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The phase diagram for the ground-state symmetry of three electrons confined in a pair of laterally coupled
dots is determined as function of the interdot distance and the magnetic field. With a few exceptions the
ground-state spin and parity symmetry sequence of a circular harmonic quantum dot is conserved. Reentrant
behavior of some energy levels as ground states is found as a function of the magnetic field. The disappearance
of interdot tunnelling due to a strong magnetic field leads to ground-state degeneracy of the even and odd
parity energy levels. It is shown that at a high magnetic field the system can be closely approximated by a
two-electron system confined in one dot and a spectator electron localized in the other. Broken-parity eigen-
states with a classical charge distribution are constructed and used to discuss the interdot electron-electron
correlations.
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I. INTRODUCTION The three-electron system in laterally coupled dots is

Electrons confined in coupled quantum dotéform sys-  More intgrleGsting than the extensively discussed two-electron
tems commonly referred to as artificial molecules withProblent?~ifor at least two reasonsi) In the two-electron:
single-electron wave functions forming bonding and anti_system the electron chargl:jf localized in each of the identical
bonding orbitals similar to those known from the quantumdots is exactly equal te.”> On the other hand, the three-
chemistry of covalent molecules. Artificial molecules are€l€ctron system possesses two equivalent classical configu-
formed by vertically~2! coupled dots or by dots coupled rations with two electrons in the left or right dot. We show
laterally’?-25 The electronic properties of two-electron sys- that the three-electron parity operator eigenstates can be con-
tems in verticallj~" as well as lateralf#—16 coupled dots structed as superpositions of the states corresponding to both
have been extensively studied by exact methods that for twolassical configurations. The charge density distribution in
electrons are particularly convenient due to the separation dhe parity eigenstates is nonclassical; with one and one-half
the spatial and spin degrees of freedom. The two-electroelectron charge confined in each of the dots. Due to tunnel-
studies were mainly motivated by the propc®e@alization  ling each attempt to localize two electrons in one of the dots
of a quantum gate based on the spins of the electrons comill result in the formation of a nonstationary state. The clas-
fined in coupled dots. For larger electron numbers the measical charge distribution can only be obtained when the tun-
field method$318-21are more commonly used. The mean nel coupling between the dots disappears. The previous mean
field approaches give reliable estimates for the ground-statiéeld analysis of the charge distribution and symmetries dealt
energy and are useful in simulatidriis®1%27of devices but  mostly with an even number of electréf=?for which the
they possess several shortcomfifggue to an approximate problem of nonclassical charge distribution, likely to result
treatment of the electron-electron correlations, which resultin an artifactal spatial symmetry breaking, is abs€®t.The
in artifactal symmetry-breaking effects leading to an over-evolution of the two-electron ground state ends in the
simplified picture of Wigner crystallization, to the appear- singlet-triplet degeneraéy 6 when the tunnel coupling is
ance of spin-density waves, etc. removed by an external magnetic field. On the other hand, in

The exact solution of the few-electron Schrédinger equathe three-electron system at high-magnetic field, spin oscil-
tion possesses a rich literature for circular two-dimensionalations should be expected to continue in the two-electron
quantum dotd®2 Less work has been done in subsystem perturbed by the Coulomb potential of the elec-
noncirculaf®4?and vertically coupled quantum ddtstIn  tron confined in the other dot and the electrostatic interdot
this paper we present the exact diagonalization results for theoupling should piff—#° the magnetic-field induced two-
three-electron system in quantum dots coupled laterally. Welectron Wigner molecules, extracting them from the internal
are unaware of any previous exact diagonalization calculacoordinates of the two-electron system to the laboratory
tions for a pair of laterally coupled dots with more than two frame of reference.
electrons. While in vertically coupled dots the interdot tun- In this paper we study the spin and parity symmetry of the
nelling makes the problem intrinsically three dimensional,three-electron ground state, the electron-electron correlation,
but with conserved axial symmetry, in the laterally coupledthe Wigner crystallization, and the extinction of tunnel cou-
dots the physical interegnd technical implementation dif- pling in the limit of high magnetic field. The high-magnetic
ficulties) are related to the two-center nature of the electrorfield spectra are explained using a single-dot two-electron
localization. model, including the Coulomb potential of an electron local-
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ized in the other dot. The interdot electron-electron correlaelement. For a single quantum dot the multicenter b@bis
tions accompanying the electrostatic interdot coupling, areeproduce® also the Fock-Darwin eigenfunctions of the
studied using broken-parity eigenstates. The results prerigher Fock-Darwin bands that tend to excited Landau levels
sented in this paper have been obtained by the multicentext a high magnetic field. Therefore, for a single quantum dot
configuration interaction method described in detail in Refthe present scheme works as efficient as the ones employing
41. This method was previously applied to problems ofthe Fock-Darwin single electron basdfs3848Since the cen-
Wigner crystallization in low-symmetry quantum détsto  ters can be chosen quite arbitrarily the multicenter method is
pinning of Wigner molecules by an external Coulombsuitable to treat any low-symmetry smooth confinement
defect?® and to the effect of the asymmetry on the exchangepotential?! In the present calculations we use 14 cent@rs
energy in two-electron laterally coupled défs. per do}. The set of centers corresponding to the right quan-

