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Greenberger-Horne-Zeilinger nonlocality in phase space
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We show that the continuous-variable analogues to the multipartite entangled Greenberger-Horne-Zeilinger
states of qubits violate Bell-type inequalities imposed by local realistic theories. Our results suggest that the
degree of nonlocality of these nonmaximally entangled continuous-variable states, represented by the maxi-
mum violation, grows with increasing number of parties. This growth does not appear to be exponentially large
as for the maximally entangled qubit states, but rather decreases for larger numbers of parties.
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Entanglement and nonlocality are the most outstand
features of quantum mechanics. In the rapidly advanc
field of quantum communication and computation, entang
states are the key ingredients: they enable quantum tele
tation @1#, quantum cryptography@2#, and many other poten
tially useful schemes. Bell showed that nonlocality can
revealed via the constraints that local realism imposes on
statistics of two physically separated systems@3#. These con-
straints, expressed in terms of the Bell inequalities, can
violated by quantum mechanics. Entanglement does not
tomatically imply nonlocality. The so-called Werner stat
are mixed states that are inseparable, but do not violate
Bell inequality@4#. Also pure entangled states can, if asso
ated with a positive Wigner function, directly reveal a loc
hidden-variable description@3#.

Towards possible applications in quantum communi
tion, both theoretical and experimental investigations
creasingly focus on quantum states with a continuous s
trum defined in an infinite-dimensional Hilbert space. The
states can be relatively easily generated using squeezed
and beam splitters, as for instance the entangled two-m
squeezed vacuum state that has already proven its usefu
for quantum teleportation@5#. The two-mode squeeze
vacuum state is an approximate version of the origi
Einstein-Podolsky-Rosen~EPR! state@6# where the quadra
ture amplitudes of the electromagnetic field play the roles
position and momentum of a particle. Its Wigner function
positive everywhere and hence it has a local hidden-varia
description@3#. Thus, attempts to derive for this state viol
tions of Bell inequalities based on homodyne measurem
of the quadratures failed@7#. However, whether nonlocality
is uncovered depends on the observables and the mea
ments considered in a specific Bell inequality and not o
on the quantum state itself. It was shown by Banaszek
Wodkiewicz@8#, that the two-mode squeezed vacuum stat
nonlocal, as it violates a Clauser-Horne-Shimony-H
~CHSH! inequality @9# when measurements of photon num
ber parity are considered.

The nonlocality of the multipartite entangled qub
Greenberger-Horne-Zeilinger~GHZ! states canin principle
be manifest in a single measurement and need not be s
tical @10# as the violation of a Bell inequality that relies o
mean values. But Mermin and others@11,12# also derived
Bell-CHSH inequalities forN-particle systems. The aim o
this paper is to apply thoseN-party inequalities to
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continuous-variable GHZ states@13# and thereby to prove
their nonlocality. Since these states have a positive Wig
function, we shall follow the convenient strategy of Ba
aszek and Wodkiewicz@8# who exploited the fact that the
Wigner function is connected to the quantum mean value
the photon number parity operator. Relying on this conn
tion, we will demonstrateN-party nonlocality using mean
value inequalities@12#, and we do not follow the origina
GHZ program utilizing a contradiction to local realism in
single measurement.

Let us identify the ‘‘position’’ and ‘‘momentum’’ of a
particle with the quadrature amplitudes of a single elect
magnetic mode~the real and imaginary part of the mode
annihilation operator!. In Ref. @13#, it has been shown that
sequence of beam splitter operations,

B̂N21 N~p/4!B̂N22 N21„cos21~1/A3!…

3•••3B̂12„cos21~1/AN!…,

applied to one momentum squeezed vacuum mode 1 anN
21 position squeezed vacuum modes 2 throughN, yields an
N-mode state withN-party entanglement between all mode
Here, an ideal~phase-free! beam splitter operationB̂i j (u)
acts on a pair of modesi andj with annihilation operatorsâi

and â j like âi→âi cosu1âj sinu, and â j→âi sinu

2âj cosu. The Wigner function of the pure entangle
N-mode state is

W~x,p!5S 2

p D N

expH 2e22rF 2

N S (
i 51

N

xi D 2

1
1

N (
i , j

N

~pi2pj !
2G

2e12rF 2

N S (
i 51

N

pi D 2

1
1

N (
i , j

N

~xi2xj !
2G J , ~1!

