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Structure of a superconducting vortex pinned by a screw dislocation
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Bronx, New York 10468-1589
~Received 22 June 2001; published 1 November 2001!

Spatial dependence of the magnetic field and the superconducting current in a flux line pinned by a screw
dislocation are computed. Interaction of a superconducting vortex with the chiral-symmetry breaking elastic
strain of a screw dislocation results in a helical current along the axis of the dislocation. It is argued that screw
dislocations make impossible a force-free arrangement of flux lines in the presence of a transport current.
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Pinning of vortices by screw dislocations can be of int
est because of the experimental evidence of this effec
Y–Ba–Cu–O.1–4 Studies of pinning by dislocations are a
most as old as the Abrikosov’s idea of superconducting v
tices~see, e.g., the review by Campbell and Evetts5 and ref-
erences therein!. More recently, these studies have be
revived in connection with high-temperatu
superconductors.6 They are normally based upon the expa
sion of scalar parameters of a superconductor, such as,
Tc , in terms of the deformation tensor and its trace.

A superconducting vortex coupled to a screw dislocat
is an interesting theoretical problem because of the bro
chiral symmetry of the deformation field produced by suc
dislocation. This makes possible a linear relation between
polar vector of the current densityj and the axial vector of
the magnetic fieldB: j}B, the relation that would be other
wise prohibited by the invariance with respect to reflectio

A closely related problem of a vortex coupled to a spi
defect has been studied by Ivlev and Thompson7,8 for an
extreme case of a layered superconductor with a Josep
coupling between the layers. In such a case, a spiral de
running perpendicular to the layers, geometrically conne
them by a continuous helical path around the defect. Iv
and Thompson elegantly solved this problem in spiral co
dinates and, in accordance with the above symmetry a
ments, demonstrated the existence of a ‘‘fountainlike’’ c
rent along the axis of the defect.

The purpose of this paper is to solve the problem in
opposite extreme case of a flux line coupled to a screw
location in an isotropic three-dimensional superconductor
such a case the existence of longitudinal currents paralle
the dislocation core is somewhat less obvious. The mode
suggest is complementary to the model of Ivlev and Thom
son. It is based upon the description of dislocations wit
continuous elastic theory. We find that superconducting c
rents do flow along screw dislocations in three-dimensio
superconductors, although the spatial dependence of t
currents is different from that found in Ref. 7. Our resu
should be directly relevant to MgB2 and conventional isotro
pic superconductors. Y–Ba–Cu–O, where the coupling
tween vortices and screw dislocations has been experim
tally observed, falls somewhere between the two models

The free energy of the system isF5FD1FN1FGL ,
whereFD is the energy of the dislocation,FN is the energy
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of the normal electron liquid in the absence of the magne
field, andFGL is the Ginzburg–Landau free energy,

FGL5E d3r F ~“3A!2

8p G1E d3r Fauc u21
b

2
uc u4

1
\2

4
~Dic!mi j

21~D jc!* G . ~1!

HereA is the vector potential (B5“3A), c5ucuexp(if) is
the complex order parameter of the superconducting phasa
andb are constants,Di is the gauge-invariant derivative,

Di5¹ i2
2ie

\c
Ai , ~2!

and mi j is the tensor of effective masses. For an isotro
superconductor, in the absence of crystal defects,mik
5md ik .

The presence of a dislocation results in a nonzero ela
strain,

ui j 5
1
2 ~¹ iuj1¹ jui !. ~3!

At distances exceeding a few lattice spacings from the
location core, the components of the dimensionless tensoui j
are small9 and the parameters of the superconductor, suc
a,b, andmi j

21 , can be expanded into the power series ofui j .
We shall see that for a screw dislocation Tr(ui j )50, that is,
screw deformations change the symmetry of the crystal
not the local density. Thus to the lowest order inui j , the
interaction of the screw dislocation with the Ginzburg
Landau order parameter can be introduced by the subs
tion

mi j
21→ 1

m
~d i j 1gui j !, ~4!

whereg is a dimensionless parameter. From the physics
the electron states in crystals, it is clear that the effect of
lattice deformations on the tensor of effective masses
small as long asui j are small. If some ofui j are large, the
effect should be also large. Consequently,g must be of order
unity.