The present paper is organized as follows. In Sec. Il waum dot is chosen in the following way. A single center is
present the theory, Sec. Il contains the results, summary aridcalized in the pointa,0). Six additional centers are put
conclusions are given in Sec. IV. around this point on a circle of radil& The position of the

centers for the left dot are obtained from the set associated
Il. THEORY with the right dot by a change of the sign of tkecoordi-

We consider three electrons bound in a two-dimensionahates. The basis is optimized by takiRga, and« as varia-

system of laterally coupled dots that is described by thdional parameters that are chosen to minimize the energy of

Hamiltonian, the three-electron system.
3 R The three-electron Hamiltoniai) is diagonalized on the
H=> h > , 1) basis of Slater dgtermlnants constructed from the smgl_e-
= o1 =i Ameegr; electron spin orbitals obtained as products of the spatial
wave functions expanded in the baéi$ and the eigenfunc-
with the single-electron energy operatodefined as tions of thez component of the single-electron spin. Eigen-
1 states of Hamiltoniar{1) are also eigenstates of the parity
h= o (—ihV +eA)?+V(x,y), (2) operator as well as of the operators of #fi@omponent of the

total spin(with eigenvalueS,f) and of the square of the total

wheren is the electron effective band mass ands the  Spin (S(S+1)#%). Of all 3276 three-electron Slater determi-

dielectric constant. We apply the model potential for laterallynants that can be constructed of the 28 spin orbitals we retain

coupled dots used previously by several autdt8;20-22 only those with the requirefl, and parity eigenvalues, which
gives a basis of 182 basis elements & +3/2 and 637

(Minf(x - d/2)2, (x+ di2)2 +y?),  (3) basis elements fo§,=+1/2. Thequantum number of the

2 total spinS is identified for each energy level by its multi-

plicity (2S+1—the degeneracy of the given energy level

wherefiwg is the confinement energy amtis the distance . .
between the centers of the two dots. FbrO this model with respect t). In the following the everfodd symmetry
states are denoted B¥ (0).

potential reduces to a single circular quantum dot with a
harmonic oscillator confinement potential.

We use the Landau gaude=(-By,0,0, GaAs material
parameteré m'/m,=0.067, €=12.4, and choosefiw,
=3 meV for the confinement potential energy. We include A. Energy spectra
only the orbital effects for the ground-state spin and spatial
symmetries, but we neglect the spin Zeeman effect. The Ia&-h

ter can be trivially taken into account as a shift lineaBito

the calculated energy levels. At a high magnetic field the Spiﬁ I’gIET callcglated with tr)espect t_o3t2ehl?wz—e+5t ZZCI]S-DaW;I]m e
Zeeman effect removes the nonpolarized states from thgrdy 'evel, 1.e., we su tractep, = Vapt /4 from the

ground-state symmetry  sequence, as discuss(_:%igenvalues of Hamiltoniafi). In the absence of the mag-

previously28.37.38 netic field the ground state corresponds to —1 angular mo-
We first solve the single-electron Schrédinger equation ir{”Entum(t')n A units). Thg grpund-state ar;gukljar lmomer|1tum
a basis of displaced lowest Landau level takes subsequent negative integer val@_ a so.ute value
- : 45-48 of the angular momentum of the states is given in the figure
eigenfunction$! AR ;
as the magnetic field increases. Ground states with angular

m* a)g

V(xy) =

Ill. RESULTS

Figures 1a) and Xb) show the low-energy spectrum of
e three-electron single quantum ddt0). We display en-

