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Greenberger-Horne-Zeilinger nonlocality in phase space
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We show that the continuous-variable analogues to the multipartite entangled Greenberger-Horne-Zeilinger
states of qubits violate Bell-type inequalities imposed by local realistic theories. Our results suggest that the
degree of nonlocality of these nonmaximally entangled continuous-variable states, represented by the maxi-
mum violation, grows with increasing number of parties. This growth does not appear to be exponentially large
as for the maximally entangled qubit states, but rather decreases for larger numbers of parties.
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Entanglement and nonlocality are the most outstandingontinuous-variable GHZ statg¢43] and thereby to prove
features of quantum mechanics. In the rapidly advancingheir nonlocality. Since these states have a positive Wigner
field of quantum communication and computation, entangledunction, we shall follow the convenient strategy of Ban-
states are the key ingredients: they enable quantum teleporszek and Wodkiewicg8] who exploited the fact that the
tation[1], quantum cryptographf2], and many other poten- Wigner function is connected to the quantum mean value of
tially useful schemes. Bell showed that nonlocality can bethe photon number parity operator. Relying on this connec-
revealed via the constraints that local realism imposes on thiéon, we will demonstrateN-party nonlocality using mean-
statistics of two physma”y Separated Syste{m]s'rhese con- value inequalitieilz:l, and we do not follow the Original
straints, expressed in terms of the Bell inequalities, can b&HZ program utilizing a contradiction to local realism in a
violated by quantum mechanics. Entanglement does not afingle measurement. N
tomatically imply nonlocality. The so-called Werner states L€t us identify the “position” and “momentum” of a
are mixed states that are inseparable, but do not violate arijarticle with the quadrature amplitudes of a single electro-
Bell inequality[4]. Also pure entangled states can, if associ-magnetic modethe real and imaginary part of the mode’s
ated with a positive Wigner function, directly reveal a local @nhihilation operator In Ref.[13], it has been shown that a
hidden-variable descriptiof8]. sequence of beam splitter operations,

Towards possible applications in quantum communica- - - 1
tion, both thpeoretical grl?d experimer?tal investigations in- By n(m/4)By 2 -1(cos (1/13)
creasingly focus on quantum states with a continuous spec- ... XE —1
trum defined in an infinite-dimensional Hilbert space. These XX Baglcos (1/\/N)),
states can be relatively easily generated using squeezed lighpplied to one momentum squeezed vacuum mode INand
and beam splitters, as for instance the entangled two-mode 1 position squeezed vacuum modes 2 throMgkields an
squeezed vacuum state that has already proven its usefulndégnode state witlN-party entanglement between all modes.
for quantt:rr: teleportatior{5]. T?e tWijOd? tiquee'ze'd Here, an ideal(phase-frep beam splitter operatioi;; ()
vacuum state is an approximate version of the origina : . Lo . o
Einstein-Podolsky-Rose(EPR state[6] where the quadra- BCtS ona palr ofAmocAiesandJ V\gth'ann|h|lat|onAopeArato'ral
ture amplitudes of the electromagnetic field play the roles of"d 8j like aj—a; cos¢+a sing, and aj—a; sin¢
position and momentum of a particle. Its Wigner function is —& cosé. The Wigner function of the pure entangled
positive everywhere and hence it has a local hidden-variabl®-mode state is
description[3]. Thus, attempts to derive for this state viola- N
tions of Bell inequalities based on homodyne measurements \y(x p)= (_) exp{
of the quadratures failef7]. However, whether nonlocality
is uncovered depends on the observables and the measure- N
ments considered in a specific Bell inequality and not only +£ z (p»—p-)z}
on the quantum state itself. It was shown by Banaszek and N b
Wodkiewicz[8], that the two-mode squeezed vacuum state is
nonlocal, as it violates a Clauser-Horne-Shimony-Holt
(CHSH) inequality[9] when measurements of photon num- ] @)
ber parity are considered.

