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Limit-cycle-induced frequency locking in self-sustained current oscillations in superlattices
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The ac response of self-sustained current oscillati&®CO’3 in weakly coupled GaAs/AlAs superlattices
(SL’s) is derived based on the deformation of a limit cycle under an external ac driving force. Frequency
locking into an integer fraction of the ac frequency is obtained in a periodic response in which a limit cycle
deforms either with or without a topological change. This frequency locking is robust against the ac bias
because a limit cycle can adjust itself. The results are verified both numerically and experimentally, indicating
that SSCO’s in SL's can be understood within the framework of the general concepts and principles of
nonlinear physics.
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Following the early pioneering stully on vertical elec- from limit cycles, what will be the possible responses of the
tron transport in superlatticg$L’s), one of the recent sur- SSCO’s to an extra ac bias? As will be demonstrated in this
prising discoveries is self-sustained current oscillati®S-  paper, the EFD’s model independent responses of SSCO’s in
CO's) under a dc bia3*A large number of experimental and SL's to an extra ac bias can be readily derived based on limit
theoretical studies have focused on different aspects of thesgcles. One will see that in periodic responses of SSCO’s in
oscillations. Experimentally, it is known that SSCO'’s can beSL's the frequency locking is not only a natural outcome of a
induced by varying the doping densitgemperature, and limit cycle, but also very robust against the ac driving force.
magnetic field® Theoretically, it is understood that SSCO’s Furthermore, we can predict quantitatively the frequency of a
are accompanied by the motion of boundaries of electricperiodic response for a given external ac bias. Thus, it is
field domains(EFD’s).> A model capable of describing both beneficial to use the limit cycle to understand SSCO’s. First,
the formation of stationary EFD’s and SSCO's emerged afteby considering a limit cycle as a basic object, we argue that
many tedious analyses and numerical calculatfo®sir un-  the limit cycle can have three possible responses to an extra
derstanding of SSCO’s was greatly advanced through nuac bias: (1) a small deformation without a topological
merical investigations of this model. As we know, a physicalchange,(2) a small deformation with a topological change,
system with an intrinsic frequency may have various pos-and(3) destruction of the limit cycle. The first two scenarios
sible responses to an external driving force. For a linear sydead to the phenomenon of frequency locking, and the last
tem, such as a simple pendulum, it will oscillate with theone gives rise to an aperiodic response. Second, a widely
frequency of the driving force. For a nonlinear system, how-used drift velocity model is solved numerically to demon-
ever, it can oscillate with an integer multiple of the driving strate this type of frequency locking and its robustness. Fi-
frequency. For example, a laser light passing through a nomally, we present our experimental results. In experiment, we
linear optical medium may lead to the second- and thirdfocus on the study of SSCO response to an external ac bias
harmonic generations. It is also known that many other nonin weakly coupled GaAs/AlAs SL's. Both the periodic fre-
linear systems can have frequency locking, in which aguency response of a SSCO to an ac bias and the change in
system might oscillate with an integer fraction of the driving its wave forms under different ac bias are investigated. A
frequency. It is therefore interesting to ask how the SSCO’swo-dimension phase diagram is obtained imersusdl|/dt
observed in SL's respond to a combined dc and ac bias. Nulane. It verifies the two distinct deformations adopted by ac
merical solutions on several SL modef¥**show possible driven limit cycles. An excellent agreement between the
aperiodic oscillations, either quasiperiodic or chaotic. Thetheory and the experiment is achieved.
experimental evidences of chaotic behavior were also For the sequential electron tunneling in a SL, the phase
reportedt*2While most early studies focused on the chaoticspace is made up by the bias on each potential barrier, as
behavior of tunneling current, there were also studies of thexplained in Ref. 17, since the state of a given SL is fully
response to an ac bias based on dipole EFD mddéMany  determined by these biases. On each point in the phase
of the results were explained based on the concept of EFBpace, there is a unique vector which describes the system
and the motion of charge monopole or dipofé° The velocity in the spacé® This velocity is determined by the
question that we would like to ask is whether one can underdynamics of the system. A point with zero velocity is called
stand the SSCO'’s from an angle based on general fundamea-<ixed point. An unstable fixed point, as denoted by the cross
tal concepts in nonlinear science. in Fig. 1, is such that a small deviation from the fixed point

In a recent study’ we found that SSCO’s in a SL can also will drive the system away from the point. However, the
be explained by the limit-cycle concept. In the terminologysystem will stay around the fixed point because of the exter-
of nonlinear physicd® SSCO’s are the manifestation of one- nal bias constraint. In the case of a SSCO, this local repul-
dimensional attractors-limit cycles. The power of the limit- sion and global attraction lead the system to move along a
cycle concept lies in its simplicity and universality. An im- closed curve, a limit cycle, around the fixed pdift® Using
portant question one might ask is if the SSCO’s indeed coma two-dimensional case as an example, it is schematically
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above, the second scenario occurs only whegp/wg is in
the vicinity of p/q (# intege), wherep andq are integers.
Under this type of ac bias, the limit cycle deforms itself in
such a way that it becomes a closed curve aftenns in the
phase space, givin@,./w=p.