M momentum quantum numbers being multiples of 3 are real-
W)= E cl'hr,(r), (4 ized by the spin-polarized stat&s3374%t lower magnetic
=1 field the intervals corresponding to subsequent ground state
where symmetries have distinctly different lengtfsee Fig. 1a)].
— __— In particular, a larger stability of the ground state with odd
Y (1) = Vaexp- alr - R4 +ieB angular momentum quantum numbers up to -7 is observed.

v : oo The results of Fig. (8 are in perfect agreement with the
XX =Xy + Y2} N2, ®) results of Mikhailov and Savostianoi/a(cf. Figs. Xa) and
andR;=(X;,Y;) is the center of localization of thigh basis 2(a) of Ref. 37,7.wy=3 meV corresponds to the interaction
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FIG. 1. (Color onlineg Magnetic field depen-
dence of the three electron spectra for different
values of the interdot distanck Energy levels of
120, 320, 12E, and ¥?E symmetry states are
plotted in blue, black, green, and red, respec-
tively. Numbers in the energy levels labels given
in (a) and(b) stand for the absolute value of the
angular momentum i# units. Dotted and dashed
lines in (e—g show the singlet and triplet energy
levels in a reference two-electron system con-
fined in the potential given by Ed6). Crosses
and squares ifg) and(h) mark the energy levels
of spin-polarized states of even and odd parity,
respectively. Numbers 0, 1, 1/2, and 3/2 in Figs.
1(e)-1(h) give the spin quantum number of the
plotted energy levels. For clarity, the two-electron
spectrum in(g) and (h) was shifted by +0.1 and
+0.25 meV, respectively.

symmetry differ by their angular momentum and cross. No-
with increasing angular momentum become the ground statiice that in the coupled dots these crossings are replaced by
in intervals of nearly constant length in magnetic field. A anticrossings. Apparent crossings $fO and Y20 energy
similar feature has previously been observed in the spinlevels around 5.5 and 7.5 T visible in Fig(cl are in fact
polarized three-electron system in the Wigner crystallizatioranticrossings of width ZweV. The spectrum conserves the

same sequence of the ground-state spin and parity symme-

Figures 1c) and Xd) present the spectrum for coupled tries of the single dot cadef. Figs. 1a) and 1b)]. The only
difference is that theé’?E state(the ground state fod=0

