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Noisy quantum game
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In a recent papefD. A. Meyer, Phys. Rev. Lett82, 1052 (1999], it has been shown that a classical
zero-sum strategic game can become a winning quantum game for the player with a quantum device. Never-
theless, it is well known that quantum systems easily decohere in noisy environments. In this paper, we show
that if the handicapped player with classical means can delay his action for a sufficiently long time, the
guantum version reverts to the classical zero-sum game under decoherence.
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[. INTRODUCTION environment. In this paper, we will consider some simple
decoherence models using Kraus operator representation and
Classical game theoifyi,2] has always been applied suc- explore the issue of a noisy two-party classical fair game
cessfully to economic and industrial decision models to redescribed in Ref[6]. In Sec. I, we briefly describe the
solve and determine the best possible strategy. Recent breaimple coin-flipping game. In Sec. Ill, we investigate the
throughs in quantum computations have shown that quantuiffects of decoherence channel, dephasing channel,
mechanics continues to introduce surprising twists and nov@mplitude-damping channel, and the two-Pauli channel in
elties into our classical way of thinking. In particular, it has the game. Finally, in Sec. IV, we summarize our results and
been shown that a quantum algorithm, such as the primgake some observations.
number factorizationf3], can provide substantial improve-
ment in speed and efficiency if one is equipped with an ap- Il. A QUANTUM COIN-FLIPPING GAME
propriate quantum device. However, it has also been shown )
that it is not always possible to perform better than quantum N @ recent papei6], Meyer demonstrated that in a clas-
devices as in quantum bit commitmet5). sical two-person zero-sum strategic game, if one person
In quantum bit commitment, Alic&he sendercommits a ac_iop_ts a quantum strategy, then he_ has a better chance of
bit to Bob (the receiver. At some later time, Alice must Winning the game. Meyer’s strategy is as follows: two per-
show Bob which bit she has committed and convince himSons Alice and Bob take turns to flip a coin. Bob initially
that the revealed answer is the genuine bit that she has prBlaces the coin head up in a box. Thereafter, Alice, then Bob
viously committed. It has been shown that if Alice is given athen Alice take turns to fl|p.the coin. Alice wins if the coin is
quantum computer, she can always cheat and therefore subgad up and loses otherwise. o
commitments are never possible in the quantum case. This N the quantum version, the initial state of the coin is
protocol serves to remind us that even if a quantum computdePresented by a density matrigo so that in the basis
can be made, it may not always be possible to do better iflH).|T)} in which the symbolsH and T denote head and

the quantum situation. tail, respectivelyp, is given by
Recently, there have been some attenfipts9] to gener-
alize the classical notion of game theory to an analogous 10
quantum version. A natural question, therefore, is to find out Po=\o o/ @)

whether it is possible in a two-party classically fair game for
one party eq_wpped_ with a quantum c_:lewce to beat am.)the‘éuppos;e Alice adopts a quantum strategy, then Alice uses a
party. In particular, it has been found instructive to consider

. . deed. it has b q unitary rather than a stochastic matrix to act on the coin. Let
two-party coin-tossing gamg$]. Indeed, it has been found yisnitary transformation b, so that the state of the coin
in this particular two-party classically fair game that Alice,

. ) at the end of the transformation is given by=U1pOUJ{.
equipped with a quantum computer, can alwt'_:\ys take full adBob however continues to play with a classical probabilistic
vantage of her resources to win. In fact for Alice to beat Bob

in this classically fair game, it is necessary for Alice to “flip” strategy. Thus, Bob employs a convex sum of unitaigter-
S Y 9 ’ y P ministic) transformation, namely, he either flips the coin us-
the coin into a linearly superposed state of head and tail.

However, quantum systems are easily influenced by ing the transformatiorr with probability p or lets the coin

noisy environment. Thus, neither Alice nor Bob can avoidFeS)tVbqtgtzrggglgiﬁ:ys(t?t_e(s)slr\]/ghg;z identity transformation,
O 1

the effects of decoherence since realistic quantum devices
are especially prone to environment disturbad®s-13. In

this way, it is, therefore, useful to find out if Alice can con- = :(
tinue to maintain her superiority and advantage in a noisy !