The nonlocality of the multipartite entangled qubit wherex=(x;,Xz, ... Xy) andp=(p1,Pz2, ... ,pn) are the
Greenberger-Horne-ZeilingdGHZ) states carin principle  positions and momenta of tfemodes and is the squeezing
be manifest in a single measurement and need not be statigarameter(with equal squeezing in all initial modesThe
tical [10] as the violation of a Bell inequality that relies on state W(x,p) is always positive, symmetric among tie
mean values. But Mermin and othe1,12 also derived modes, and becomes peaked aki—x;=0 (i,j
Bell-CHSH inequalities foN-particle systems. The aim of =1,2,... N) andp;+p,+---+py=0 for large squeezing
this paper is to apply thoseN-party inequalities to r. For N=2, it equals the well-known EPR-state Wigner
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function that approache${(x; —x,) 8(p;+p,) in the limit of  run of the measurements, whes€a,) becomes either-1

infinite squeezing. Any nonzero squeezing yieNipartite  or —1 and so does(ay). Thus, induction proves Eq7) for

entanglement and the position and momentum correlationsny N with

can be exploited for quantum teleportatid] between any , , ,

two of N parties with the assistance of the remaindg 2~ B2=[o(a1) +o(ay)]o(az) +[o(a) —o(a)]o(az) =*2,

parties[13]. (8)
In order to prove the nonlocality exhibited by the statewhich is trivially true (the expression8}, are equivalent to

W(x,p), we use the fact that the Wigner function is propor-g ¢ with all thea, anda/ swappedl Within the frame-

tional to the quantum expectation value of a displaced parity, i of |ocal realistic theories with the hidden variables

operator15]. We obtain the relatiofig] =(\1. )z, . .. Ay) and the normalized probability distribu-
2N 2\N tion P(N), we obtain an inequality for the average value of
W(“):<_ <H(“)>:(‘) N, @ Bv=Bu,
o a
dhdN, .. .dANP(N)BR(N) | <2. 9
where a=x+ip=(ay,a,, ...,ay) andll(a) is the quan- f e NP(MBN(N) ©

tum expectation value of the operator By the linearity of averaging, this is a sum of means of

. N A N A P products of ther(a;) ando(a/). For example, iN=2, we
(@) =®_11j(@)=®;-1Di(a;)(—1)"Dj(a;). (3)  obtain the CHSH inequality

The operatord;(«;) are phase-space displacement opera- |C(as,a,)+ C(ay,az) +C(a,a,) ~ Clay.2z)[<2,

(10)
tors acting on modé Thus,II(e«) is a product of displaced
parity operators given by with the correlation functions
(@) =11 (@)~ 1T (@), @ C(al,a2>=f dN 10N P(N 1 N2 o(ar N ) (@ \ ).
11

with the projection operators ) N ) )
Following Bell [3], an always positive Wigner function can

) o serve as the hidden-variable probability distribution. In this

Hi(+)(ai):|5i(ai)2 |2k><2k||5iT(ai), (5) sense, the EPR-state Wigner function could prevent the
k=0 CHSH inequality being violated: W(Xq,p1,X2,P2)

=P(\1,\,). The same applies to the general Wigner func-

A . . tion in Eq. (1): W(x,p)=P(A) could be used to construct
11 )(ai):Di(ai)IZ,O |2k+1)(2k+1[D{(«;), (6)  correlation functions

©

corresponding to the measurement of an efpemity + 1) or C(a)=f dhidh; .. dA\P(A)

an odd (parity —1) number of photons in mode This

means that each mode is now characterized by a dichotomic Xo(ag,N)o(as,Np)---o(ay,\y), (12
variable similar to the single-particle spin or the single-

photon polarization. Different spin or polarizer orientationswWherea=(a;,a,, ... ay) . However, for parity measure-

are replaced by different displacements in phase Spac@]ents on each mode with possible resutts and different
These different settings of a measurement with two possiblgettings by different displacements, this would require un-
outcomes*1 for each possible setting is exactly what we bounded & functions for the local objective quantities
need for the nonlocality test. o(a;,\;) [8], as in this case the relation

In the case oN-particle systems, such a nonlocality test is _ N
possible using theN-particle generalization of the two- C(a)=Il(a)=(m/2)"W(a) (13
particle Bell-CHSH inequality12]. This inequality is based
on the following recursively defined linear combination of
joint measurement results

holds. This relation, which directly relates the correlation
function to the Wigner function, is indeed crucial for the
nonlocality proof of the continuous-variable states in @9

1 , For the EPR state withi=2, we can now look at the com-
Bn=zlo(an) +o(ay)IBn-1 bination[8]