dots with centers separated by a distancd=026.736 nm. In
a single circular dot energy levels of the same spin and paritaround 5.67 is replaced by thé’?0 energy level stemming
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from the mixture of states which in circular quantum dotsquantum dot, but we neglect this shift for simplicity. Two
possess -5 and -7 angular momenta. ¥A@ energy level electron calculations were performed with the multicenter
is particularly stable as the ground stété. Fig. 1(a)] and  configuration interaction method with eight centers put on a
exhibits reentrant behavior. At higher magnetic figdde Fig.  circumference of an ellipse and the ninth one in its center.
1(d)] the ground-state changes almost periodically vBth Position of the ellipse center as well asxsndy sizes are
like in the single dot case presented in Figb)l only the  optimized variationally. In Figs. (&)-1(h) the lowest singlet
length of the magnetic field corresponding to subsequentgnergy level and the two lowest triplet energy levels are plot-
states of the sequence becomes shortened from aboted with dotted and dashed lines, respectively. The width of
1.1to0 0.9 T. At high magnetic field the energy differencesthe presented avoided crossings of the spin polarized energy
between the energy levels of different parity becomedevels can be considered as a measure of the potential devia-
smaller with respect to the single dot case presented in Fidion from circularity; as discussed in Ref. 45. In the circular
1(b). For bothd=0 andd=26.736 nm the energy difference quantum dot limit of infinited, the avoided crossings are
between the lowest even and odd spin-polarized energy leveplaced by crossings of the magic angular momenta eigen-
els possesses a local maximum nBarl2 T. Ford=0 this  states corresponding to the semiclassical Wigner distribution
difference is around 0.25 melkf. Fig. 1(b)] while for d  of electrons in the inner coordinates. The larger the deviation
=26.736 nm it is only 0.05 meVcf. Fig. 1(d)]. of the potential from circularity the stronger is the mixing of
Figure Xe) shows the spectrum fod=40 nm. ForB the states corresponding to neighbor angular momenta from
<10 T the ground-state-symmetry sequence of ftthe the magic sequence, and, consequently, the wider the
=26.736 nm case is reproduced. Near 8.5 T both the spiranticrossing”® The width of the anticrossing appearing near
polarized and spin-nonpolarized energy levels become de&s T decreases from 0.7 meV fai=40 nm to 0.3 meV for
generate. For larger barrier thickness the ground state b@=60 nm and to 0.2 meV fod=80 nm. A comparison of
comes degenerate with respect to parity around 7, 6 and 4 Figs. 1e)-1(h) shows that the singlet-triplet oscillations in
for d=50, 60, and 60 nm, respective[gee Figs. f)-1(h)].  the two-electron system have the smallest amplitude for the
The magnetic field leads to an increase of the electron locakmajlestd for which the perturbation of the harmonic poten-
ization in each of the dots, enhancing the effective barrieiy| is the largest. This finding is consistent with the recent
height and leading finally to vanishing interdot tunnel cou-gy,452 of the magnetic field effect on the two-electron an-
pling. This is at the origin of the even-odd degeneracy, simisgqopic quantum dots showing that the amplitude of the
larly as in the single electron problem. singlet-triplet oscillation® disappears with increasing de-

For an interdot separation @f=40 nm, the low-energy o f s
spectrum collapses into a narrow energy range for large ma ree of asymmetry and is finally replaced by the singlet

netic fields. FoB>12 T the difference between the lowest riplet degeneracy_ in the quast one-dimensional 158,51
energy levels becomes smaller than 0.02 rhgaé Fig. 16)]. of th_e extreme anisotropy. In circular quantum dots the states
But, for a larger interdot distance we notice, e.g., tor Of higher angular momentum are less strongly localized.
=50 nm[cf. Fig. 1f)] above 8 T distinct spin-related oscil- Magnetic field increases the glectroq Iogallzatlon and conse-
lations of the ground-state energy. Up to 10.5 T and betweefuently the electron-electron interaction in each of the states.
13.5 and 17 T the two Spin_po'arized ground states of 0th|S |eadS to the ground'state angular momentum transitions.
and even symmetry are degenerate with two nonpolarizeffor two electrons the ground-state of the center-of-mass cor-
states of both spatial symmetries. Between 10.5 and 13.5 Tesponds to zero angular momentum so that the entire angu-
the ground state is nonpolarized. The amplitude of these spilar momentum is carried by the relative electron-electron
oscillations decreases with magnetic field but increases witmotion. The relative-motion states with oddven parity
interdot distance. For instance, the local maximum of theangular momentum quantum numbers are spin triglEts
energy splitting between the lowest spin-polarized and nonglets. Therefore, the increase of the angular momentum is
polarized energy levels near 12T is 0.03, 0.04, andaccompanied by singlet-triplet oscillatiofisMagnetic field
0.06 meV ford=50, 60,[see Fig. 1g)] and 80 nmsee Fig.  evolution is different for strongly anisotropic quantum dots
1(h)], respectively. in which the two electrons occupy the opposite extremities of
the quantum dot potential and the external magnetic field
simply increases the localization of each of the electrons
: . leading eventually to the disappearance of the overlap of
One may expect that in the absence of a tunnel effect, i.eyheir wave functions which results in the singlet-triplet
for largerd and high magnetic _fl_eld,_the system can be re'degenerac"}?‘ (vanishing exchange eneigyAs the interdot
duced to a spectator electron sitting in one d(.)t an_d two eIeCdistanced increases, the potential becomes more circular
trons confined in the other dot. In order to verify thl|s hypoth—WhiCh is the reason why the amplitude of the singlet-triplet
esis, we haye performgd twq—electron .calcula'uons for ebnergy oscillations becomes larger.
single dot with harmonic oscillator confinement potential The three-electron spectra presented in Figg-1(h)
perturbed by the Coulomb potential of the electrpn sitting Indisplay a striking similarity to the reference two-electron cal-
the other(left) dot, namely, for the external potential we took culations at a high magnetic field. Therefore, at high mag-