wherex5(x1 ,x2 , . . . ,xN) andp5(p1 ,p2 , . . . ,pN) are the
positions and momenta of theN modes andr is the squeezing
parameter~with equal squeezing in all initial modes!. The
state W(x,p) is always positive, symmetric among theN
modes, and becomes peaked atxi2xj50 (i , j
51,2, . . . ,N) andp11p21•••1pN50 for large squeezing
r. For N52, it equals the well-known EPR-state Wign
©2001 The American Physical Society06-1
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function that approachesd(x12x2)d(p11p2) in the limit of
infinite squeezing. Any nonzero squeezing yieldsN-partite
entanglement and the position and momentum correlat
can be exploited for quantum teleportation@14# between any
two of N parties with the assistance of the remainingN22
parties@13#.

In order to prove the nonlocality exhibited by the sta
W(x,p), we use the fact that the Wigner function is propo
tional to the quantum expectation value of a displaced pa
operator@15#. We obtain the relation@8#

W~a!5S 2

p D N

^P̂~a!&5S 2

p D N

P~a!, ~2!

wherea5x1 ip5(a1 ,a2 , . . . ,aN) and P(a) is the quan-
tum expectation value of the operator

P̂~a!5 ^ i 51
N P̂ i~a i !5 ^ i 51

N D̂i~a i !~21! n̂i D̂ i
†~a i !. ~3!

The operatorsD̂ i(a i) are phase-space displacement ope

tors acting on modei. Thus,P̂(a) is a product of displaced
parity operators given by

P̂ i~a i !5P̂ i
(1)~a i !2P̂ i

(2)~a i !, ~4!

with the projection operators

P̂ i
(1)~a i !5D̂ i~a i !(

k50

`

u2k&^2kuD̂ i
†~a i !, ~5!

P̂ i
(2)~a i !5D̂ i~a i !(

k50

`

u2k11&^2k11uD̂ i
†~a i !, ~6!

corresponding to the measurement of an even~parity 11) or
an odd ~parity 21) number of photons in modei. This
means that each mode is now characterized by a dichoto
variable similar to the single-particle spin or the sing
photon polarization. Different spin or polarizer orientatio
are replaced by different displacements in phase sp
These different settings of a measurement with two poss
outcomes61 for each possible setting is exactly what w
need for the nonlocality test.

In the case ofN-particle systems, such a nonlocality test
possible using theN-particle generalization of the two
particle Bell-CHSH inequality@12#. This inequality is based
on the following recursively defined linear combination
joint measurement results

BN[ 1
2 @s~aN!1s~aN8 !#BN21

1 1
2 @s~aN!2s~aN8 !#BN218 562, ~7!

where s(aN)561 and s(aN8 )561 describe two possible
outcomes for two possible measurement settings~denoted by
aN and aN8 ) of measurements on theNth particle. Provided
that BN21562 andBN218 562, Eq. ~7! is true for a single
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run of the measurements, wheres(aN) becomes either11
or 21 and so doess(aN8 ). Thus, induction proves Eq.~7! for
any N with

B2[@s~a1!1s~a18!#s~a2!1@s~a1!2s~a18!#s~a28!562,

~8!

which is trivially true ~the expressionsBN8 are equivalent to
BN but with all theai and ai8 swapped!. Within the frame-
work of local realistic theories with the hidden variablesl
5(l1 ,l2 , . . . ,lN) and the normalized probability distribu
tion P(l), we obtain an inequality for the average value
BN[BN(l),

U E dl1dl2 . . . dlNP~l!BN~l!U<2. ~9!

By the linearity of averaging, this is a sum of means
products of thes(ai) ands(ai8). For example, ifN52, we
obtain the CHSH inequality

uC~a1 ,a2!1C~a1 ,a28!1C~a18 ,a2!2C~a18 ,a28!u<2,
~10!

with the correlation functions

C~a1 ,a2!5E dl1dl2P~l1 ,l2!s~a1 ,l1!s~a2 ,l2!.