Obviously, the periodic response must oscillate with an
integer fraction of the ac frequency if the SSCO’s are indeed
due to the generation of limit cycles around an unstable fixed
point. This type of frequency locking does not depend on a
particular model. Since the limit cycle can deform itself un-
der an ac bias, this periodic response with an integer fraction
of the ac frequency is expected to be quite robust against

V. w4e, Meaning thatw,./® should remain unchanged with a
! small variation ofw,.. In order to verify these results, we

FIG. 1. Schematic drawing of limit cycles around an unstablenumerically solve a widely used discrete drift model under
fixed point(crosg in a phase plane. The loop in solid line is the the combined dc and ac biases in the SSCO’s regime. For a
limit cycle in the absence of an ac bias. Curves A and B are the twgystem consisting oN quantum wells under a biad be-
possible deformations of a limit cycle under an ac bias. The systerfween the two end wells, the current flow is perpendicular to
shall oscillate with a frequency close to its intrinsic one in case Athe SL layers. In the sequential tunneling, charge carriers are
while it oscillates with half of the intrinsic frequency in case B.  in local equilibrium within each well, so that a chemical

potential can be defined locally. The chemical potential dif-
illustrated in Fig. 1 as a loop in solid line. Applying an extra ference between two adjacent wells is called Bfasn the
ac bias with frequency,., the velocity field in the phase barrier between the two wells. A curreptpasses through the
space changes through the dynamical equations of the syh barrier under a given biag; . This current may depend
tem. If the bias is small, it can only perturb the velocity on other parameters, such as dophtg.
slightly, which, in turn, modifies the limit cycle. Following Refs. 5 and 17, the dynamics of the system is

For the periodic response, a limit cycle can change in twa@yoverned by the discrete Poisson equations
distinct ways. One way is a small deformation of the limit ,
cycle without a topological change, as shown by the curve A k(Vi=Vi-)=ni—=Np, i=12,...N (1)
in Fig. 1. The length of the limit cycle can at most change agn(d the current continuity equations
little. The time period for a system to move along the closed
curve once does not change substantially, since its velocity V, ]
field in the phase space is controlled by the system dynamics J=k—=+h, 1=012...N, 2
that is perturbed only slightly by the extra ac bias. In this
case, the system oscillates with a frequeagywhose value Wwherek depends on the SL structure and its dielectric con-
is not too far from its intrinsic frequency,. There is an- stant.n; is the electric charge in thieh well. In Eq.(1), the
other requirement for the periodic response. Considering theame doping in all wells is assumdglis, in general, a func-
system starting initially from a point on a limit cycle, it tion of V; andn;. It can be showtf that all SSS'’s are stable
moves along the limit cycle and returns to the starting poinff I; is a function ofV; only. This result can be understood as
after a timeT, giving a frequencyw=2#/T. To have a pe- follows. The dynamic system can be decoupled iNtone-
riodic motion, the external ac bias should also return to itgdimensional dynamic systems with a parameleGeneral
initial value. This means thaf must be an integer multiple nonlinear theord? guarantees at least one stable SSS. On the
of the ac-bias period #/w,.. Thus, we havew,.//o=p  other hand, a SSS may be unstabie one choosesl;
=integer. In fact, this is a general condition for the periodic=n;v(V;), wherev is a phenomenological drift velocity
motion of a dynamical system under an ac driving fofta.  which is, for simplicity, assumed to be a function\gfonly.
natural conclusion of this argument is that the limit cycle The constraint equation fov; is
makes a small deformation like that of curve A in Fig. 1,
when the ac frequencw,. is in the vicinity of pwg, an N
integer number of the system intrinsic frequency. ;0 Vi=U. ©)

The other way is a topological change of the limit cycle in
spite of slight perturbation of the phase velocity field. ThisTo close the equations, a suitable boundary condition is
can occur when the system trajectory does not close itsetieeded. It is reasonable to assume a constgnt ng
after moving around the fixed point once. Instead, the trajec= 6Np, if the carrier density in the emitter is much larger
tory returns to its starting point afterrounds. For example, than those in wells, and its change due to a tiny tunneling
the curve B in Fig. 1 shows a closed curve after two roundscurrent is negligible.