2

0 1
1 0/
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Thus, the operatoF, leaves the coin in its original state, following quantum channelsil) depolarizing channel(2)
while the operatoF; “flips” the original state to the other phase-damping channéB) amplitude-damping channel, and
state. Thus, at the end of Bob’s turn, the state of the coiri4) two-Pauli channel.

should be described by the density matrix The coin-tossing game between Alice and Bob proceeds
as described in Sec. Il. However, Alice and Bob can now
p2=PF1psFi+(1-p)py. (3)  delay their decision to apply the unitary or classical flipping

and allow the state of the coin to evolve nonunitarily under
Finally, Alice “flips” the coin using the unitary transforma- the noisy environment. Specifically, depending on the deco-
tion U,, so that the final state of the coin jg=U,p,U}.  herence model, the game proceeds as follows. The initial
Meyer has shown that IQ selects the unitary matricds;  state of the coinxo){xo|=po is first allowed to evolved
=U,=H, whereH is the Hadamard transform given by ~ nonunitarily under the Kraus operatofdy!}, so that the
state becomeg|, . Alice then applies her unitary transforma-
_ i 1 1 4) tion on the coin, so that the resulting statepis Next, Bob
B J2\l1 —1)° can choose to delay his flip, thus allowing the state of the
coin to evolve into the statgy; under the Kraus operators
then p3=p,, independent of the probabilitg. Thus Alice  {M?}. Bob then performs his flip and changes the state of the
wins the game every time. coin to p,. This state is then allowed to evolve under Kraus

It is instructive to note that a classical coin has only tWOoperators{M?}. Finally, Alice performs her unitary transfor-
possible states, namely, head and tall. It is interesting to notgation and reveals the coin.
that the explicit form of the operatofs, andF, permits the

1 1/1 1 For the depolarizing channel, the Kraus operators are
2 211 1 Mb=+1-r/1,
One can easily verify thab commutes withF, andF, i.e., Ml =r/30i(j=1,2,3),
[G,Fj]=GFj—F;G=0 (j=0,1). (6)  where O<r;<3/4, ando;(i=1,2,3) are Pauli matrices.
We next proceed to describe in some detail the steps in

SinceF; is unitary, the following identity holds our calculation.

(i) We begin with the initial state of the coin #8) so that
its density matrix is given byy=|H)(H|.

(i) After a time t;, pg becomesp=po—(2r,/3)os,
wherer is the parameter associated with the depolarizing
channel.

(ii ) Alice then applies the general unitary transformation
I1l. ANOISY QUANTUM COIN-TOSSING GAME (apart from an irrelevant phase fadtor

G=(1-p)FoGF}+pF,GF], 7)

so thatG is independent upon the paramepeunder a clas-
sical coin flip.

The standard procedure of understanding the behavior of P P
one part of a bipartite quantum system is to extend the sys- cos— —sin—el1
tem to a larger ongin which the environmen(E) is incor- U= 2 2
porated so that the evolution of state becomes unitary. By o 1 ot
assuming complete positivity of the superoperators, it is pos- Sin> e'f1 Cosfe'(wl ¢
sible to study the nonunitarity evolution of the state of a
subsystem using an operator sum representation. In terms oh the coin, wheré, , ¢,, andw, are real numbers. The state
the operator sum or Kraus representation, we can then exf the coin consequently becomes
press this mapsS, more succinctly as

P1:U1P6UI
Pou=S(pin) =2, M ,piM .. ®) 1 (1 2rg) .
out wog e =5 + E—?l [sinf,(cosp o, +sing05)
Unitarity of the evolution of the bipartite quantum system +cos0,05],

also requires that the Kraus operators satisfy the condition
independent ofv;.

(iv) After a timet,, p; decohereswith parameter,)into
p1= 131+ a [sin6,(cCosg,o,+Sin ¢y 0,)+C0sh03],  where
a1=(1—4r/3)(1—4r,/3)/2.

The explicit expressions for the Kraus operators depend on (v) Bob continues to play classically by employing a con-
the type of channel chosen. Typically, one can consider thgex sum of unitary(deterministi¢ transformation, namely,

> MM, =1 (9)
m
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he either flips the coin using the transformatids,
with probability p or lets the coin rest in its original state
(using the identity transformatiory) with probability
(1—p). At the end of Bob’s turn, the state of the coin is de-
scribed by the density matriy,=31+ a;[Sin6,c0S¢ 0,
+(1—2p)sin 6;Sin ¢p105+ (1—2p)cosb; o3].