~11!

Following Bell @3#, an always positive Wigner function ca
serve as the hidden-variable probability distribution. In th
sense, the EPR-state Wigner function could prevent
CHSH inequality being violated: W(x1 ,p1 ,x2 ,p2)
[P(l1 ,l2). The same applies to the general Wigner fun
tion in Eq. ~1!: W(x,p)[P(l) could be used to construc
correlation functions

C~a!5E dl1dl2 . . . dlNP~l!

3s~a1 ,l1!s~a2 ,l2!•••s~aN ,lN!, ~12!

where a5(a1 ,a2 , . . . ,aN) . However, for parity measure
ments on each mode with possible results61 and different
settings by different displacements, this would require u
bounded d functions for the local objective quantitie
s(ai ,l i) @8#, as in this case the relation

C~a![P~a!5~p/2!NW~a! ~13!

holds. This relation, which directly relates the correlati
function to the Wigner function, is indeed crucial for th
nonlocality proof of the continuous-variable states in Eq.~1!.
For the EPR state withN52, we can now look at the com
bination @8#

B25P~0,0!1P~0,b!1P~a,0!2P~a,b!, ~14!

which according to Eq.~10! satisfiesuB2u<2 for local real-
istic theories. Here, we have chosen the displacement
tings a15a250 anda185a, a285b.

Let us write the states in Eq.~1! as
6-2
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FIG. 1. Violations of the inequalityuBNu<2
imposed by local realistic theories with the e
tangled two-mode EPR (N52, as in Ref.@8#!,
three-mode GHZ (N53), four-mode GHZ (N
54), and five-mode GHZ (N55) states.
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P~a!5expH 22 cosh 2r(
i 51

N

ua i u2

1sinh 2r F 2

N (
i , j

N

~a ia j1a i* a j* !

2(
i 51

N

~a i
21a i*

2!G J . ~15!

For N52 and a5b5 iAJ in terms of the real displace
ment parameterJ>0 @16#, these states yieldB251
12 exp(22J cosh 2r)2exp(24Je12r). In the limit of large
r (cosh 2r'e12r/2) and smallJ, this B2 is maximized for
Je12r5(ln 2)/3: B 2

max'2.19 @8#, which is a clear violation
of the inequalityuB2u<2. Smaller violations occur also fo
smaller squeezing and biggerJ. For any nonzero squeezing
some violation takes place~see Fig. 1!.

Let us now examine the three-mode state and setN53 in
Eq. ~15!. According to the inequality of the correlation func
tions derived from Eqs.~7!–~9! with N53,

uC~a1 ,a2 ,a38!1C~a1 ,a28 ,a3!

1C~a18 ,a2 ,a3!2C~a18 ,a28 ,a38!u<2, ~16!

for the possible combination

B35P~0,0,g!1P~0,b,0!1P~a,0,0!2P~a,b,g!,
~17!

a contradiction to local realism does not occur only ifuB3u
<2. The corresponding settings here area15a25a350
and a185a, a285b, and a385g. With the choice a
5AJeif1, b5AJeif2, andg5AJeif3, we obtain
02210
B35(
i 51

3

exp~22J cosh 2r 2 2
3 J sinh 2r cos 2f i !

2expH 26J cosh 2r 2 1
3 J sinh 2r

3(
iÞ j

3

@cos 2f i24 cos~f i1f j !#J . ~18!

Apparently, because of the symmetry of the entangled th
mode state, equal phasesf i should also be chosen in order
maximizeB3. The best choice isf15f25f35p/2, which
ensures that the positive terms in Eq.~18! become maximal
and the contribution of the negative term minimal. Therefo
we again use equal settingsa5b5g5 iAJ and obtain

B353 exp~22J cosh 2r 12J sinh 2r /3!2exp~26Je12r !.

~19!

The violations ofuB3u<2 that occur with this result are simi
lar to the violationsuB2u<2 obtained for the EPR state, bu
the N53 violations are even more significant than theN
52 violations~see Fig. 1!. In the limit of larger ~and small
J), we may use cosh 2r'sinh 2r'e12r/2 in Eq. ~19!. Then
B3 is maximized forJe12r53(ln 3)/16: B 3

max'2.32. This
requires even smaller displacementsJ than in theN52 case
for the same squeezing.