*zlo(an) —o(ay) 1By, = +2, Y B,=11(0,0+11(0,8) + [(,0)~ (e, 8),  (14)

where o(ay)=*1 ando(ay)==*1 describe two possible which according to Eq(10) satisfies|3,|<2 for local real-
outcomes for two possible measurement settidgsoted by istic theories. Here, we have chosen the displacement set-
ay anday) of measurements on theéth particle. Provided tings a;=a,=0 anda;=a, as=g.

thatBy_,=*2 andBy_,=*2, Eq.(7) is true for a single Let us write the states in Eql) as

022106-2
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=3 T Tl

N
H(a)=exp{—2 cosh2 >, |aj|?
=1
, N
+Sinh2‘{NZ (aiaj+afaf
i

(19

N
—E (ozi2+ai*2)“.
=1

For N=2 and a=pB=i7 in terms of the real displace-
ment parameter7=0 [16], these states vyieldB,=1
+2 exp(27cosh 2)—exp(—4Je"?"). In the limit of large
r(cosh2~e*?/2) and small7, this B, is maximized for
Jet?2'=(In2)/3: BY*~2.19(8], which is a clear violation
of the inequality| B,|<2. Smaller violations occur also for
smaller squeezing and biggétr For any nonzero squeezing,
some violation takes pladsee Fig. L

Let us now examine the three-mode state andNseB in
Eq. (15). According to the inequality of the correlation func-
tions derived from Eqs(7)—(9) with N=3,

|C(a1,a2,aé)+c(al,aé,a3)

+C(ay,a;,a3) —C(ay,ay,a3)|<2, (16)
for the possible combination
B3ZH(010”}/)+H(01B10) +H(a1010)_1_[(alﬁl’y)i
17

a contradiction to local realism does not occur only4|
=<2. The corresponding settings here arg=a,=a3z=0
and a;=«, a;=p8, and az;=vy. With the choice «
=\7e'%1, B=7e' %2, and y=\/Je'%3, we obtain

PHYSICAL REVIEW /3 022106

FIG. 1. Violations of the inequalityBy|<2
imposed by local realistic theories with the en-
tangled two-mode EPRN=2, as in Ref.[8]),
three-mode GHZ Nl=3), four-mode GHZ N
=4), and five-mode GHZN=5) states.

Bs= >, exp(—27 cosh 2 — 27 sinh 2 cos 2,)

i=1

—exr{ —6Jcosh2—37sinh2

3
X X, [0S 2p;—4 cog b+ )] -

17 ]

(18)

Apparently, because of the symmetry of the entangled three-
mode state, equal phasg¢sshould also be chosen in order to
maximize B;. The best choice ig,= ¢,= ¢p3= /2, which
ensures that the positive terms in Ef8) become maximal
and the contribution of the negative term minimal. Therefore
we again use equal settings= 8= y=i+/7 and obtain

B;=3exg —2.7 cosh2 +27 sinh 2 /3)—exp(—6.7e"2").
(19

The violations of Bs| <2 that occur with this result are simi-
lar to the violationgd B,| <2 obtained for the EPR state, but
the N=3 violations are even more significant than tNe
=2 violations(see Fig. 1 In the limit of larger (and small
J), we may use coshrzsinh 2~e*?/2 in Eq. (19). Then
B; is maximized for 7e*?" =3(In3)/16: B3*~2.32. This
requires even smaller displacemegitthan in theN=2 case
for the same squeezing.

Let us now investigate the casBs=4 andN=5. From
Eqgs.(7)—(9) with N=4, the following inequality for the cor-
relation functions can be derived:

3|C(a1,a;,a3,a4)+C(a;,a,,a3,a4) +C(ay,a5,a3,a4)
+C(ay,a,,a3,84) +C(ay,a,,a3,a,)
+C(ay,a;,a3,a;5) +C(ay,a,,83,a;)

