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Noisy quantum game
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In a recent paper@D. A. Meyer, Phys. Rev. Lett.82, 1052 ~1999!#, it has been shown that a classical
zero-sum strategic game can become a winning quantum game for the player with a quantum device. Never-
theless, it is well known that quantum systems easily decohere in noisy environments. In this paper, we show
that if the handicapped player with classical means can delay his action for a sufficiently long time, the
quantum version reverts to the classical zero-sum game under decoherence.
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I. INTRODUCTION

Classical game theory@1,2# has always been applied su
cessfully to economic and industrial decision models to
solve and determine the best possible strategy. Recent b
throughs in quantum computations have shown that quan
mechanics continues to introduce surprising twists and n
elties into our classical way of thinking. In particular, it h
been shown that a quantum algorithm, such as the pr
number factorization@3#, can provide substantial improve
ment in speed and efficiency if one is equipped with an
propriate quantum device. However, it has also been sh
that it is not always possible to perform better than quant
devices as in quantum bit commitment@4,5#.

In quantum bit commitment, Alice~the sender! commits a
bit to Bob ~the receiver!. At some later time, Alice mus
show Bob which bit she has committed and convince h
that the revealed answer is the genuine bit that she has
viously committed. It has been shown that if Alice is given
quantum computer, she can always cheat and therefore
commitments are never possible in the quantum case.
protocol serves to remind us that even if a quantum comp
can be made, it may not always be possible to do bette
the quantum situation.

Recently, there have been some attempts@6–9# to gener-
alize the classical notion of game theory to an analog
quantum version. A natural question, therefore, is to find
whether it is possible in a two-party classically fair game
one party equipped with a quantum device to beat ano
party. In particular, it has been found instructive to consi
two-party coin-tossing games@6#. Indeed, it has been foun
in this particular two-party classically fair game that Alic
equipped with a quantum computer, can always take full
vantage of her resources to win. In fact for Alice to beat B
in this classically fair game, it is necessary for Alice to ‘‘flip
the coin into a linearly superposed state of head and tail

However, quantum systems are easily influenced b
noisy environment. Thus, neither Alice nor Bob can avo
the effects of decoherence since realistic quantum dev
are especially prone to environment disturbances@10–13#. In
this way, it is, therefore, useful to find out if Alice can co
tinue to maintain her superiority and advantage in a no
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environment. In this paper, we will consider some simp
decoherence models using Kraus operator representation
explore the issue of a noisy two-party classical fair ga
described in Ref.@6#. In Sec. II, we briefly describe the
simple coin-flipping game. In Sec. III, we investigate th
effects of decoherence channel, dephasing chan
amplitude-damping channel, and the two-Pauli channe
the game. Finally, in Sec. IV, we summarize our results a
make some observations.

II. A QUANTUM COIN-FLIPPING GAME

In a recent paper@6#, Meyer demonstrated that in a cla
sical two-person zero-sum strategic game, if one per
adopts a quantum strategy, then he has a better chanc
winning the game. Meyer’s strategy is as follows: two p
sons Alice and Bob take turns to flip a coin. Bob initial
places the coin head up in a box. Thereafter, Alice, then B
then Alice take turns to flip the coin. Alice wins if the coin
head up and loses otherwise.

In the quantum version, the initial state of the coin
represented by a density matrix,r0 so that in the basis
$uH&,uT&% in which the symbolsH and T denote head and
tail, respectively,r0 is given by

r05S 1 0

0 0D . ~1!

Suppose Alice adopts a quantum strategy, then Alice us
unitary rather than a stochastic matrix to act on the coin.
this unitary transformation beU1, so that the state of the coi
at the end of the transformation is given byr15U1r0U1

† .
Bob however continues to play with a classical probabilis
strategy. Thus, Bob employs a convex sum of unitary~deter-
ministic! transformation, namely, he either flips the coin u
ing the transformationF with probability p or lets the coin
rest in its original state~using the identity transformation
F0) with probability (12p), where

F15S 0 1

1 0D . ~2!
©2002 The American Physical Society20-1
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Thus, the operatorF0 leaves the coin in its original state
while the operatorF1 ‘‘flips’’ the original state to the other
state. Thus, at the end of Bob’s turn, the state of the c
should be described by the density matrix

r25pF1r1F1
†1~12p!r1 . ~3!