(vi) After a time t3, p, under decoherencewith 04l
parameter r3) becomes pj31+ a,[sin#,cospior+(1 )

—2p)sin 6;Sin ¢,0,+(1—2p)cosbyo;], where a,=(1—4r,/ Az
3)(1—4r,/3)(1—-4r4/3)/2. ot
(vii) Finally, Alice implements the unitary transformation 0

(apart from an irrelevant phase fagtor

05 0y
COS;- —sin5-e'”2
2 2 £
I 0 ’
sin—zei"’Z cos—ze‘(“’ﬁ ¢2) FIG. 1. A plot of the functiorf (x,y) for 0<x,y<0.5. Note that
2 2 the function is identically zero only i or y attains the maximum
value of 0.5.

so that the density matrix of the final state of the coin is
12+ ayé a,n transformation for Alice to optimize her strategy. We now
ps=U,psUl= *2 ? ) consider the functiorf (x,y) = Phe—1/2. It is straightfor-
@27 12- az¢ ward to show that

where f(x,y)=—4x2y+2(x?>+2xy)— (2x+y)+ 1. (10

= —sin#,c0S¢,Sin #,C0Sw,+ (1—2
¢ 16056, 2008wz ( P) Figure 1 shows the variation dfx,y) with x andy and

X (sin 61Sin ¢1Sin 6,SiN w,+ C0SH,€0SH,), Fig. 2 shows the variation of cross-section plbts,x) when
A . x=vy, f(x,0.2) andf(0,y) with respect tax ory. It is clear
n=1{sin ;08¢ [ coS(6,/2)e”'“2—sirf( §,/2)e' 2] that even if Alice immediately performs her transformation,

+(1-2p)[ - sindisiny(cod(2)e oD can educe et advantage drastically by introducing suf
+ Sir?(6,/2)€'“2) + cosh,sin §,] e 2,
B. Phase-damping channel
It is easy to work out the probability of getting a head at

the end of the game. This probability can be expressed as
Phead 1/2+ @€ In generalr,r,, andry are different but Mi=\T_r.1
in order to maintain her advantage, Alice would try to mini- 0 1=
mize any decoherence. Thus, we mayrsetrg for conve-

The Kraus operators are

nience. In this case, let us redefine new variablezndy M :\/r—( 1 0)
related torq,r,, andr; asx=2r,/3=2r4/3, y=2r,/3, we 1 "o o)’

then haveP .= 1+ (1—2x)?(1—2y)£]/2. In order to es-

tablish a Nash equilibrium, Alice implements the quantum ) 0O 0
operationsU; andU, in her strategy while Bob can adopt ML= \/ﬁ(o 1) (1=123).

unequal probabilities to his flip. It turns out that for a domi-
nant strategy, Bob should play head or tail with equal prob-
abilities. Since Bob continues to play “classically,” a Nash
equilibrium will be achieved when Alice maximizewith a
proper choice of angles in her unitary transformatidhs
andU, [16]. Moreover, Alice does not know the parameter
p, so she should set the coefficient pfto zero, i.e.,
sin 6;Sin ¢;sin #,sin w,+cos#;cosh,=0. It is not difficult to
show thaté,,,=1, when

Beginning with the initial statepy, after a timet; as
before,p, becomes

Po=MgpoM5'+MipoM1 +M3ZpeM3"= po.

In this case, an analysis similar to the previous case of the
depolarizing channel shows that a Nash equilibrium is estab-
lished when Alice uses a unitary transformation(=U,)

sin 6,C0S¢;Sin 6,c0Sw,= — 1. =H to act on the coin so that the state of the coin becomes

p1= Ulp(’)UI:G. Incidentally, such a strategy is always the

For convenience, Alice can choosg= 0,= /2, ¢1= ¢, best one possible for Alice to adopt in all the other channels
=0 andw;=w,=. In this caseU,=U,=H, which im-  discussed in this paper. Thus, henceforth, we need only con-
plies that the Hadamard transformation is an optimal unitansider Hadamard transformations for Alice’s “flip.”
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FIG. 2. Plots of the functioffi(x,y) for (a) x=y, (b) y=0.2 and
x=0.