Since crystal defects are insensitive to superconductiv
FGL must have a very weak dependence onc. We will ne-
©2001 The American Physical Society03-1
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glect that dependence. Then the variation ofFGL with respect
to c andA gives the following two Ginzburg–Landau equ
tions:

2
\2

4m
Digi j D jc1ac1bucu2c50 ~5!

and the Maxwell equation¹3B5(4p/c) j with

j i52gi j F ie\

2m
~c* ¹ jc2c¹ jc* !1

2e2

mc
Aj uc u2G , ~6!

wheregi j 5d i j 1gui j .
Equation~5! describes the vortex core where the conc

tration of Cooper pairs,ucu2, changes from zero at the cent
of the vortex to a constant value,uau/b, at distances exceed
ing the coherence lengthj5\/2(muau)1/2. At such distances
the second Ginzburg–Landau equation becomes

lL
2gi j

21~¹3B! j1Ai5
F0

2p
¹ if, ~7!

wheref is the phase ofc, F05hc/2e is the flux quantum,
andlL5(mc2/8pe2ucu2)1/2 is the London penetration depth
We shall consider the case oflL@j which is relevant to
high-temperature superconductors. At a large distance f
the vortex core, whereB exponentially goes to zero, Eq.~7!
reduces toA5(F0/2p)¹f. After the integration over a
closed distant contour enclosing the vortex, it produces
conventional condition of the quantization of the magne
flux. This condition remains unchanged by the deformatio
Applying curl to both sides of Eq.~7!, one obtains a modified
London equation

lL
22Bi1e i jk¹ jgkl

21~¹3B! l50 ~8!

that is valid outside the vortex core.
We can now turn to the problem of a flux line centered

a screw dislocation parallel to theZ-axis of the crystal. It
should be naturally studied in circular cylindrical coord
nates:z,r ,w. At distances,r, exceeding a few lattice spacing
from the core of the screw dislocation, the only nonze
component of the displacement fieldu is9

uz5pb
w

2p
, ~9!

wherep561 is the chirality of the screw dislocation andb
is the Burgers vector that coincides with the lattice spacing
the Z-direction. Consequently, the only nonzero compone
of the elastic strain are

uzw5uwz5p
b

4pr
. ~10!

Although the linear elastic theory fails near the axis of t
dislocation, for the purpose of our study the above formu
are exact as long as the coherence lengthj and the London
penetration depthlL are greater thanb. As shown below, the
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significant effect of the dislocation on the superconduct
vortex comes from the fact that the elastic strain given
Eq. ~10! is long range.

It is convenient to introduce a dimensionless coordin
r5r /lL and a dimensionless small parameterb
5gb/4plL . Substituting Eq.~10! into Eq.~8!, and retaining
terms of the lowest order inb, one obtains the following two
equations for nonzero components of the magnetic fi
Bz(r) andBw(r):

Bz5
1

r

d

dr Fr dBz

dr
1

pb

r

d

dr
~rBw!G , ~11!

Bw5
d

dr F1

r

d

dr
~rBw!1

pb

r

dBz

dr G . ~12!

For a flux line parallel toZ, the conditionb!1 results in
Bw!Bz for all r .j. Consequently, the effect of the disloc
tion on Eq.~11! can be neglected and the system of equati
for Bz(r) and Bw(r) can be solved by iteration. Puttingb
50 in Eq.~11! one obtains a conventional solution for th
Z-component of the magnetic field inside the flux line,

Bz~r!5
F0

2plL
2

K0~r!, ~13!

whereK0 is the modified Bessel function and the coefficie
in front of K0 is such that the total magnetic flux through th
XY-plane equalsF0. Then Eq.~12! can be reduced to the
following form:

d

dr S r
dBw

dr D2S r1
1

r DBw52
pbF0

2plL
2

K2~r!. ~14!