In this case, the system oscillates with a frequency around Previous studi€s'’ have shown that this model is capable
wol2. It should be pointed out that this situation can occurof describing SSCO's with a negative differential drift veloc-
only when the dimensionality of the phase space is largeity. One can obtain a SSCO when(V)=0.0081f(V/E
than two. Combining the periodicity requirement discussed-1)2+0.01]+0.36[ (V/E—2.35¢+0.18], N=30, U
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FIG. 2. w,./w VS w,./wg. The devil’s staircase type behavior
with wac/w=p, with integerp, shows that the system oscillates  ri 3 The original time dependence of tunneling curr@nt
Wlth_ an integer f_rac_tlon_of ac frequency, and this response is robus&nd the corresponding Poincareap: the points ard|(nTo),
againstw, . Sollq line is fprVaC=0.327E aqd dashed Ilng is for I(NTo+To)] for n=1,2, ... (b). The accumulation of all points
Vac=0.654. Staircases with very narrow widths are not displayed.jqy, 4 single dot in this map indicates that the current oscillates

periodically with a period offy (=27/w).
=32.7E, Np=0.09%E, and 5=1.001 are usetf. The drift

velocity is the sum of two Lorentz functions. This function perature is fixed at 100 K and the dc bias at 0.42 V, which is
form is justified if the negative differential resistance is due|ocated within the first plateau of the time-averadedV

to the resonance tunneling between two subbands in theyrve.

wells of SLs. Thisv has two peaks aV=E and V Figure 3a) shows the current oscillation trace without any
=2.35%E. The region fromV=E to V=1.3E exhibits nega- ac bias. The SSCO’s are clearly demonstrated with a fre-
tive differential velocity. ThusE can be used as a natural quency wg=27.2 KHz. The oscillation periodicity is indi-
unit of bias, and /(E) as that of the timéthe lattice con- cated by the well-formed single dot in the corresponding
stant is set to be )1 The intrinsic frequencyw, is  Poincaremap (or the first return map'® as shown in Fig.
0.14v(E)/1], indicating that the corresponding EFD bound- 3(b). The Poincaremap is derived from the current oscilla-
ary oscillates inside about seven wells. Now we apply arfion trace by sampling the current trace in a stepTgf
extra ac biad/ ,sin(wad) with V,.=0.01U in addition to the  (=27/wo). Itis noted that a Poincamaap is very sensitive
above dc bias. Also, we have solved numerically the abov&® the time interval used. If the time interval is not commen-
set of equations for differeni,.. The current oscillation surable to the periodicity of a periodically oscillated curve,

frequency can be obtained from the Fourier transformatiofi '€ Map obtained consists of curves or lines instead of a few

of time evolution of the current. The results are plotted in the'sc’l"’Ited dots. One needs to choose the time interval in such a

S T2 " way that there are only isolated spots in Poinaaiaps.
Wacl ® VerSUSwae/ wo plane shown by the solid line in Fig. Figure 4 shows Poincanmaps obtained with an applied
2. It has a structure similar to a devil's staircase. The width

. . . . extra ac bias applied to the SSCO shown in Fig. 3. The ac
of the staircase contains the information of robustness thaf; amplitudeV, is set at 29 mV and the driving frequen-
ac

the limit cycle_can adjust itself. This robustnes_s depends_ OEieSwaC are indicated. The Poincareaps are obtained with
both the amplitude and the frequency of ac bias. The Wldtfgamp"ng stepS .. (=27l w,,). As discussed early in this

of th_e devil's staircase around,./wy=1/q de_creases with paper, the system exhibits the frequency locking whgpis
the increase ofj and the results are not displayed for st in the vicinity of pwo or we/p with p=integer. The

=3. The dashed line is the similar result fdp.=0.0).  corresponding response peridds given by the number of
The data are offset vertically for a better view. Clearly, the

periodic response arouno,.= 1.50, disappears, leading to

a possible chaotic response. It shows that the limit cycle is 0.67 . (@) 0 =20, (b) 0 =30,
destroyed, and the phase trajectory, somehow, cannot make a
closed curve under this ac bias. 0.00 :

