 4 4 ,  respectively). The singlet-doublet splittings are 
then given by 

- 
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T a b l e  1 
Measured dimensionless deformation potentials of the Raman phonons of diamond and 
silicon [221. Resclts of ah initio calculations are given in parentheses. Note the sign re- 
versal of K11 - K12 discussed in the text 

diamond silicon 

611 - I?lz -1.04 (-1.38) [23] 10.46 (0.26 [23], 0.46 [24]) 

YR 1.06 (0.95) [23] 0.98 (0.9 [23], 0.99 [24]) 
K44 -1.9 (-2.1) [23] -0.70 (-0.6 [23], -0.9 [24]) 

The diamond data of Fig. 7, obtained under a compressive stress X ,  show that for both 
stress directions the singlet component shifts up in frequency, even after the hydrostatic 
part is subtracted. This can be naively interpreted as due to the fact that the singlet 
vibrates along the direction of a compression (the doublet, however, along an expansion) 
and therefore the corresponding force constant should become stiffer. The data for sili- 
con, however, while supporting this argument for X 1 1  [lll], are qualitatively different 
for X 1) [loo]: the singlet decreases under compression. The answer to this paradox is 
found by considering that the pure shear component of (4) does not alter the bond 
length (for a [lll] stress it does and the argument given above follows). The [loo] com- 
pressive shear does not change the bond lengths. It simply bends the bonds away from 
the [loo] axis. If we assume the bond stretching forces to be dominant] they effectively 
decrease for the singlet mode since they must be projected on the [loo] axis (this intro- 
duces a factor of cos2 QI where QI is the angle between the bond and [loo]; QI increases 
when compressing along [loo]). We have therefore rationalized the results of Fig. 7 for 
silicon. Now the surprising fact is that for a [loo] compressive stress applied to diamond 
the singlet increases in frequency. This can also be understood if we recall that bond 
bending forces are very important in diamond (they were neglected in the argument 
given above for Si). They contribute a restoring force which, for the singlet, increases 
upon compression (due to anharmonicity) more than the geometric, cos2 QI effect dis- 
cussed above, and lead to an increase in frequency [20]. 

Detailed ab i n i t i o  calculations support the argument given above as can be seen in 
Table 1. In this table we compare experimental values of yR, - K 1 2 ,  and &4 for 
diamond and silicon with those obtained in ab initio calculations based on either pseudo- 
potential [23] or LMTO [24] band structures. 

Recent ab i n i t i o  calculations of the shear splittings of the Raman phonon of BN yield 
the same signs for l?ll - I?l2 and 1?44 as in diamond [25]. This is not surprising in view 
of the strong covalent character of BN which is also reflected in the value of 5 (= 0.12) 
[211. 

4.2 The zincblende structure 

For the diamond structure, discussed in Section 4.1, the optical phonons at r are even 
under inversion and therefore Raman but not ir-active. In zincblende there is no inver- 
sion symmetry. The r phonons are thus both Raman and ir-active. For the large wave- 
vector transfers k invoked in Raman scattering they split into longitudinal (i.e., vibrat- 
ing along k) and transverse (i.e., vibrating perpendicular to k). The splitting is related 
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to the transverse effective charge e; through 

where p is the reduced mass of the two atoms, V,  the unit cell volume, and E, the ir 
dielectric constant. The LO-TO splitting introduces a new quantization axis along k. 
Since OLO - WTO is much larger than the splitting induced by the stress, the primary 
quantization axis is determined by k and not by the stress (contrary to the diamond 
structure). Depending on the direction of k with respect to the stress axis, the LO pho- 
nons are singlet- (vibration parallel to the stress) or doublet-like (perpendicular to the 
stress). For backscattering in the rig of Fig. 1 only the doublet-like LO phonon can be 
observed. For the TO phonon, however, it is possible to see singlet and doublet compc- 
nents. In order to obtain all independent stress-induced shifts, Raman measurements 
with a laser line below the absorption edge of GaAs were performed in [26]. This allows 
measurements in forward and 90" scattering configurations since the sample is transpar- 
ent to the laser light. For near-forward scattering one can have a k-vector parallel to the 
stress direction and thus observe the singlet LO. 

A complete set of data obtained for stresses along [loo] and [lll] is shown in Fig. 8. It 
becomes clear in this figure that the L-T splitting of the singlet decreases upon applica- 
tion of the stress which, according to (7),  implies that the compressive stress lowers the 
effective charge. (V, and E, are also affected by the stress as represented by the com- 

Uniaxial stress ( GPa) 

Fig. 8. Splittings and shifts of the LO and TO phonons of GaAs under the action of uniaxial stress 
along [loo] and [111] [26] 
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oo 0 
Bond length I 

Fig. 9. The dependence of the 
transverse effective charge e; of a 
zincblende-type bond on bond 
length I (the so-called Laffer 
curve2)). The arrow labeled lo re- 
presents the equilibrium bond 
length at zero pressure 

pressibility and the elastooptic constant. However, these effects are smaller than the 
changes in e;.) 