Finally, Alice ‘‘flips’’ the coin using the unitary transforma
tion U2, so that the final state of the coin isr35U2r2U2

† .
Meyer has shown that ifQ selects the unitary matricesU1
5U25H, whereH is the Hadamard transform given by

H5
1

A2
S 1 1

1 21D , ~4!

then r35r0, independent of the probabilityp. Thus Alice
wins the game every time.

It is instructive to note that a classical coin has only tw
possible states, namely, head and tail. It is interesting to n
that the explicit form of the operatorsF0 andF1 permits the
definition of a density matrixG,

G[
1

2
~F01F1!5

1

2 S 1 1

1 1D , Tr G51. ~5!

One can easily verify thatG commutes withF0 andF1, i.e.,

@G,F j #5GFj2F jG50 ~ j 50,1!. ~6!

SinceF j is unitary, the following identity holds

G5~12p!F0GF0
†1pF1GF1

† , ~7!

so thatG is independent upon the parameterp under a clas-
sical coin flip.

III. A NOISY QUANTUM COIN-TOSSING GAME

The standard procedure of understanding the behavio
one part of a bipartite quantum system is to extend the
tem to a larger one@in which the environment~E! is incor-
porated# so that the evolution of state becomes unitary.
assuming complete positivity of the superoperators, it is p
sible to study the nonunitarity evolution of the state of
subsystem using an operator sum representation. In term
the operator sum or Kraus representation, we can then
press this map,S, more succinctly as

rout5S~r in!5(
m

Mmr inMm
† . ~8!

Unitarity of the evolution of the bipartite quantum syste
also requires that the Kraus operators satisfy the conditi

(
m

Mm
† Mm51. ~9!

The explicit expressions for the Kraus operators depend
the type of channel chosen. Typically, one can consider
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following quantum channels:~1! depolarizing channel,~2!
phase-damping channel,~3! amplitude-damping channel, an
~4! two-Pauli channel.

The coin-tossing game between Alice and Bob proce
as described in Sec. II. However, Alice and Bob can n
delay their decision to apply the unitary or classical flippi
and allow the state of the coin to evolve nonunitarily und
the noisy environment. Specifically, depending on the de
herence model, the game proceeds as follows. The in
state of the coinux0&^x0u[r0 is first allowed to evolved
nonunitarily under the Kraus operators,$Mi

1%, so that the
state becomesr08 . Alice then applies her unitary transforma
tion on the coin, so that the resulting state isr1. Next, Bob
can choose to delay his flip, thus allowing the state of
coin to evolve into the state,r18 under the Kraus operator
$Mi

2%. Bob then performs his flip and changes the state of
coin to r2. This state is then allowed to evolve under Kra
operators,$Mi

3%. Finally, Alice performs her unitary transfor
mation and reveals the coin.

A. Depolarizing channel

For the depolarizing channel, the Kraus operators are

M0
j 5A12r j1,

Mi
j5Ar j /3s i~ j 51,2,3!,

where 0<r j<3/4, ands i( i 51,2,3) are Pauli matrices.
We next proceed to describe in some detail the step

our calculation.
~i! We begin with the initial state of the coin asuH& so that

its density matrix is given byr05uH&^Hu.
~ii ! After a time t1 , r0 becomesr085r02(2r 1/3)s3,

where r 1 is the parameter associated with the depolariz
channel.

~iii ! Alice then applies the general unitary transformati
~apart from an irrelevant phase factor!

U15S cos
u1

2
2sin

u1

2
eiv1

sin
u1

2
eif1 cos

u1

2
ei (v11f1)

D
on the coin, whereu1 ,f1, andv1 are real numbers. The stat
of the coin consequently becomes

r15U1r08U1
†

5
1

2
11S 1

2
2

2r 1

3 D @sinu1~cosf1s11sinf1s2!

1cosu1s3#,

independent ofv1.
~iv! After a timet2 , r1 decoheres~with parameterr 2)into

r185 1
2 11a1@sinu1(cosf1s11sinf1s2)1cosu1s3#, where

a15(124r 1/3)(124r 2/3)/2.
~v! Bob continues to play classically by employing a co

vex sum of unitary~deterministic! transformation, namely
0-2
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he either flips the coin using the transformationF1
with probability p or lets the coin rest in its original stat
~using the identity transformationF0) with probability
(12p). At the end of Bob’s turn, the state of the coin is d
scribed by the density matrixr25 1

2 11a1@sinu1cosf1s1
1(122p)sinu1sinf1s21(122p)cosu1s3#.