+C(ay,a5,a3,a4) +C(ay,a,,a3,a,)
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+C(a},a},a3,a,)—C(a],a,,a3,a,) tion is that in all four cqsesNz 2,3,4,5),_vio|ations occur for
any nonzero squeezing. This requires the presence of
—C(ay,a;,a3,a,) —C(ay,a,,a3,a,) N-partite entanglement for any nonzero squeezing, which is

consistent with the results in Rdf13]. Moreover, we see

that not only for large squeezing but also for modest finite
(20) squeezing, the significance of the violatiolas optimal dis-

placements7) grows with increasingN.
It is symmetric among all four parties as any inequality de- In the following, we will examine the general case Nf
rived from Eqs.(7)—(9) is symmetric among all parties. For parties. How does the maximum violation of the Bell-type
the settingsa;=a,=az=a,=0 and a}=a, a)=p, o} inequalities derived with the continuous-variable GHZ states
—y, and 4= 8, complying with local realism implie&3,| in general evolve with increasing ngmber of parties, in par-
<2 where ticular, compared to the exponential growth for the qubit

' GHZ stated11,12? At least forN<5, the maximum viola-

B,=%[11(0,0,05) +11(0,0,y,0)+ 11(0,3,0,0)+ I1(,0,0,0  tion grows, and this growth does not appear to be exponen-
tially large, but rather seems to decrease. This conjecture has

—C(ay,a3,a3,a4) —C(ay,a,,a3,a4)

—C(ay,a3,a3,a,)|<2.

+11(0,0,y,6) +11(0,8,0,6) +11(,0,00) not been proven, since we did not consider all possible set-
+11(0,8,7,0)+ I1(,0,7,0) + I1(a, 8,0,0) tings (all possible combinations of; and «{). However,
e e e there are strong hints that our choice af=0 and o]
—I(a,B,y,0)~11(«,8,0,0) —11(,0,y,9) =i\/J is near optimal. In particular, that the nonlocality is
_ _ B always revealed for arbitrarily small squeezi@gny nonzero
11(0,8,7,6)~11(0,0.0.0 = Il(a, ,7,9)]. @D squeeziny lets our choice appear more appropriate than
Similarly, for N=5 one finds other possible combinations. Having now much confidence
in the choice of settings that we used for small numbers of
Bs=13[11(0,0,05,€)+11(0,0,y,0,¢) + I1(0,3,0,0¢) parties, we will use the same settings for larger numbers of
parties.
+11(a,0,0,0¢) +11(0,0,7,6,0)+11(0,8,0,6,0) Considering odd numbers of partidiswe find the follow-
+1l(«,B,0,0,0 -1I(a,B,v,6,0)—II(a,B,7,0,) (N—-1)/2
—I(«,B,0,6,€)—I1(«,0,y,5,€)—11(0,8,7,5,€) it N=3+8M:  By=20"1" kZO (-1
-11(0,0,0,0,01, (22
which has to statisfy35|<2 and contains the same settings X N M(a),ab, ...
. - , 2k+1 1:%2; 12K+ 11
as forN=4, but in additionas=0 andag=¢€.
We can now use the entangled states in @§) with N
=4 andN=5 and apply the inequalities to them. For the Cpkin)Qoksgs - - - N, (24)

same reason as fof=3 (symmetry among all modes in the
states and in the inequalitieghe choicea=pB=y=56=¢ ) .
—i\/7 appears to be optimaiaximizes positive terms and Where the first R+1 arguments ofll are a;=a;="---
minimizes negative contributions =ay.1=1\J, and the remaining ones argy . ,= o3
With this choice, we obtain =...=ay=0, andM=0,1,2,3. ... Because of the sym-
metry of the state$l(a) in Eq. (15), all possible permuta-
By=2exg—2Jcosh2+7sinh2)—-2exg—6Jcosh2 tions of the (X+1) «’s with a/ =i.7 and the[N—(2k
_37sinh2r)+3 ex — 47 cosh 2) + 1] ai',S W,ith ai=9 can be described by the same func-
tion H(Oll,()lz, g 130K+ 2 K43y s ,C(N).
—Zexp—8Jet?)—3, Similarly, with the same settings =i .7 anda;=0, and
again by exploiting symmetry, we obtain
Bs=5 exy —4J cosh 2 +4.7 sinh 2 /5)