The changes in e; induced by the strain tensor can be represented by a fourth rank 
tensor (note that e? is actually a second rank tensor which connects a vector, the phu  
non displacement, with another vector, the induced dipole moment). It can, like in the 
case of K, be represented by three independent components which are called [26] M11, 

M12, and M44: M11 + 2M12 represent the hydrostatic effect, M11 - M12 the effect of 
[loo] shear, and M44 the effect of 11111 shear. Ample evidence suggests that M11 + 2M12 
is positive, i.e., that compressive hydrostatic pressure decreases e; in all zincblende-like 
semiconductors except S ic  [26 to 281. 

A qualitative insight in the behavior of e; just described can be obtained from the 
curve in Fig. 9 which describes the simplest possible dependence of e; versus bond 
length 1 (the so-called Laffer curve2)). For 1 = 0 e; = 0 since no charge separation occurs. 
For 1 = 00 also e; = 0 since the component atoms are neutral. The dynamical charge e; 
has a maximum somewhere between 1 = 0 and m. Whether e; increases with decreasing 
1 (i.e., with increasing compressive pressure) depends on whether the equilibrium I = 10 
lies to the right or the left of the maximum in e;. The decrease in e; when compressing, 
found experimentally (exception: Sic), implies that it lies to the left. 

Semiempirical values of Mll - Ml2 and M44 can be obtained from the derivative of e; 
versus bond length and the geometrical changes in the bonds introduced by the strain. 

T a b l e  2 
Tensor coefficients which describe the effect of hydrostatic ( A 4 1 1  + 2M12) and shear strain 
[(A411 - M ~ z ) ,  on the ir effective charge e; of GaAs 

~~ 

experiment 
calculation 

~~ 

3.9 i 1 
1.9 

1.6 i 0.2 
1.5 0.9 

1.1 f 0.2 

’) Named after the American economist A. B. Laffer who applied a similar curve to interpret the 
behavior of the state revenue versus tax rate. 
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Table 2 shows the values of M11 + 2M12, Ml1 - M12, and Md4 measured for GaAs, to- 
gether with semiempirical calculations which use de;/dl as the only adjustable param- 
eter. Estimates for many zincblende-type semiconductors can be found in [28]. No ab 
initio calculations of the dependence of e; on strain are yet available. 

5. Electron Energy Bands versus Uniaxial Strain 

The effect of strain on electronic states has been the object of considerable attention 
since the mid 1950’s [l].The original motivation was the estimation of electron-phonon 
interaction in order to interpret the measured conductivity of n- and p-type semiconduc- 
tors versus temperature. Optical measurements were used to determine the strain shifts 
and splittings of band extrema [l, 2, 291. A review of the results at  r and simple theoret- 
ical schemes to estimate the corresponding deformation potentials can be found in [30]. 
The splittings of the direct excitons of zincblende-type materials under uniaxial strain 
have been discussed in connection with Figs. 5 and 6. 

5.1 Stress-optical functions 

The stress (strain)-optical parameters describe the changes in the dielectric function 
induced by stress (strain) versus frequency. For frequencies below the fundamental gap 
they have only real components while above that gap they have real and imaginary 
parts. While considerable information on stress-optical constants below the gap has been 
available for many years, detailed measurements in the absorption region have been 
performed only in the past few years using ellipsometric techniques. 

In a cubic material the stress-optical properties are described by three complex func- 
tions of w,, p l l ,  p12, and p44 (note that they represent a fourth rank tensor which con- 
nects the dielectric function with the strain). As an example we display in Fig. 10 the 
real and imaginary parts of pll  ( w ) ,  p12(w), p44(w) measured ellipsometrically (piezo-ellip- 
sometry) for germanium [4]. These results form a useful data base for optoelectronic 
applications of the material. The structures labeled El and Ez correspond to interband 
critical points and their strength and behavior with increasing stress (i.e., nonlinear in 
stress phenomena) can be used to determine deformation potentials. It is also possible to 
calculate the functions pij(w) using electronic band structure techniques of various de- 
grees of sophistication. Empirical pseudopotential methods have been, thus far, most 
successful. They avoid the so-called “gap problems”, ubiquitous in ab initio LDA techni- 
ques [4]. 

5.2 Linear terms in k in the electronic band structure 

It is customary to expand electronic band structures around band extrema in power 
series of the components of k. For most phenomena, only the quadratic terms (related 
to effective masses) play a role. 