~vi! After a time t3 , r2 under decoherence~with

parameter r 3) becomes r28
1
2 11a2@sinu1cosf1s11(1

22p)sinu1sinf1s21(122p)cosu1s3#, where a25(124r 1/
3)(124r 2/3)(124r 3/3)/2.

~vii ! Finally, Alice implements the unitary transformatio
~apart from an irrelevant phase factor!

U25S cos
u2

2
2sin

u2

2
eiv2

sin
u2

2
eif2 cos

u2

2
ei (v21f2)

D ,

so that the density matrix of the final state of the coin is

r35U2r28U2
†5S 1/21a2j a2h

a2h* 1/22a2j
D ,

where

j52sinu1cosf1sinu2cosv21~122p!

3~sinu1sinf1sinu2sinv21cosu1cosu2!,

h5$sinu1cosf1@cos2~u2/2!e2 iv22sin2~u2/2!eiv2#

1~122p!@2 i sinu1sinf1~cos2~u2/2!e2 iv2

1sin2~u2/2!eiv2!1cosu1sinu2#%e2 if2.

It is easy to work out the probability of getting a head
the end of the game. This probability can be expressed
Phead51/21a2j. In general,r 1 ,r 2, and r 3 are different but
in order to maintain her advantage, Alice would try to min
mize any decoherence. Thus, we may setr 15r 3 for conve-
nience. In this case, let us redefine new variablesx and y
related tor 1 ,r 2, and r 3 as x52r 1/352r 3/3, y52r 2/3, we
then havePhead5@11(122x)2(122y)j#/2. In order to es-
tablish a Nash equilibrium, Alice implements the quantu
operations,U1 andU2 in her strategy while Bob can adop
unequal probabilities to his flip. It turns out that for a dom
nant strategy, Bob should play head or tail with equal pr
abilities. Since Bob continues to play ‘‘classically,’’ a Nas
equilibrium will be achieved when Alice maximizej with a
proper choice of angles in her unitary transformationsU1
andU2 @16#. Moreover, Alice does not know the paramet
p, so she should set the coefficient ofp to zero, i.e.,
sinu1sinf1sinu2sinv21cosu1cosu250. It is not difficult to
show thatjmax51, when

sinu1cosf1sinu2cosv2521.

For convenience, Alice can chooseu15u25p/2, f15f2
50 andv15v25p. In this case,U15U25H, which im-
plies that the Hadamard transformation is an optimal unit
05232
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transformation for Alice to optimize her strategy. We no
consider the functionf (x,y)5Phead

max21/2. It is straightfor-
ward to show that

f ~x,y!524x2y12~x212xy!2~2x1y!1 1
2 . ~10!

Figure 1 shows the variation off (x,y) with x andy and
Fig. 2 shows the variation of cross-section plotsf (x,x) when
x5y, f (x,0.2) andf (0,y) with respect tox or y. It is clear
that even if Alice immediately performs her transformatio
Bob can reduce her advantage drastically by introducing
ficient noise within the system.

B. Phase-damping channel

The Kraus operators are

M0
j 5A12r j1,

M1
j 5Ar j S 1 0

0 0D ,

M2
j 5Ar j S 0 0

0 1D ~ j 51,2,3!.

Beginning with the initial state,r0, after a timet1 as
before,r0 becomes

r085M0
1r0M0

1†1M1
1r0M1

1†1M2
1r0M2

1†5r0 .

In this case, an analysis similar to the previous case of
depolarizing channel shows that a Nash equilibrium is es
lished when Alice uses a unitary transformationU1(5U2)
5H to act on the coin so that the state of the coin becom
r15U1r08U1

†5G. Incidentally, such a strategy is always th
best one possible for Alice to adopt in all the other chann
discussed in this paper. Thus, henceforth, we need only c
sider Hadamard transformations for Alice’s ‘‘flip.’’

FIG. 1. A plot of the functionf (x,y) for 0,x,y,0.5. Note that
the function is identically zero only ifx or y attains the maximum
value of 0.5.
0-3
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Under decoherence, after a timet2, the stater1 becomes
r18 . After Bob’s flip, the state of the coin can be described
the density matrix

r25pF1r18F1
†1~12p!F0r18F0

†5G2
r 2

2
s1 .

