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Limit-cycle-induced frequency locking in self-sustained current oscillations in superlattices
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The ac response of self-sustained current oscillations~SSCO’s! in weakly coupled GaAs/AlAs superlattices
~SL’s! is derived based on the deformation of a limit cycle under an external ac driving force. Frequency
locking into an integer fraction of the ac frequency is obtained in a periodic response in which a limit cycle
deforms either with or without a topological change. This frequency locking is robust against the ac bias
because a limit cycle can adjust itself. The results are verified both numerically and experimentally, indicating
that SSCO’s in SL’s can be understood within the framework of the general concepts and principles of
nonlinear physics.
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Following the early pioneering study1,2 on vertical elec-
tron transport in superlattices~SL’s!, one of the recent sur
prising discoveries is self-sustained current oscillations~SS-
CO’s! under a dc bias.3,4A large number of experimental an
theoretical studies have focused on different aspects of t
oscillations. Experimentally, it is known that SSCO’s can
induced by varying the doping density,3 temperature, and
magnetic field.4 Theoretically, it is understood that SSCO
are accompanied by the motion of boundaries of elect
field domains~EFD’s!.5 A model capable of describing bot
the formation of stationary EFD’s and SSCO’s emerged a
many tedious analyses and numerical calculations.6 Our un-
derstanding of SSCO’s was greatly advanced through
merical investigations of this model. As we know, a physi
system with an intrinsic frequency may have various p
sible responses to an external driving force. For a linear s
tem, such as a simple pendulum, it will oscillate with t
frequency of the driving force. For a nonlinear system, ho
ever, it can oscillate with an integer multiple of the drivin
frequency. For example, a laser light passing through a n
linear optical medium may lead to the second- and th
harmonic generations. It is also known that many other n
linear systems can have frequency locking, in which
system might oscillate with an integer fraction of the drivi
frequency. It is therefore interesting to ask how the SSC
observed in SL’s respond to a combined dc and ac bias.
merical solutions on several SL models7–10,14show possible
aperiodic oscillations, either quasiperiodic or chaotic. T
experimental evidences of chaotic behavior were a
reported.11,12While most early studies focused on the chao
behavior of tunneling current, there were also studies of
response to an ac bias based on dipole EFD model.13,14Many
of the results were explained based on the concept of E
and the motion of charge monopole or dipole.5,14–16 The
question that we would like to ask is whether one can und
stand the SSCO’s from an angle based on general fundam
tal concepts in nonlinear science.

In a recent study,17 we found that SSCO’s in a SL can als
be explained by the limit-cycle concept. In the terminolo
of nonlinear physics,18 SSCO’s are the manifestation of on
dimensional attractors-limit cycles. The power of the lim
cycle concept lies in its simplicity and universality. An im
portant question one might ask is if the SSCO’s indeed co
0163-1829/2004/69~4!/045315~6!/$22.50 69 0453
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from limit cycles, what will be the possible responses of t
SSCO’s to an extra ac bias? As will be demonstrated in
paper, the EFD’s model independent responses of SSCO
SL’s to an extra ac bias can be readily derived based on l
cycles. One will see that in periodic responses of SSCO’
SL’s the frequency locking is not only a natural outcome o
limit cycle, but also very robust against the ac driving forc
Furthermore, we can predict quantitatively the frequency o
periodic response for a given external ac bias. Thus, i
beneficial to use the limit cycle to understand SSCO’s. Fi
by considering a limit cycle as a basic object, we argue t
the limit cycle can have three possible responses to an e
ac bias: ~1! a small deformation without a topologica
change,~2! a small deformation with a topological chang
and~3! destruction of the limit cycle. The first two scenario
lead to the phenomenon of frequency locking, and the
one gives rise to an aperiodic response. Second, a wi
used drift velocity model is solved numerically to demo
strate this type of frequency locking and its robustness.
nally, we present our experimental results. In experiment,
focus on the study of SSCO response to an external ac
in weakly coupled GaAs/AlAs SL’s. Both the periodic fre
quency response of a SSCO to an ac bias and the chan
its wave forms under different ac bias are investigated
two-dimension phase diagram is obtained inI versusdI/dt
plane. It verifies the two distinct deformations adopted by
driven limit cycles. An excellent agreement between t
theory and the experiment is achieved.

