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Structure of a superconducting vortex pinned by a screw dislocation
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Spatial dependence of the magnetic field and the superconducting current in a flux line pinned by a screw
dislocation are computed. Interaction of a superconducting vortex with the chiral-symmetry breaking elastic
strain of a screw dislocation results in a helical current along the axis of the dislocation. It is argued that screw
dislocations make impossible a force-free arrangement of flux lines in the presence of a transport current.
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Pinning of vortices by screw dislocations can be of inter-of the normal electron liquid in the absence of the magnetic
est because of the experimental evidence of this effect ifield, andFg, is the Ginzburg—Landau free energy,
Y—-Ba—Cu—0'"* Studies of pinning by dislocations are al- ,

most as old as the Abrikosov’s idea of superconducting vor- x :f & (VXA) +f &

tices(see, e.g., the review by Campbell and Evettisd ref- GL 87

erences therejn More recently, these studies have been 52

revived in  connection  with  high-temperature +—(Diy)m; YD p)* } _ (1)
superconductor$They are normally based upon the expan- 4

sion.of scalar parameters of.a supercondugtor, such as, €.8hnre A is the vector potentialB=V X A), ¢=|y|expld) is

Tc, in terms of the deformation tensor and its trace. he complex order parameter of the superconducting phase,
A superconducting vortex coupled to a screw dislocationyngp, are constantsD; is the gauge-invariant derivative,

is an interesting theoretical problem because of the broken

chiral symmetry of the deformation field produced by such a 2ie

dislocation. This makes possible a linear relation between the Di=Vi— 7oA 2

polar vector of the current densifyand the axial vector of

the magnetic fieldB: jo=B, the relation that would be other- and m; is the tensor of effective masses. For an isotropic
wise prohibited by the invariance with respect to reflectionssuperconductor, in the absence of crystal defeats,

A closely related problem of a vortex coupled to a spiral=Mdi -
defect has been studied by Iviev and Thompdofor an The presence of a dislocation results in a nonzero elastic
extreme case of a layered superconductor with a Josephs&Hain,
coupling between the layers. In such a case, a spiral defect, 1
running perpendicular to the layers, geometrically connects Ui =2 (Vitj+V;u7). ®)
them by a continuous helical path around the defect. Ivlewt distances exceeding a few lattice spacings from the dis-
and Thompson elegantly solved this problem in spiral coor{ocation core, the components of the dimensionless tansor
dinates and, in accordance with the above symmetry arguare smafl and the parameters of the superconductor, such as
ments, demonstrated the existence of a “fountainlike” cur-a,b, andmi_jl, can be expanded into the power series;pf
rent along the axis of the defect. We shall see that for a screw dislocation @i§=0, that is,

The purpose of this paper is to solve the problem in thescrew deformations change the symmetry of the crystal but
opposite extreme case of a flux line coupled to a screw disnot the local density. Thus to the lowest orderup, the
location in an isotropic three-dimensional superconductor. Innteraction of the screw dislocation with the Ginzburg—
such a case the existence of longitudinal currents parallel tbandau order parameter can be introduced by the substitu-
the dislocation core is somewhat less obvious. The model wgon
suggest is complementary to the model of Ivlev and Thomp-
son. It is based upon the description of dislocations within 1
continuous elastic theory. We find that superconducting cur- my; "= (6 T gu), (4)
rents do flow along screw dislocations in three-dimensional
superconductors, although the spatial dependence of thesdereg is a dimensionless parameter. From the physics of
currents is different from that found in Ref. 7. Our resultsthe electron states in crystals, it is clear that the effect of the
should be directly relevant to MgBand conventional isotro- lattice deformations on the tensor of effective masses is
pic superconductors. Y—-Ba—-Cu-O, where the coupling besmall as long asi;; are small. If some ofy;; are large, the
tween vortices and screw dislocations has been experimeeffect should be also large. Consequerdlyust be of order
tally observed, falls somewhere between the two models. unity.

The free energy of the system i=Fy+ Fyt+ FoL, Since crystal defects are insensitive to superconductivity,
where 7y is the energy of the dislocatiotfy is the energy  Fg_ must have a very weak dependencedanWe will ne-
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glect that dependence. Then the variatiodFgf with respect  significant effect of the dislocation on the superconducting
to ¢ andA gives the following two Ginzburg—Landau equa- vortex comes from the fact that the elastic strain given by

tions: Eq. (10) is long range.
It is convenient to introduce a dimensionless coordinate
K2 p=r/N, and a dimensionless small parametes
~amPigiDjytay+ bl#]?¢=0 (5 =gb/4w\, . Substituting Eq(10) into Eq.(8), and retaining
terms of the lowest order i3, one obtains the following two
and the Maxwell equatioW X B=(4/c)j with equations for nonzero components of the magnetic field
B.(p) andB,(p):
e e ey 1 d[ dB, pg d
P Silam T e ) Bz=—d—[pd—z+%d—<p8¢)}, (10
p dp p p dp
whereg;; = 6j; +gu;; .
Equation(5) describes the vortex core where the concen- d{1ld pB dB,
tration of Cooper paird |2, changes from zero at the center B«»:%h ﬁ(PBwH? dp } (12)

of the vortex to a constant valugg|/b, at distances exceed-
ing the coherence lengif~ ﬁ/2(m|a|)1/2, At such distances For a flux line parallel taZ, the conditionB<1 results in
the second Ginzburg—Landau equation becomes B,<B, for all r>¢. Consequently, the effect of the disloca-
tion on Eq.(11) can be neglected and the system of equations
S 0 for B,(p) andB,(p) can be solved by iteration. Putting
NLGjj (VXB)jJFAi:EVi(ﬁ, (7) =0 in Eq(11) one obtains a conventional solution for the
Z-component of the magnetic field inside the flux line,
where ¢ is the phase ofy, ®,=hc/2e is the flux quantum,
and\ = (mc/8me?|y|?)Y?is the London penetration depth. Dy
We shall consider the case af >¢ which is relevant to B.(p)= PN Ko(p),
high-temperature superconductors. At a large distance from
the vortex core, wherB exponentially goes to zero, E(f)  whereKg is the modified Bessel function and the coefficient
reduces toA=(dy/27)V . After the integration over a in front of Kq is such that the total magnetic flux through the
closed distant contour enclosing the vortex, it produces th&Y-plane equalsb,. Then Eq.(12) can be reduced to the
conventional condition of the quantization of the magneticfollowing form:
flux. This condition remains unchanged by the deformations.