To verify the above results of frequency locking and its = 067 . .
robustness experimentally, we have measured the response of 2 =
SSCO’s under an extra ac bias from a GaAs/AlAs SL . 0.67 (©) o=n/2 (d) 0=4a /3
sample. The GaAs/AlAs SL sample is grown by molecular =" 0.00 *
beam epitaxy. It consists of 30 periods of 14 nm GaAs well ) . ‘ "
and 4 nm AlAs barrier and is sandwiched between two -0.67 .
n*t-GaAs IayerS. The central 10 nm of each GaAs well is -0.67 0.00 067 -067 000 067
doped with Si (=2x 10" cm™3). The sample is fabricated I(pA)

into 0.2x0.2 mnt mesas. The SSCO’s response is recorded

using an Agilent infinilum 54832B oscilloscope. It has been FIG. 4. Poincarenaps with sampling step,. for w,.= 2w, (a),
found that SSCO’s in a SL can be induced by changing the,,.=3wq (b), .= we/2 (C), w,.=4wy/3 (d). The number of dots
sample temperatufeln this measurement, the sample tem-in the maps multiplyingr , are the corresponding response periods.
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FIG. 5. Experimentally measured periodic response ranges FIG. 6. The real time current traces fas,.=w, (8), w,e
aroundw,./wy=1.5 and 2, respectively, illustrated i /o vs  =2wq (D), wac=3wq (C), wac=4wy (d). The “free” one is the
w,./wg plots for different amplitudes of ac bias indicated. The dataoriginal current oscillation trace without any ac bias applied.
are offset for clarity.

. o curves(a)—(d) of Fig. 6. Whenn increases, the number of
dots in each case multiplyin@,.. The measured response these wiggles also increases but the response frequency in
frequencyw is equal tow,e/p for wac=pwy OF wye for  each case remains the same. In contrast, the corresponding
wac= o /P, respectively. The accumulation of all sampled cyrrent traces exhibit another type of change in wave forms
points into several discrete dots, as shown in Figa-4(d), for the cases withw,.= wo/n. In Fig. 7 curves(a) and (b)
clearly demonstrates the occurrence of the frequency lockingye the current traces far,.= wy/2 andw/3, respectively,
when w,e=2wg,3wg,wo/2, and 4vo/3, respectively. As a piotted together with the free one for comparison. Wheis
result, forw,.=2wo and 3wg [see Figs. @) and 4b)], Tis  also set to 29 mV. An arrow indicates the oscillation period
given as T,c and 3T, respectively, which are both equal for each case. In comparison with the free one, the ac-driven
to To. On the other hand, whed,.= wo/2 and 4wo/3 [see  current traces exhibit more than one prominent peak within
Figs. 4c) and 4d)], the response periods afg.(=2To)  each period. Two peaks are observed &y, = wy/2 [see
and 4T,(=3T,), respectively. Frequency locking is also curve(a) in Fig. 7] and three peaks fab,.= wy/3 [see curve
observed for other integer fraction of ac bias frequency.  (p) in Fig. 7).

In order to demonstrate the robustness of the frequency To further demonstrate that the frequency locking and
locking, we focus on the frequency locking in the vicinity of SSCO wave form variations can indeed be understood in
wac=3wo/2 and 2v,. The existence of a locking range in terms of the limit-cycle theory|] versusdl/dt phase dia-
the vicinity of eachpw,/q is observed, indicating the ro- grams are obtained from the free and ac-driven current traces
bustness of the frequency locking. As long@g: is set in  shown in Figs. 6 and 7. These phase diagrams are two-
this locking range, frequency locking with the same responsgimensional projections of the limit cycles. As an illustra-
frequencyw = w, /p is obtained. In Fig. 5 experimental re- tion, the limit cycles forw,.=2w, (open triangles and
sults in the vicinity of 3vg/2 and 2v, are plotted to demon- w,c= wel2 (open circlep are shown in Figs. @ and §b),
strate this robustness. By varying the applied ac bias frerespectively. The free limit cycle without any ac bias applied
quency and amplitude, the existence of the devil's staircasg plotted for comparisofsee solid squares in Figs(@ and
is explicitly shown, in which the data for different ac bias g()]. When an ac bias witw,.= 2w, is applied, the free

amplitudeV, are offset vertically for clarity. The lengths of |imit cycle evolves into a new limit cyclgsee curve A in Fig.
the lines in Fig. 5 indicate the frequency locking range

around w,./wg=1.5 and 2 for a giverV,.. Clearly, the
devil's staircase widths, i.e., the robustness of frequency 5.0

locking, are strongly dependent d . andw,.. The locking ' (b) /\/VW\—/\
range forw,./wo=2 is much larger than that fon,./wg 33|
=1.5. WhenV,; is small (=12 mV) the periodic response @ A N
cannot be found aroun,./wo=1.5. These results are in 171 /\/M/\/\ i
good agreement with the theoretical expectations.