Let us now investigate the casesN54 andN55. From
Eqs.~7!–~9! with N54, the following inequality for the cor-
relation functions can be derived:

1
2 uC~a1 ,a2 ,a3 ,a48!1C~a1 ,a2 ,a38 ,a4!1C~a1 ,a28 ,a3 ,a4!

1C~a18 ,a2 ,a3 ,a4!1C~a1 ,a2 ,a38 ,a48!

1C~a1 ,a28 ,a3 ,a48!1C~a18 ,a2 ,a3 ,a48!

1C~a1 ,a28 ,a38 ,a4!1C~a18 ,a2 ,a38 ,a4!
6-3
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1C~a18 ,a28 ,a3 ,a4!2C~a18 ,a28 ,a38 ,a4!

2C~a18 ,a28 ,a3 ,a48!2C~a18 ,a2 ,a38 ,a48!

2C~a1 ,a28 ,a38 ,a48!2C~a1 ,a2 ,a3 ,a4!

2C~a18 ,a28 ,a38 ,a48!u<2. ~20!

It is symmetric among all four parties as any inequality d
rived from Eqs.~7!–~9! is symmetric among all parties. Fo
the settingsa15a25a35a450 and a185a, a285b, a38
5g, anda485d, complying with local realism impliesuB4u
<2, where

B45 1
2 @P~0,0,0,d!1P~0,0,g,0!1P~0,b,0,0!1P~a,0,0,0!

1P~0,0,g,d!1P~0,b,0,d!1P~a,0,0,d!

1P~0,b,g,0!1P~a,0,g,0!1P~a,b,0,0!

2P~a,b,g,0!2P~a,b,0,d!2P~a,0,g,d!

2P~0,b,g,d!2P~0,0,0,0!2P~a,b,g,d!#. ~21!

Similarly, for N55 one finds

B55 1
2 @P~0,0,0,d,e!1P~0,0,g,0,e!1P~0,b,0,0,e!

1P~a,0,0,0,e!1P~0,0,g,d,0!1P~0,b,0,d,0!

1P~a,0,0,d,0!1P~0,b,g,0,0!1P~a,0,g,0,0!

1P~a,b,0,0,0!2P~a,b,g,d,0!2P~a,b,g,0,e!

2P~a,b,0,d,e!2P~a,0,g,d,e!2P~0,b,g,d,e!

2P~0,0,0,0,0!#, ~22!

which has to statisfyuB5u<2 and contains the same settin
as forN54, but in additiona550 anda585e.

We can now use the entangled states in Eq.~15! with N
54 and N55 and apply the inequalities to them. For th
same reason as forN53 ~symmetry among all modes in th
states and in the inequalities!, the choicea5b5g5d5e
5 iAJ appears to be optimal~maximizes positive terms an
minimizes negative contributions!.

With this choice, we obtain

B452 exp~22J cosh 2r 1J sinh 2r !22 exp~26J cosh 2r

23J sinh 2r !13 exp~24J cosh 2r !

2 1
2 exp~28Je12r !2 1

2 ,

B555 exp~24J cosh 2r 14J sinh 2r /5!

2 5
2 exp~28J cosh 2r 224J sinh 2r /5!2 1

2 . ~23!

As shown in Fig. 1, the maximum violation ofuBNu<2 ~for
our particular choice of settings! grows with increasing num
ber of partiesN. The asymptotic analysis~large r and small
J) yields forN55: B 5

max'2.48 withJe12r55(ln 2)/24. At
a certain amount of large squeezing, smaller displacemenJ
than for N<4 ~at the same squeezing! are needed to ap
proach this maximum violation. Another important observ
02210
-

-

tion is that in all four cases (N52,3,4,5), violations occur for
any nonzero squeezing. This requires the presence
N-partite entanglement for any nonzero squeezing, whic
consistent with the results in Ref.@13#. Moreover, we see
that not only for large squeezing but also for modest fin
squeezing, the significance of the violations~at optimal dis-
placementsJ) grows with increasingN.