Under decoherence, after a timg the statep; becomes
p1 - After Bob's flip, the state of the coin can be described by
the density matrix

/ / M2
p2=PF1piFi+(1-p)FopiFo=G— 7 0y.

(C)

Finally, after a time 3, p, becomes, under decoherence

with pé described by FIG. 3. Plots of the functiori(x,y) for (a) the phase-damping,

(b) amplitude-damping, an¢t) two-Pauli channels.
,=M3poM3T+M3p,M3T+ M3p,M3T=G— a0y,
P2 oP2™o P2 2P272 o where as=r,/2+r3/2—1,r5/2.
The probability of getting a head can then be computed
and is given byPpea=1— a3. If we letx=r3/2, y=r,/2 and
l1-a; O ) define the functiorf (x,y) = Ppeaq— 1/2, we then have

P3:U2P§U£:( 0

so that the state after Alice’s “flip” is

f(x,y)=2Xy—x—y+43. (11

ag
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C. Amplitude-damping channel IV. DISCUSSION
The Kraus operators are ,
There has been ample evidence that a quantum system has
j 1 0 tremendous advantages over a classical system. However, it
Mo= — | is also well known that quantum devices are extremely sen-
0 \/1_rj » L .
sitive to noise in the environment. Thus, any advantages due

N to quantum effects can be reduced or diminished through
Mllz( ') (j=1,2,3. decoherence effects. Indeed, our computations reemphasize
0 0 this fact.

In Meyer's quantum game, it is possible for one player
(Alice) who possesses a quantum device to play a non-zero-
1+ \/a—4 l sum game with another play€Bob) who continues to use

¢ 1— \/a—) , classical devices. However, it is clear from our computations

4 that if Bob suspects that Alice is using a quantum device, he
where (=[1—a,—4pry(l1-rz)] and a,=1-r,—r, Can easily eradicate any advantages due to the quantum de-
+1,r5. Thus, the probability of getting a head B..= (1  vice by simply delaying his response in his classical flip.
+\Ja,)/2. Lettingx=r4, y=r, and defining the correspond- Such delay has no significant effect if Alice is using classical

The final density matriyps is given by

1
P3—§

ing function f(X,y) = Ppeaq— 1/2, We have means. However, in a quantum system, such a time delay
inevitably introduces noise which can easily decohere the
1 state of the coin.
f(xy)= 5ny—x—y+1. (12) Since Bob can control the channel by introducing suffi-
cient noise, it is interesting to study the behavior of the func-
D. Two-Pauli channel tion f(0,y) in each case. In our computations, it is not hard to

. ) . see that the behavior df0,y) for the depolarizing, phase-
Finally, in the case of the two-Pauli channel, the Krausyamping, and two-Pauli channels are essentially the same,
operators are given by namely, f(0,y) varies linearly with the parametgrwhereas

M{)=\/1—r]-1, for the amplitude-damping channdl(0,y)=1/2y1—y. By
delaying his flip for a sufficiently long period, Bob can be
Mil: \ﬁ“l assured of a zero-sum game. In particular, under the current
2 )

technology, this time is less than 0.1 s for the ion trap and
: 10" ° for the optical cavity[15]. Thus, Alice’s employment
12= \/;03, (j=1,2,3. of'quantum device poses no significant danger or difficulty in
this quantum game. In fact, the same analysis holds for many
At the end of Alice’s flip, the state of the coin is given by Other quantum games, for example, the prisoner dilefitha
or coin-tossing experiments.
l-ag O In summary, we have shown that unless Alice can control
), the noise in the system completely, she stands to lose her
advantages through the utilization of quantum devices. Fur-
where  ag=3[r;+r,+r3—(riro+rorag+rary)+rirorg].  thermore, our analysis can be easily applied to Nhstate
The corresponding probability of getting a head this time isgeneralization of Meyer’s quantum garf. It is also inter-
Phead™ 1— ag. Definingx=r,=r3, y=r,, we find that the esting to explore its behavior under a corrupted so{itdé
function f(x,y) is given by

M

pP3=

0 g

f(x,y)=—3[x?y— (x3+2xy)+2x+y]+i. (13 ACKNOWLEDGMENT
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