Finally, after a timet3 , r2 becomesr28 under decoherenc
with r28 described by

r285M0
3r2M0

3†1M1
3r2M1

3†1M2
3r2M2

3†5G2a3s1 ,

so that the state after Alice’s ‘‘flip’’ is

r35U2r28U2
†5S 12a3 0

0 a3
D ,

FIG. 2. Plots of the functionf (x,y) for ~a! x5y, ~b! y50.2 and
x50.
05232
y

wherea35r 2/21r 3/22r 2r 3/2.
The probability of getting a head can then be compu

and is given byPhead512a3. If we let x5r 3/2, y5r 2/2 and
define the functionf (x,y)5Phead21/2, we then have

f ~x,y!52xy2x2y1 1
2 . ~11!

FIG. 3. Plots of the functionf (x,y) for ~a! the phase-damping
~b! amplitude-damping, and~c! two-Pauli channels.
0-4
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C. Amplitude-damping channel

The Kraus operators are

M0
j 5S 1 0

0 A12r j
D ,

M1
j 5S 0 Ar j

0 0
D ~ j 51,2,3!.

The final density matrixr3 is given by

r35
1

2 S 11Aa4 z

z 12Aa4
D ,

where z5@12a424pr2(12r 3)# and a4512r 22r 3
1r 2r 3. Thus, the probability of getting a head isPhead5(1
1Aa4)/2. Lettingx5r 3 , y5r 2 and defining the correspond
ing function f (x,y)5Phead21/2, we have

f ~x,y!5
1

2
Axy2x2y11. ~12!

D. Two-Pauli channel

Finally, in the case of the two-Pauli channel, the Kra
operators are given by

M0
j 5A12r j1,

M1
j 5Ar j

2
s1 ,

M2
j 5Ar j

2
s3 , ~ j 51,2,3!.

At the end of Alice’s flip, the state of the coin is given b

r35S 12a5 0

0 a5
D ,

where a55 1
2 @r 11r 21r 32(r 1r 21r 2r 31r 3r 1)1r 1r 2r 3#.

The corresponding probability of getting a head this time
Phead512a6. Defining x5r 15r 3 , y5r 2, we find that the
function f (x,y) is given by

f ~x,y!52 1
2 @x2y2~x212xy!12x1y#1 1

2 . ~13!

For completeness, we have plotted the variation off (x,y)
for the phase-damping, amplitude-damping, and the t
Pauli channels in Fig. 3.
,
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IV. DISCUSSION

There has been ample evidence that a quantum system
tremendous advantages over a classical system. Howev
is also well known that quantum devices are extremely s
sitive to noise in the environment. Thus, any advantages
to quantum effects can be reduced or diminished thro
decoherence effects. Indeed, our computations reempha
this fact.

In Meyer’s quantum game, it is possible for one play
~Alice! who possesses a quantum device to play a non-z
sum game with another player~Bob! who continues to use
classical devices. However, it is clear from our computatio
that if Bob suspects that Alice is using a quantum device,
can easily eradicate any advantages due to the quantum
vice by simply delaying his response in his classical fl
Such delay has no significant effect if Alice is using classi
means. However, in a quantum system, such a time d
inevitably introduces noise which can easily decohere
state of the coin.

Since Bob can control the channel by introducing su
cient noise, it is interesting to study the behavior of the fun
tion f (0,y) in each case. In our computations, it is not hard
see that the behavior off (0,y) for the depolarizing, phase
damping, and two-Pauli channels are essentially the sa
namely, f (0,y) varies linearly with the parametery whereas
for the amplitude-damping channel,f (0,y)51/2A12y. By
delaying his flip for a sufficiently long period, Bob can b
assured of a zero-sum game. In particular, under the cur
technology, this time is less than 0.1 s for the ion trap a
1025 for the optical cavity@15#. Thus, Alice’s employment
of quantum device poses no significant danger or difficulty
this quantum game. In fact, the same analysis holds for m
other quantum games, for example, the prisoner dilemma@7#
or coin-tossing experiments.

In summary, we have shown that unless Alice can con
the noise in the system completely, she stands to lose
advantages through the utilization of quantum devices. F
thermore, our analysis can be easily applied to theN-state
generalization of Meyer’s quantum game@9#. It is also inter-
esting to explore its behavior under a corrupted source@14#.
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