In the following, we will examine the general case ofN
parties. How does the maximum violation of the Bell-typ
inequalities derived with the continuous-variable GHZ sta
in general evolve with increasing number of parties, in p
ticular, compared to the exponential growth for the qu
GHZ states@11,12#? At least forN<5, the maximum viola-
tion grows, and this growth does not appear to be expon
tially large, but rather seems to decrease. This conjecture
not been proven, since we did not consider all possible
tings ~all possible combinations ofa i and a i8). However,
there are strong hints that our choice ofa i50 and a i8
5 iAJ is near optimal. In particular, that the nonlocality
always revealed for arbitrarily small squeezing~any nonzero
squeezing! lets our choice appear more appropriate th
other possible combinations. Having now much confiden
in the choice of settings that we used for small numbers
parties, we will use the same settings for larger numbers
parties.

Considering odd numbers of partiesN, we find the follow-
ing expression forBN ,

if N5318M : BN52(32N)/2 (
k50

(N21)/2

~21!k

3S N
2k11DP~a18 ,a28 , . . . ,a2k118 ,

a2k12 ,a2k13 , . . . ,aN), ~24!

where the first 2k11 arguments ofP are a185a285•••

5a2k118 5 iAJ, and the remaining ones area2k125a2k13

5•••5aN50, and M50,1,2,3, . . . . Because of the sym
metry of the statesP(a) in Eq. ~15!, all possible permuta-
tions of the (2k11) a i8’s with a i85 iAJ and the@N2(2k
11)# a i ’s with a i50 can be described by the same fun
tion P(a18 ,a28 , . . . ,a2k118 ,a2k12 ,a2k13 , . . . ,aN).

Similarly, with the same settingsa i85 iAJ anda i50, and
again by exploiting symmetry, we obtain

for N5518M : BN52(32N)/2 (
k50

(N21)/2

~21!k11

3S N
2kDP~a18 ,a28 , . . . ,a2k8 ,a2k11 ,

a2k12 , . . . ,aN), ~25!
6-4
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FIG. 2. Maximum violations of the inequality
uBNu<2 imposed by local realistic theories in th
limit of large squeezing.BN is plotted as a func-
tion of A[Je12r for different N.
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for N5718M : BN52(32N)/2 (
k50

(N21)/2

~21!k11

3S N
2k11DP~a18 ,a28 , . . . ,a2k118 ,

a2k12 ,a2k13 , . . . ,aN),
~26!

for N5918M : BN52(32N)/2 (
k50

(N21)/2

~21!k

3S N
2kDP~a18 ,a28 , . . . ,a2k8 ,a2k11 ,

a2k12 , . . . ,aN). ~27!

The functions concerned in these formulas are explic
given by @see Eq.~15!#

P~a18 ,a28 , . . . ,a2k8 ,a2k11 ,a2k12 , . . . ,aN!

5expH 22J cosh 2r ~2k!12J sinh 2r

3F2k22
~2k!2

N G J , ~28!

P~a18 ,a28 , . . . ,a2k118 ,a2k12 ,a2k13 , . . . ,aN!

5expH 22J cosh 2r ~2k11!12J sinh 2r

3F2k1122
~2k11!2

N G J . ~29!

Let us first consider the case of zero squeezing,r 50. The
sum from Eq.~24! becomes in this case

BN~r 50!52(32N)/2~11e24J!N/2 sin@N arctan~e22J!#.
~30!

As expected, without squeezing, no violations of the Be
type inequalities are obtained for the unentangled, separ
N-mode states: we findBN(r 50)52 if J50 for anyN53
02210
y

-
le

18M and uBN(r 50)u,2 if J.0. In the limit N→`, we
obtainBN(r 50)→0 for anyJ.0. Similar expressions as in
Eq. ~30! can be found forBN(r 50) in the other cases of od
N, N5518M , N5718M , andN5918M , and in fact, no
violations occur. The inequalityuBNu<2 imposed by local
realistic theories always remains satisfied for zero squeez

On the other hand, inferring from the results forN<5
parties, the maximum violations ofuBNu<2 occur for large
squeezing. Let us again consider the limit of large squeez
( cosh 2r' sinh 2r'e12r/2) and defineA[Je12r . Now we
can write Eq.~28! and Eq.~29! as

P~a18 ,a28 , . . . ,a2k8 ,a2k11 ,a2k12 , . . . ,aN!