For the sequential electron tunneling in a SL, the ph
space is made up by the bias on each potential barrier
explained in Ref. 17, since the state of a given SL is fu
determined by these biases. On each point in the ph
space, there is a unique vector which describes the sys
velocity in the space.18 This velocity is determined by the
dynamics of the system. A point with zero velocity is calle
a fixed point. An unstable fixed point, as denoted by the cr
in Fig. 1, is such that a small deviation from the fixed po
will drive the system away from the point. However, th
system will stay around the fixed point because of the ex
nal bias constraint. In the case of a SSCO, this local rep
sion and global attraction lead the system to move alon
closed curve, a limit cycle, around the fixed point.17,19Using
a two-dimensional case as an example, it is schematic
©2004 The American Physical Society15-1



ra

s
ity

w
it

e

e
c
i
is

th
it
in

it

ic

le
1,

in
is
se
je
,
d
un
u
ge
e

in

an
ed

xed
n a
n-
tion
inst
a
e
er
or a

to
are

al
if-

is

n-

s

the

is

er
ing

le
c-

bl
e
tw
te

A
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illustrated in Fig. 1 as a loop in solid line. Applying an ext
ac bias with frequencyvac , the velocity field in the phase
space changes through the dynamical equations of the
tem. If the bias is small, it can only perturb the veloc
slightly, which, in turn, modifies the limit cycle.

For the periodic response, a limit cycle can change in t
distinct ways. One way is a small deformation of the lim
cycle without a topological change, as shown by the curv
in Fig. 1. The length of the limit cycle can at most change
little. The time period for a system to move along the clos
curve once does not change substantially, since its velo
field in the phase space is controlled by the system dynam
that is perturbed only slightly by the extra ac bias. In th
case, the system oscillates with a frequencyv, whose value
is not too far from its intrinsic frequencyv0. There is an-
other requirement for the periodic response. Considering
system starting initially from a point on a limit cycle,
moves along the limit cycle and returns to the starting po
after a timeT, giving a frequencyv52p/T. To have a pe-
riodic motion, the external ac bias should also return to
initial value. This means thatT must be an integer multiple
of the ac-bias period 2p/vac . Thus, we havevac /v5p
5 integer. In fact, this is a general condition for the period
motion of a dynamical system under an ac driving force.18 A
natural conclusion of this argument is that the limit cyc
makes a small deformation like that of curve A in Fig.
when the ac frequencyvac is in the vicinity of pv0, an
integer number of the system intrinsic frequency.

The other way is a topological change of the limit cycle
spite of slight perturbation of the phase velocity field. Th
can occur when the system trajectory does not close it
after moving around the fixed point once. Instead, the tra
tory returns to its starting point afterq rounds. For example
the curve B in Fig. 1 shows a closed curve after two roun
In this case, the system oscillates with a frequency aro
v0/2. It should be pointed out that this situation can occ
only when the dimensionality of the phase space is lar
than two. Combining the periodicity requirement discuss

FIG. 1. Schematic drawing of limit cycles around an unsta
fixed point ~cross! in a phase plane. The loop in solid line is th
limit cycle in the absence of an ac bias. Curves A and B are the
possible deformations of a limit cycle under an ac bias. The sys
shall oscillate with a frequency close to its intrinsic one in case
while it oscillates with half of the intrinsic frequency in case B.
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above, the second scenario occurs only whenvac /v0 is in
the vicinity of p/q (Þ integer!, wherep andq are integers.
Under this type of ac bias, the limit cycle deforms itself
such a way that it becomes a closed curve afterq turns in the
phase space, givingvac /v5p.