(13

Applying curl to both sides of Eq7), one obtains a modified d dB(p) ( 1) 5 pBP, Ko(p) 14
: —|p——=|—| p+—|B,=— .
London equation dp P dp P p|o¢ 27)\5 2(p
M %Bi+ € V0 (VX B),=0 (8)  The solution of this equation, that goes to zera -atx, is

that is valid outside the vortex core. pBD
We can now turn to the problem of a flux line centered athp(p)z 2
a screw dislocation parallel to th&-axis of the crystal. It AL
should be naturally studied in circular cylindrical coordi-
natesz,r,¢. At distancesrt, exceeding a few lattice spacings
from the core of the screw dislocation, the only nonzero
component of the displacement fialdis®

, (15

1
CKi(p)+Ki(p)In(p) —;Ko(p)

whereC is a constant of integratiofio be computed later

The current density in the flux line is given by
=(c/4m)V XB. The ¢-component of is the conventional
vortex current

¢
u,=pb-—, 9) i c dB cd
“Pon lo(p)=— : :

—=———K . 16)

wherep= =1 is the chirality of the screw dislocation aibd ) )

is the Burgers vector that coincides with the lattice spacing inl "€ unusual feature of the problem, as in Ref. 7, is the pres-
the Z-direction. Consequently, the only nonzero component§Nce of theZ-component of the current

of the elastic strain are 1d

, c
b Jz(P)ngg(qu,)- (17)

Uyp,=U,,=p——. (10
womer VA Substituting her@,, of Eq. (15), we obtain

Although the linear elastic theory fails near the axis of the

dislocation, for the purpose of our study the above formulas ()= PBCPo EKl(p)— Ko(p)In(p)— CKo(p) |.
are exact as long as the coherence lerggind the London 16172)\E P
penetration depti, are greater thah. As shown below, the (18
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Note that the dependence ¢f on p, given by Eq.(18), JON A
differs from the one obtained by Ivlev and Thompgon. 1.5 B E— : e :
The exact value of the constaitdepends on the structure
of the vortex core. This problem is more involved as it re- ;] i
quires solution of the full Ginzburg—Landau theory f{p)
andA(p), as well as the knowledge ofi;(p) near the core =100
of the dislocation. The essential role of the vortex core, how- 927 i
ever, is that it makeB,, B,, j,, andj, nondivergent func-
tions of p at p—0. This provides zero total superconducting 0.0
current flowing parallel to the dislocatioh,= 0. Assuming a
normal core of radiug =¢, and introducingk=X\ /&, an 054 |
estimate ofC can be obtained from the conditidd,(1/x) '
=0, which is equivalent to
-1.01 -
Iz=f iAp)2mpdp=0. (19 0.0 0.5 1.0 15 20 25 30 , 35
1/k r/}\vL
This condition gives FIG. 1. Radial dependence of the longitudinal current density in

1 a superconducting vortex coupled to a screw dislocation.
C=In(x)+ «Kqo(1/k)K; “(1/k). (20

A few observations are in order. The dependenc€ oh  rent that flows outward from the vortex coregtr <\, . In
the core cutoff radius is rather weak. This can be seen fronthe case of a dislocation loop, the flux line will follow the
the fact thatC changes fronC=0.1916 atx=1/,/2 (which  loop.

is the boundary of type-ll superconductivityto the The coupling of the flux line to a screw dislocation is the
asymptotic form:C=2In(«), at k—. Consequently, the  (b/£)? fraction of the vortex-core energy available for pin-
dependence of,(p) is also weak. ning. In high-temperature superconductors, where the coher-

For k=100 andp=1, j,(r) is shown in Fig. 1. The maxi- ~ence length can be of order of the Burgers parameter, dislo-
mal longitudinal  current, j,~(b/§)jo (with j,  cations can provide a rather strong pinnfnig, accordance
=cd/12/372EN] being the Ginzburg—Landau critical cur- with observationd™ One should keep in mind, however,
reny occurs atr ~¢ near the core of the vortex. The longi- that the presence of ti&, component of the field in the flux
tudinal currenj, changes sign atof orderh; . Atr>X_ it  |ine pinned by a screw dislocation makes impossible the
becomes exponentially small. For a screw dislocation of theforce-free” situation in which the field is parallel to the
opposite chirality, the current is in the opposite direction.  yransport current. In that sense columnar pins with no chiral-

A screw dislocation either ends at the surface of the CrYSity have the advantage over screw dislocations.
tal or forms a loop inside the crystal. In the first case, the
boundary conditionn;g;; D=0 (with n being the unit vec- I thank Lev Bulaevskii and Tolya Kuklov for useful dis-
tor normal to the bounda)y prohibits currents through the cussions. This work has been supported by the U.S. Depart-
surface of the superconductor. This results in a surface cument of Energy through Grant No. DE-FG02-93ER45487.
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