5exp@22A~2k!2/N#, ~31!

P~a18 ,a28 , . . . ,a2k118 ,a2k12 ,a2k13 , . . . ,aN!

5exp@22A~2k11!2/N#. ~32!

Figure 2 shows the maxima of the violations ofuBNu<2 ~for
our particular choice of settings!, calculated with Eqs.~24!–
~27! and the asymptotic results from Eqs.~31!–~32! for large
squeezing. The maximum violation grows fromB 5

max'2.48
for N55 to B 85

max'2.8 forN585. Within this range, a maxi-
mum violation near 2.8 is already attained withN545 par-
ties and there is only a very small increase fromN545 to
N585. On the other hand, betweenN55 and N59, the
maximum violation goes up from 2.48 to about 2.6, which
still significantly less than the increase betweenN52
(B 2

max'2.19) andN55. This confirms our conjecture base
on the results forN<5: apparently, the maximum violation
indeed grows with increasing number of parties, but t
growth seems to continuously decrease for larger number
parties. In fact, fromN545 toN585, we see a second loca
maximum emerging rather than a significant further incre
of the absolute maximum violation.

In Fig. 3, calculated with Eqs.~24!–~27! and Eqs.~28!–
~29!, violations of uBNu<2 are compared between differe
numbers of parties at certain amounts of squeezing of
corresponding GHZ states. As stated earlier, the violati
grow with N also for modest finite squeezing, but this i
crease is smaller than the increase of the maximum vi
tions and becomes unrecognizable for small squeezing.
illustrating example is that a violation comparable to t
6-5
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FIG. 3. Violations of the inequalityuBNu<2
imposed by local realistic theories for differentN
at certain amounts of squeezing of theN-mode
GHZ states: r 50.1 ('0.9 dB), r 50.3
('2.6 dB), r 50.8 ('6.9 dB), and r 51.5
('13 dB).BN is plotted as a function ofJ. Note
that the axes of the displacement parameterJ
vary in scale. The largerN becomes, the smalle
become the displacements required.
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maximum violation with the two-mode EPR state for lar
squeezing (B 2

max'2.19) can be attained with a five-mod
GHZ state built from five modestly squeezed states~about
2.6 dB each!.

We conclude with a summary and an assessment of
results. We have considered pure multipartite entang
states described by continuous quantum variables and sh
that they violate Bell-type inequalities imposed by local
alism. An experimental nonlocality test based on these st
and on our scheme is possible, but it would require detec
capable of resolving the number of absorbed photons@17#.
Nevertheless,the N-mode states, which we have unamb
uously proven to exhibit nonlocality, can be relatively eas
generated in practice, as opposed to the discrete-varia
GHZ states on which all current multiparty nonlocali
proofs rely. Furthermore, entangledN-mode states similar to
those considered here can even be produced using only
single-mode squeezed vacuum state and linear optics ins
of N squeezed states@13#. Since it has been shown alread
that the entangled two-mode state created this way is no
cal with respect to parity measurements@18#, one can apply
our analysis to the correspondingN-mode states and expe
that they too are nonlocal.
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The degree of nonlocality of the continuous-variable GH
states, if represented by the maximum violation of the cor
sponding Bell-type inequalities, seems to grow with incre
ing number of parties. This growth, however, continuou
decreases for larger numbers of parties. Thus, the evolu
of the continuous-variable states’ nonlocality with increas
number of parties and the corresponding evolution of non
cality for the qubit GHZ states are qualitatively equal b
quantitatively different~with an exponential increase for th
qubits!. The reason for this may be that the latter alwa
relies on maximally entangled states, whereas the former
pends on nonmaximally entangled states as long as
squeezing remains finite. In fact, an observation of the n
locality of the continuous-variable states requires small
nonzero displacementsJ}e22r , which is not achievable
when the singular maximally entangled states for infin
squeezing are considered.
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