Obviously, the periodic response must oscillate with
integer fraction of the ac frequency if the SSCO’s are inde
due to the generation of limit cycles around an unstable fi
point. This type of frequency locking does not depend o
particular model. Since the limit cycle can deform itself u
der an ac bias, this periodic response with an integer frac
of the ac frequency is expected to be quite robust aga
vac , meaning thatvac /v should remain unchanged with
small variation ofvac . In order to verify these results, w
numerically solve a widely used discrete drift model und
the combined dc and ac biases in the SSCO’s regime. F
system consisting ofN quantum wells under a biasU be-
tween the two end wells, the current flow is perpendicular
the SL layers. In the sequential tunneling, charge carriers
in local equilibrium within each well, so that a chemic
potential can be defined locally. The chemical potential d
ference between two adjacent wells is called biasV on the
barrier between the two wells. A currentI i passes through the
i th barrier under a given biasVi . This current may depend
on other parameters, such as dopingND .

Following Refs. 5 and 17, the dynamics of the system
governed by the discrete Poisson equations

k~Vi2Vi 21!5ni2ND , i 51,2, . . . ,N ~1!

and the current continuity equations

J5k
]Vi

]t
1I i , i 50,1,2, . . . ,N, ~2!

wherek depends on the SL structure and its dielectric co
stant.ni is the electric charge in thei th well. In Eq.~1!, the
same doping in all wells is assumed.I i is, in general, a func-
tion of Vi andni . It can be shown20 that all SSS’s are stable
if I i is a function ofVi only. This result can be understood a
follows. The dynamic system can be decoupled intoN one-
dimensional dynamic systems with a parameterJ. General
nonlinear theory18 guarantees at least one stable SSS. On
other hand, a SSS may be unstable5 if one choosesI i
5niv(Vi), where v is a phenomenological drift velocity
which is, for simplicity, assumed to be a function ofVi only.
The constraint equation forVi is

(
i 50

N

Vi5U. ~3!

To close the equations, a suitable boundary condition
needed. It is reasonable to assume a constantn0 , n0
5dND , if the carrier density in the emitter is much larg
than those in wells, and its change due to a tiny tunnel
current is negligible.

Previous studies5,17 have shown that this model is capab
of describing SSCO’s with a negative differential drift velo
ity. One can obtain a SSCO whenv(V)50.0081/@(V/E
21)210.01#10.36/@(V/E22.35)210.18#, N530, U
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LIMIT-CYCLE-INDUCED FREQUENCY LOCKING IN . . . PHYSICAL REVIEW B69, 045315 ~2004!
532.7E, ND50.095kE, andd51.001 are used.17 The drift
velocity is the sum of two Lorentz functions. This functio
form is justified if the negative differential resistance is d
to the resonance tunneling between two subbands in
wells of SL’s. This v has two peaks atV5E and V
52.35E. The region fromV5E to V51.3E exhibits nega-
tive differential velocity. Thus,E can be used as a natur
unit of bias, and 1/v(E) as that of the time~the lattice con-
stant is set to be 1!. The intrinsic frequencyv0 is
0.14@v(E)/1#, indicating that the corresponding EFD boun
ary oscillates inside about seven wells. Now we apply
extra ac biasVacsin(vact) with Vac50.01U in addition to the
above dc bias. Also, we have solved numerically the ab
set of equations for differentvac . The current oscillation
frequency can be obtained from the Fourier transforma
of time evolution of the current. The results are plotted in
vac /v versusvac /v0 plane shown by the solid line in Fig
2. It has a structure similar to a devil’s staircase. The wi
of the staircase contains the information of robustness
the limit cycle can adjust itself. This robustness depends
both the amplitude and the frequency of ac bias. The wi
of the devil’s staircase aroundvac /v051/q decreases with
the increase ofq and the results are not displayed forq
>3. The dashed line is the similar result forVac50.02U.
The data are offset vertically for a better view. Clearly, t
periodic response aroundvac51.5v0 disappears, leading to
a possible chaotic response. It shows that the limit cycl
destroyed, and the phase trajectory, somehow, cannot ma
closed curve under this ac bias.