5 _ _ . 1 (N—-1)/2
sexp(—8J cosh 2 —247 sinh 2r/5) — 5. (23 for N25-8M:  By= 2002 E (- 1)+t
As shown in Fig. 1, the maximum violation oBy|<2 (for k=0
our particular choice of settinggrows with increasing num-
ber of partiedN. The asymptotic analysidarger and small N
J) yields forN=5: BI'*<2 .48 with Je*?"=5(In 2)/24. At X ( Zk)H(ai (A gy, Aok
a certain amount of large squeezing, smaller displacengénts
than for N<4 (at the same squeezingre needed to ap-
proach this maximum violation. Another important observa- Aolr 2y« - AN, (25
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28+ N=5 1 28 N=9 1 a8t
26 | 26 ~ 4 _26F N\
Broal T 1Braal ,,w/ \\ 1Bvaq| / \\ ]
22/ N Y -// \\ 1 22 / 1
v’/ L \ L Il L L L L L
0 01 02 03 04 0 01 0.\2 03 04 0 01 02 03 04 FIG. 2. Maximum violations of the inequality
A A A | Byl <2 imposed by local realistic theories in the
2s ' | N=25 . N—=45 0s N=85 ' Ii_mit of IaLge s+q2LrJeezin_gBN is plotted as a func-
/\\ f ’!‘ tion of A=7e™“" for differentN.
26 | 26 | 426+
Bry, Ll \\ 18w, 4 \ 1By, ‘ f ]
2.2 T \ 4 22 ‘ 4 22 ’ / .
0 01 02 05 04 0 01 02 03 04 0 01 02 03 04
A A A
(3—N)/2(N_1)/2 . +8M and |By(r=0)|<2 if 7>0. In the limit N—x, we
for N=7+8M: By=2 2 (-1 obtainBy(r =0)—0 for any . 7>0. Similar expressions as in
Eq. (30) can be found foBy(r =0) in the other cases of odd
N N,N=5+8M, N=7+8M, andN=9+8M, and in fact, no
X(2k+1 M(ay,ap, ... \@sqs violations occur. The inequalityBy|<2 imposed by local
realistic theories always remains satisfied for zero squeezing.
Qs 2+ P 3y -+ o 1AN) On the other hand, inferring from the results fd<5
(26) parties, the maximum violations ¢0By|<2 occur for large
squeezing. Let us again consider the limit of large squeezing
(N-1)/2 ( cosh 2~ sinh 2~e*?/2) and defined=7e*?". Now we
for N=9+8M: By=20@"N72 k}) (—1)k can write Eq.(28) and Eq.(29) as
=0

N ’ ’ !
X(Zk)ﬂ(al,az, @K Xkt 1

,CYN)- (27)

Ak+2y -+ - -

The functions concerned in these formulas are explicitly

given by[see Eq(15)]

! ! !
M(ay,ay, .., Qo1 Aokt 2y - - - 5AN)

=exp{ —27Jcosh2(2k)+27 sinh 2

(2k)?
N

X[Zk—Z ], (29

H ’ ’ !
(1,3, .. @41, A2k+2, X2k 43y - - - AN)

:exp{ —2Jcosh2(2k+1)+27sinh 2

(2k+1)2

+_
2k12N

X

| -
Let us first consider the case of zero squeezing0. The

sum from Eq.(24) becomes in this case

Bu(r=0)=2C"N"2(1 + e 4)N2 5i{ N arctarie2%)].
(30

(ay,ap, ... @, 01, Qoki2s - - - 1N)
=exd —2A(2k)?/N], (31
H(aj,az, .« Qi1 @kt 2, @2kt 3 - - - @N)
=ex —2A(2k+1)?/N]. (32

Figure 2 shows the maxima of the violations|8§| <2 (for

our particular choice of settingscalculated with Eqs(24)—

(27) and the asymptotic results from Eq31)—(32) for large
squeezing. The maximum violation grows frafi'®*~2.48

for N=5 to Bgr"~2.8 for N=85. Within this range, a maxi-
mum violation near 2.8 is already attained witl+ 45 par-

ties and there is only a very small increase frohs 45 to
N=85. On the other hand, betwed&i=5 and N=9, the
maximum violation goes up from 2.48 to about 2.6, which is
still significantly less than the increase betwebh2
(BJ¥~2.19) andN=5. This confirms our conjecture based
on the results foN=<5: apparently, the maximum violation
indeed grows with increasing number of parties, but this
growth seems to continuously decrease for larger numbers of
parties. In fact, fromN=45 toN= 85, we see a second local
maximum emerging rather than a significant further increase
of the absolute maximum violation.