The solution of this equation, that goes to zero atr→`, is

Bw~r!5
pbF0

4plL
2 FCK1~r!1K1~r!ln~r!2

1

r
K0~r!G , ~15!

whereC is a constant of integration~to be computed later!.
The current density in the flux line is given byj

5(c/4p)“3B. The w-component ofj is the conventional
vortex current

j w~r!52
c

4plL

dBz

dr
5

cF0

8p2lL
3

K1~r!. ~16!

The unusual feature of the problem, as in Ref. 7, is the p
ence of theZ-component of the current

j z~r!5
c

4plL

1

r

d

dr
~rBw!. ~17!

Substituting hereBw of Eq. ~15!, we obtain

j z~r!5
pbcF0

16p2lL
3 F2

r
K1~r!2K0~r!ln~r!2CK0~r!G .

~18!
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Note that the dependence ofj z on r, given by Eq.~18!,
differs from the one obtained by Ivlev and Thompson.7

The exact value of the constantC depends on the structur
of the vortex core. This problem is more involved as it r
quires solution of the full Ginzburg–Landau theory forc(r)
andA(r), as well as the knowledge ofmi j (r) near the core
of the dislocation. The essential role of the vortex core, ho
ever, is that it makesBz , Bw , j z , and j w nondivergent func-
tions ofr at r→0. This provides zero total superconductin
current flowing parallel to the dislocation,I z50. Assuming a
normal core of radiusr 5j, and introducingk5lL /j, an
estimate ofC can be obtained from the conditionBw(1/k)
50, which is equivalent to

I z5E
1/k

`

j z~r!2prdr50. ~19!

This condition gives

C5 ln~k!1kK0~1/k!K1
21~1/k!. ~20!

A few observations are in order. The dependence ofC on
the core cutoff radius is rather weak. This can be seen f
the fact thatC changes fromC50.1916 atk51/A2 ~which
is the boundary of type-II superconductivity! to the
asymptotic form:C52 ln(k), at k→`. Consequently, thek
dependence ofj z(r) is also weak.

For k5100 andp51, j z(r ) is shown in Fig. 1. The maxi-
mal longitudinal current, j z;(b/j) j 0 ~with j 0

5cF0/12A3p2jlL
2 being the Ginzburg–Landau critical cu

rent! occurs atr;j near the core of the vortex. The long
tudinal currentj z changes sign atr of orderlL . At r @lL it
becomes exponentially small. For a screw dislocation of
opposite chirality, the current is in the opposite direction.

A screw dislocation either ends at the surface of the cr
tal or forms a loop inside the crystal. In the first case,
boundary condition,nigi j D jc50 ~with n being the unit vec-
tor normal to the boundary!, prohibits currents through th
surface of the superconductor. This results in a surface
. G
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rent that flows outward from the vortex core atj,r ,lL . In
the case of a dislocation loop, the flux line will follow th
loop.

The coupling of the flux line to a screw dislocation is th
(b/j)2 fraction of the vortex-core energy available for pi
ning. In high-temperature superconductors, where the co
ence length can be of order of the Burgers parameter, di
cations can provide a rather strong pinning,6 in accordance
with observations.1–4 One should keep in mind, howeve
that the presence of theBw component of the field in the flux
line pinned by a screw dislocation makes impossible
‘‘force-free’’ situation in which the field is parallel to the
transport current. In that sense columnar pins with no chi
ity have the advantage over screw dislocations.
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FIG. 1. Radial dependence of the longitudinal current density
a superconducting vortex coupled to a screw dislocation.
1Ch. Gerber, D. Ansemetti, J. G. Bednorz, J. Mannahart, and D
Schlomm, Nature~London! 350, 279 ~1991!.

2M. Hawely, I. D. Raistrick, J. G. Beery, and R. J. Houlton, S
ence251, 1587~1991!.

3A. Diaz, L. Mechin, P. Berghuis, and J. E. Evetts, Phys. Rev. L
80, 3855~1998!.

4B. Dam, J. M. Huijbregtse, F. C. Klaassen, R. C. F. van der Ge
G. Doornbos, J. H. Rector, A. M. Tesla, S. Freisem, J.
.

t.

t,
.
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