To verify the above results of frequency locking and
robustness experimentally, we have measured the respon
SSCO’s under an extra ac bias from a GaAs/AlAs
sample. The GaAs/AlAs SL sample is grown by molecu
beam epitaxy. It consists of 30 periods of 14 nm GaAs w
and 4 nm AlAs barrier and is sandwiched between t
n1-GaAs layers. The central 10 nm of each GaAs well
doped with Si (n5231017 cm23). The sample is fabricated
into 0.230.2 mm2 mesas. The SSCO’s response is record
using an Agilent infiniium 54832B oscilloscope. It has be
found that SSCO’s in a SL can be induced by changing
sample temperature.4 In this measurement, the sample tem

FIG. 2. vac /v vs vac /v0. The devil’s staircase type behavio
with vac /v5p, with integerp, shows that the system oscillate
with an integer fraction of ac frequency, and this response is ro
againstvac . Solid line is forVac50.327E and dashed line is for
Vac50.654E. Staircases with very narrow widths are not display
04531
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perature is fixed at 100 K and the dc bias at 0.42 V, which
located within the first plateau of the time-averagedI 2V
curve.

Figure 3~a! shows the current oscillation trace without an
ac bias. The SSCO’s are clearly demonstrated with a
quencyv0527.2 KHz. The oscillation periodicity is indi-
cated by the well-formed single dot in the correspond
Poincare´ map ~or the first return map!,18 as shown in Fig.
3~b!. The Poincare´ map is derived from the current oscilla
tion trace by sampling the current trace in a step ofT0
(52p/v0). It is noted that a Poincare´ map is very sensitive
to the time interval used. If the time interval is not comme
surable to the periodicity of a periodically oscillated curv
the map obtained consists of curves or lines instead of a
isolated dots. One needs to choose the time interval in su
way that there are only isolated spots in Poincare´ maps.

Figure 4 shows Poincare´ maps obtained with an applie
extra ac bias applied to the SSCO shown in Fig. 3. The
bias amplitudeVac is set at 29 mV and the driving frequen
ciesvac are indicated. The Poincare´ maps are obtained with
sampling stepsTac (52p/vac). As discussed early in this
paper, the system exhibits the frequency locking whenvac is
set in the vicinity of pv0 or v0 /p with p5 integer. The
corresponding response periodT is given by the number of

st

.

FIG. 3. The original time dependence of tunneling current~a!
and the corresponding Poincare´ map: the points are@ I (nT0),
I (nT01T0)] for n51,2, . . . ~b!. The accumulation of all points
into a single dot in this map indicates that the current oscilla
periodically with a period ofT0 (52p/v0).

FIG. 4. Poincare´ maps with sampling stepTac for vac52v0 ~a!,
vac53v0 ~b!, vac5v0/2 ~c!, vac54v0/3 ~d!. The number of dots
in the maps multiplyingTac are the corresponding response perio
5-3
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SUN, HE, WANG, WANG, AND WANG PHYSICAL REVIEW B69, 045315 ~2004!
dots in each case multiplyingTac . The measured respons
frequencyv is equal tovac /p for vac5pv0 or vac for
vac5v0 /p, respectively. The accumulation of all sampl
points into several discrete dots, as shown in Figs. 4~a!–4~d!,
clearly demonstrates the occurrence of the frequency loc
when vac52v0 ,3v0 ,v0/2, and 4v0/3, respectively. As a
result, forvac52v0 and 3v0 @see Figs. 4~a! and 4~b!#, T is
given as 2Tac and 3Tac , respectively, which are both equ
to T0. On the other hand, whenvac5v0/2 and 4v0/3 @see
Figs. 4~c! and 4~d!#, the response periods areTac(52T0)
and 4Tac(53T0), respectively. Frequency locking is als
observed for other integer fraction of ac bias frequency.