In Fig. 3, calculated with Eq924)—(27) and Eqs.(28)—
(29), violations of |By|<2 are compared between different
numbers of parties at certain amounts of squeezing of the
corresponding GHZ states. As stated earlier, the violations
grow with N also for modest finite squeezing, but this in-

As expected, without squeezing, no violations of the Bell-crease is smaller than the increase of the maximum viola-
type inequalities are obtained for the unentangled, separabtibns and becomes unrecognizable for small squeezing. An

N-mode states: we finéy(r=0)=2 if 7=0 for anyN=3

illustrating example is that a violation comparable to the

022106-5



P. van LOOCK AND SAMUEL L. BRAUNSTEIN

PHYSICAL REVIEW A63 022106

IN=9

28| N=5 28 - 28 |
2.6 | 26 Ly 26 [\ . o . )
By, , _‘T\:,I_'f_ —os Bw,, i \ . By, LIV FIG. 3. Violations of the inequalityBy| <2
99 j//V\ 0 99 J!' SR 99 J,A, P . imposed by local realistic theories for differedt
. t T T x~~ =0 8 [ ¥ . [ S~ T . .
e S R '/L_ﬁ R L at certain amounts of squeezing of tNemode
0 004 7008 0 002 7 006 0 001 g 003 GHzZ states: r=0.1 (=0.9 dB), r=0.3
R , , ‘ ‘ ‘ , : (=2.6 dB), r=0.8 (=6.9 dB), and r=1.5
2g | N=25 281 N=45 28 |, N=85 (=13 dB). By is plotted as a function qof. Note
26 ,/\ o 26 f‘\ I 26 /\ N i that the axes of the displacement paramefer
By, || J‘ \ By, , || ,\’ By, , f oo vary in scale. The largel becomes, the smaller
. j,f\ A 0s 4‘;/./,——*\_‘\\\ 0s ﬁ‘/'" et A become the displacements required.
PAR SN e A EL‘\‘~\‘L / & o~
0 0017 0.2 0 0004 7 0012 0 0002 ;7 0.006

maximum violation with the two-mode EPR state for large

The degree of nonlocality of the continuous-variable GHZ

squeezing BJ*~2.19) can be attained with a five-mode states, if represented by the maximum violation of the corre-

GHZ state built from five modestly squeezed statssout

2.6 dB each

sponding Bell-type inequalities, seems to grow with increas-
ing number of parties. This growth, however, continuously

We conclude with a summary and an assessment of oufecreases for larger numbers of parties. Thus, the evolution
results. We have considered pure multipartite entangledf the continuous-variable states’ nonlocality with increasing
states described by continuous quantum variables and ShOVVﬁ]meer of parties and the Corresponding evolution of nonlo-
that they violate Bell-type inequalities imposed by local re-cality for the qubit GHZ states are qualitatively equal but
alism. An experimental nonlocality test based on these stategantitatively differen{with an exponential increase for the
and on our scheme is possible, but it would require detectoraubitg' The reason for this may be that the latter always

capable of resolving the number of absorbed phot{dns.
Neverthelessthe N-mode states, which we have unambig-
uously proven to exhibit nonlocality, can be relatively easily

GHZz states on which all current multiparty nonlocality
proofs rely Furthermore, entangldd-mode states similar to
those considered here can even be produced using only ol
single-mode squeezed vacuum state and linear optics instea
of N squeezed statd43]. Since it has been shown already

relies on maximally entangled states, whereas the former de-
pends on nonmaximally entangled states as long as the
> Fsqueezing remains finite. In fact, an observation of the non-
?ocality of the continuous-variable states requires small but
nonzero displacementg’=e 2", which is not achievable
when the singular maximally entangled states for infinite
ueezing are considered.

This research was funded by a DAAD Doktorandensti-

that the entangled two-mode state created this way is nonlgendium (HSP IIl) and by the EPSRC Grant No. GR/
cal with respect to parity measuremept$], one can apply L91344. P.v.L. thanks T. C. Ralph, W. J. Munro, and A. K.
our analysis to the correspondifgmode states and expect Pati for useful comments on the present paper and general
that they too are nonlocal.

discussions concerning nonlocality.
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