Besides the above periodic frequency response of a SSCO 0.0 _free/vv\/V\/\ ]
to an ac bias, its wave form characteristics in the presence of
frequency locking are also investigated. Curvies—(d) ) ) ) )
shown in Fig. 6 are the oscillation current traces &y, 0.0 0.4 0.8 1.2
=nwgy, N=1, 2, 3, and 4, respectively, withl,.=29 mV. Time ( ms )
For comparison, the free current trace without any ac bias
applied is also plotted in Fig. 6. Only one prominent peak FIG. 7. The real time current traces fer,.= wo/2 (a), wac
appears within each perio@ndicated by arroy of free =wy/3 (b). The “free” one is the original current oscillation trace

SSCO trace. When an external ac bias is applied some extugthout any ac bias applied. The arrows indicate the period of each
wiggles are superimposed on the main peak, as shown icurrent trace.

I(nA)
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Since the shape of limit cycle varies slightly for each round
motion and is similar to the free one the two current peaks in
each period also change slightly. The above analysis is gen-
erally applicable to all the cases fa,.=nwy and w,
=pwy/q.

The above demonstrated quantitative agreements among
the theory, the model calculation, and the experiment clearly
indicate that a SSCO is indeed the manifestation of a limit
cycle around an unstable fixed point in the phase space. The
system moves along this limit cycle round by round resulting
in the SSCO. The unusual frequency locking into a particular
set of an integer fraction of ac frequency is the direct mani-
festation of deformation of limit cycles under ac bias. It is
worth to emphasize that based on limit cycles frequency
locking does not depend on the particular structure of the
EFD. Like many other nonlinear dynamical systems, the fre-
quency locking of SSCO’s can be understood within the
framework of the general concepts and principles of nonlin-
ear physics. We believe this view of frequency locking ap-
plicable to some other nonlinear systems. However, one
should view current limit-cycle theory and previous EFD
theory to be complementary to each other. The previous
theory>1® gives a microscopic origin of SSCO’s in combi-
nation of front dynamics and the injection condition of the
contact. The limit cycle provides a way to visualize this be-
havior and is of great help for understanding the more com-
plicated situation under additional ac bias.

In summary, the periodic response of a SSCO to an exter-

close square loop is the limit cycle in the absence of any ac biad}@l aC bias is investigated both theoretically and experimen-
Curve A and B represent the two distinct deformation ways of thet@lly. The limit-cycle theory offers a good explanation for the
limit cycles, A for w,.=2wg and B for w,.= wy/2.

experimental results. The limit cycle can deform itself in
such a way that it makegturns in the phase space around an

8(a)] by changing its shape. This new ac-driven limit cycle ynstaple fixed point when the ac frequeney, is in the
closes itself after one round giving rise to the frequency |°Ck'vicinity of (p/q)wo with integersp and g. Thus, a system

ing with response frequencyw= wy=w,/2. In contrast,

may oscillate withw,./p, an integer fraction ofw,., or

when w,. is set towy/2 the free limit cycle experiences a aboutw,/q. Both of this type of frequency locking into an

topological changésee curve B in Fig. ®)]. The resulting

integer fraction of the driving ac frequency and its robustness

new limit cycle returns to its initial point after two rounds. gre verified by the numerical model calculations and real
This results in the frequency locking with response fre-ayperiments. According to the current traces phase diagrams
quencyw = wo/2= w,.. The observed two types of deforma- are plotted inl versusdl/dt plane corresponding to a two-
tions of limit cycle agrees well with the theory discussedyimensional projection of a limit cycle. It reveals that under

earlier.

an extra ac bhias a new limit cycle is formed by the deforma-

These two types of deformations can also be used t0 exjon with or without a topological change in comparison with

plain the observed wave form characterisfiese Figs. 6 and

that without any ac bias applied. In conclusion, the limit-

7]. For the deformation without topological change the aceycle picture of SSCO's gives a deep insight into the nonlin-

forced limit cycle A in Fig. 8 moves one round for each

ear properties of SLs.

period. This one-round motion generates one prominent peak

in each period of the current tragsee curveb) in Fig. 6].
The extra wiggles superimposed on this main peak originat&rants Nos.
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