In order to demonstrate the robustness of the freque
locking, we focus on the frequency locking in the vicinity
vac53v0/2 and 2v0. The existence of a locking range i
the vicinity of eachpv0 /q is observed, indicating the ro
bustness of the frequency locking. As long asvac is set in
this locking range, frequency locking with the same respo
frequencyv5vac /p is obtained. In Fig. 5 experimental re
sults in the vicinity of 3v0/2 and 2v0 are plotted to demon
strate this robustness. By varying the applied ac bias
quency and amplitude, the existence of the devil’s stairc
is explicitly shown, in which the data for different ac bia
amplitudeVac are offset vertically for clarity. The lengths o
the lines in Fig. 5 indicate the frequency locking ran
around vac /v051.5 and 2 for a givenVac . Clearly, the
devil’s staircase widths, i.e., the robustness of freque
locking, are strongly dependent onVac andvac . The locking
range forvac /v052 is much larger than that forvac /v0
51.5. WhenVac is small (512 mV) the periodic respons
cannot be found aroundvac /v051.5. These results are i
good agreement with the theoretical expectations.

Besides the above periodic frequency response of a SS
to an ac bias, its wave form characteristics in the presenc
frequency locking are also investigated. Curves~a!–~d!
shown in Fig. 6 are the oscillation current traces forvac
5nv0, n51, 2, 3, and 4, respectively, withVac529 mV.
For comparison, the free current trace without any ac b
applied is also plotted in Fig. 6. Only one prominent pe
appears within each period~indicated by arrow! of free
SSCO trace. When an external ac bias is applied some e
wiggles are superimposed on the main peak, as show

FIG. 5. Experimentally measured periodic response ran
aroundvac /v051.5 and 2, respectively, illustrated invac /v vs
vac /v0 plots for different amplitudes of ac bias indicated. The d
are offset for clarity.
04531
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curves~a!–~d! of Fig. 6. Whenn increases, the number o
these wiggles also increases but the response frequenc
each case remains the same. In contrast, the correspon
current traces exhibit another type of change in wave for
for the cases withvac5v0 /n. In Fig. 7 curves~a! and ~b!
are the current traces forvac5v0/2 andv0/3, respectively,
plotted together with the free one for comparison. TheVac is
also set to 29 mV. An arrow indicates the oscillation peri
for each case. In comparison with the free one, the ac-dri
current traces exhibit more than one prominent peak wit
each period. Two peaks are observed forvac5v0/2 @see
curve~a! in Fig. 7# and three peaks forvac5v0/3 @see curve
~b! in Fig. 7#.

To further demonstrate that the frequency locking a
SSCO wave form variations can indeed be understood
terms of the limit-cycle theory,I versusdI/dt phase dia-
grams are obtained from the free and ac-driven current tra
shown in Figs. 6 and 7. These phase diagrams are t
dimensional projections of the limit cycles. As an illustr
tion, the limit cycles forvac52v0 ~open triangles! and
vac5v0/2 ~open circles! are shown in Figs. 8~a! and 8~b!,
respectively. The free limit cycle without any ac bias appli
is plotted for comparison@see solid squares in Figs. 8~a! and
8~b!#. When an ac bias withvac52v0 is applied, the free
limit cycle evolves into a new limit cycle@see curve A in Fig.

s FIG. 6. The real time current traces forvac5v0 ~a!, vac

52v0 ~b!, vac53v0 ~c!, vac54v0 ~d!. The ‘‘free’’ one is the
original current oscillation trace without any ac bias applied.

FIG. 7. The real time current traces forvac5v0/2 ~a!, vac

5v0/3 ~b!. The ‘‘free’’ one is the original current oscillation trac
without any ac bias applied. The arrows indicate the period of e
current trace.
5-4



le
ck

a

s.
re
-

ed

e

a
h
e

a
ri-
o

d

nd
in
en-

ong
arly
mit
The

ing
lar
ni-
is
cy

the
re-
he
lin-
p-

one
D
ous
i-
e
e-
m-

ter-
en-
e
in
an

n
ess
eal
ams
-
er
a-

th
it-
lin-

gh
nd
us-
for
ol

er-

on

h
ia
th

LIMIT-CYCLE-INDUCED FREQUENCY LOCKING IN . . . PHYSICAL REVIEW B69, 045315 ~2004!
8~a!# by changing its shape. This new ac-driven limit cyc
closes itself after one round giving rise to the frequency lo
ing with response frequencyv5v05vac/2. In contrast,
when vac is set tov0/2 the free limit cycle experiences
topological change@see curve B in Fig. 6~b!#. The resulting
new limit cycle returns to its initial point after two round
This results in the frequency locking with response f
quencyv5v0/25vac . The observed two types of deforma
tions of limit cycle agrees well with the theory discuss
earlier.