Linear terms in k can sometimes appear [l, 311. They shift the extrema away from the 
corresponding high symmetry points. Here we discuss linear terms in k induced by  stress at 
the lowest conduction band minimum and the highest valence band maximum for k = 0. 
Such terms are of importance in a number of experiments, including cyclotron resonance 
under stress [32], spin depolarization in luminescence resulting from optical pumping [33] 
and gyrotropic effects in the dielectric function (including optical rotatory power) [34]. 
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Fig. 10. Real and imaginary parts of the stress-optical constants of germanium measured at room 
temperature by piezeellipsometry. El and Ez represent well-known interband critical points [4] 

The rl conduction band minimum of zincblende-type materials does not exhibit linear 
k terms. Under the action of spin-orbit coupling, however, the spin degeneracy for a 
given k # 0 splits, and cubic (not linear) terms in the component k,,y,z of k are ob- 
tained. The equivalent Hamiltonian has the form [l, 31, 351 

(8) 
H (  3) - - 2 y (O,k&; - IC?) + oyk,(k~ - k;) + uzkz(k: - $31, 
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A Fig. 11. Schematic diagram of the second order pertur- 
bation theory terms which give rise to  linear terms in k 
at the conduction band extremum 

I \  I \  

k-p I I  / :, HE 
where ox,,, represent the Pauli matrices. The zz 
component of a [loo] stress has the same symme- 
try as k: and, when replaced into (8) lead to a 
new equivalent Hamiltonian linear in (Icy - k,) .  
Likewise, a [ill] stress contains terms of symme- 
tries kxky, kylez, k,kx which, when replaced into 
(8 ) ,  lead also to linear terms in k. 

These terms can be described in k . p perturba- 
tion theory as shown in Fig. 11 for a [lll] stress: 
the k . p Hamiltonian connects the c conduction 
band with the ry5 valence band (also with the c5 
conduction band, but this term is less important) 
thus yielding a factor linear in the components of 
k. The strain Hamiltonian H, connects q5 back 
with c. The corresponding second-order pertur- 

bation expression is obtained by dividing the product of the matrix elements of k . p 
and H, between Fy5 and c by the - I'y5 energy denominator. The linear terms in- 
duced by a r12-like [loo] stress result from matrix elements which connect with r12- 

like states. The latter are far away in energy and thus the corresponding linear k terms 
are usually negligible. Details of the appropriate matrix elements of H, and p are found 
in [30]. 

k.p i \ I  HE 
\ I  
\ /  

Q 
0.2 m j  

0.1 

0 

Fig. 12. Polarization of edge lumines- 
cence observed in ptype GaAs and 
GaSb vs. [lll] stress. The decrease with 
increasing stress is due to  linear terms 
in k generated by the stress [33] 

0 0.2 0.4 
X (GPa) 
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The luminescence produced by a p-type zincblende material upon illumination with 
circularly polarized light (optical pumping) is also partly circularly polarized [33]. Line- 
ar terms in k in the conduction band structure, induced by a [ill] stress, strongly 
decrease the spin polarization. This effect is illustrated in Fig. 12 for GaAs and GaSb. 
From the experimentally observed decrease, the coefficient of the stress-induced linear 
in k terms can be found. They can also be calculated using the matrix elements of p 
and H, mentioned above [32, 35, 361. Note that similar linear terms in k appear also 
at the rl conduction bands of superlattices and MQWs fabricated with zincblende- 
type materials [37]: the lowering of the symmetry is similar to that induced by uniaxial 
stress. 

The valence bands of zincblende-type semiconductors display, at  r, linear terms in k 
even in the absence of stress [l, 361. These terms, however, are rather small (exception: 
CuC1, CuBr, CuI) since in the perturbation expressions they have as denominators the 
energy separation between r15 and the d-levels of the core (2 10 eV). Linear terms in k 
induced by stress are comparable or larger. They were first considered in connection 
with cyclotron resonance by holes in InSb [32, 381. More recently, it has been shown 
that the k linear terms induced by a stress along [loo] can result in gyrotropy and 
optical activity (i.e. rotation of the polarization plane for light propagating along either 
[OlO] or [OOl] (the signs of the rotation, however, are opposite for these two propagation 
directions)). From an analysis of these signs, the sign of the matrix element of H, be- 
tween q5 and r;, is found. However, this sign is only meaningful for a given choice of 
the relative phases in the q5 and ry5 wavefunctions [34]. 

The gyrotropy mentioned above corresponds to antisymmetrac components of the di- 
electric tensor linear in k and in the stress. As mentioned above, there are also stress 
optical effects (Fig. lo), independent of k, which make the material birefringent. These 
effects are usually much larger than the gyrotropic terms and thus, by defining a sym- 
metry axis which corresponds to linearly polarized light, they quench the stress-induced 
optical activity. Below the fundamental gap (ry5 + q), however, a reversal in the sign 
of the stress-optical birefringence usually occurs. It is at  this so-called isotropic point 
(frequency) that optical activity can be observed [39]. 
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