These two types of deformations can also be used to
plain the observed wave form characteristics@see Figs. 6 and
7#. For the deformation without topological change the
forced limit cycle A in Fig. 8~a! moves one round for eac
period. This one-round motion generates one prominent p
in each period of the current trace@see curve~b! in Fig. 6#.
The extra wiggles superimposed on this main peak origin
from the deformation of the shape of limit cycle in compa
son with the free one. As for the deformation with a top
logical change the limit cycle B in Fig. 8~b! moves two
rounds for each period. Each time when B moves a roun
large current peak is generated@see curve~a! in Fig. 7#.

*Author to whom correspondence should be addressed. Electr
address: phxwan@ust.hk

FIG. 8. Schematic drawing of limit cycles in a phase plane. T
close square loop is the limit cycle in the absence of any ac b
Curve A and B represent the two distinct deformation ways of
limit cycles, A for vac52v0 and B forvac5v0/2.
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Since the shape of limit cycle varies slightly for each rou
motion and is similar to the free one the two current peaks
each period also change slightly. The above analysis is g
erally applicable to all the cases forvac5nv0 and vac

5pv0 /q.
The above demonstrated quantitative agreements am

the theory, the model calculation, and the experiment cle
indicate that a SSCO is indeed the manifestation of a li
cycle around an unstable fixed point in the phase space.
system moves along this limit cycle round by round result
in the SSCO. The unusual frequency locking into a particu
set of an integer fraction of ac frequency is the direct ma
festation of deformation of limit cycles under ac bias. It
worth to emphasize that based on limit cycles frequen
locking does not depend on the particular structure of
EFD. Like many other nonlinear dynamical systems, the f
quency locking of SSCO’s can be understood within t
framework of the general concepts and principles of non
ear physics. We believe this view of frequency locking a
plicable to some other nonlinear systems. However,
should view current limit-cycle theory and previous EF
theory to be complementary to each other. The previ
theory15,16 gives a microscopic origin of SSCO’s in comb
nation of front dynamics and the injection condition of th
contact. The limit cycle provides a way to visualize this b
havior and is of great help for understanding the more co
plicated situation under additional ac bias.

In summary, the periodic response of a SSCO to an ex
nal ac bias is investigated both theoretically and experim
tally. The limit-cycle theory offers a good explanation for th
experimental results. The limit cycle can deform itself
such a way that it makesq turns in the phase space around
unstable fixed point when the ac frequencyvac is in the
vicinity of ( p/q)v0 with integersp and q. Thus, a system
may oscillate withvac /p, an integer fraction ofvac , or
aboutv0 /q. Both of this type of frequency locking into a
integer fraction of the driving ac frequency and its robustn
are verified by the numerical model calculations and r
experiments. According to the current traces phase diagr
are plotted inI versusdI/dt plane corresponding to a two
dimensional projection of a limit cycle. It reveals that und
an extra ac bias a new limit cycle is formed by the deform
tion with or without a topological change in comparison wi
that without any ac bias applied. In conclusion, the lim
cycle picture of SSCO’s gives a deep insight into the non
ear properties of SL’s.

This work was supported by UGC, Hong Kong, throu
Grants Nos. HKUST6149/00P, HKUST6162/01P, a
603403. X.R.W. thanks Professor P. Tong for useful disc
sions. We are very grateful to Professor Yiping Zeng
providing SL samples. We would like to thank high scho
student helper, Mr. Henry Hongjia Wang, for checking ref
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