m*wg ) e 1 netic field the system is indeed separable into two sub-
(x—di2)*+ | 2, .2 (6) systems confined in different dots. The single electron
2 4meeg \(x + d/2)% +y . . e .

confined in one of the dots does not participate in the mag-
Obviously, in the presence of the Coulomb interdot couplingnetic field evolution of the spectrum and its only role is to
the spectator electron will be shifted off the center of the leftperturb the circular symmetry of the confinement potential

B. Two-electron subsystem and a spectator electron
in the other dot

VS(X1 y) =

245314-4



THREE ELECTRONS IN LATERALLY COUPLED.. PHYSICAL REVIEW B 71, 245314(2005

20 1 C. Phase diagram for the ground-state symmetry
161 ] Our results for the ground-state symmetry and the extinc-
tion of the interdot tunnel coupling is summarized imd-&8
12 | phase diagram presented in Fig. 2. TH&E ground state
E around 6 T disappears far>14 nm. Similarly, the ground
m

i state of’E symmetry around 2 T located between

and®?0 ground states disappears abdve70 nm. The bor-

- der of the white region of the phase diagram corresponds to
negligible tunnel interdot coupling and was determined as
the line beyond which the energy difference between the
ground state and the lowest excited state of the same spin but
opposite spatial parity is smaller than 0.02 meV.

FIG. 2. (Color onling Magnetic field-interdot distance phase
diagram for the ground-state symmetry. Blue, green, black, and red
regions correspond to a ground state witt0, °E, *?0, and®?E
symmetry, respectively. The white region corresponds to a negli- 1he evolution of the ground-state charge density as a
gible interdot tunnel coupling and a near degeneracy of the grounétnction of the external magnetic field is presented in Fig. 3
state with respect to spatial parity symmetry. for d=26.736 nm. The charge density exhibits two maxima

nearx=+28 nm. In each of the subsequent ground states,

localization of electrons in the left and right dots becomes
felt by the two electrons in the other dot. Obviously the stronger. For low magnetic fields the shape of the charge
three-electron system can be spin polarized only if the twodensity is similar to the one of the three-electron ellipsoidal
electron subsystem is spin polarized, which explains the spiquantum dot(cf. Fig. 4 in Ref. 4). Nevertheless, at higher
dependence of the three-electron low-energy spectrum at raagnetic field the three-electron charge density in the ellip-
high field[cf. Fig. 1(e)-1(h)]. The discussed spin oscillations soidal dot develops two maxima along thexis*! related to
in the three-electron system have a somewhat larger amplihe position of one of the electrons in the two classically
tude that is due to an exaggerated anisotropy of the externdegenerate configurations. Figure 3 shows a different behav-
potential in the two-electron reference calculation. The poinior: the electron charge density is removed from yhexis at
charge assumed in potentiéd) deforms the quantum dot which the barrier potential energy is maximal. Note that in
circular potential more strongly than the real charge of thehe state®2E at 5 T [cf. Fig. 31)] the central hole in the
spectator electron, which is in fact diffuse and displaced tacharge density is larger than in the ground states for the
the left (see below from the center of the left dot. neighboring range of magnetic fieldsf. Figs. 3e)-3(h)].
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FIG. 3. Contour plots of the charge density t¥26.736 nm and various magnetic fields. The platsk) correspond to the ground state.
Plot (I) at B=5 T corresponds to an excited state>6E symmetry.
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60 E. Broken-parity solutions and interdot correlations
40 ’

20
ol |
-20

For the parity operator eigenstates discussed so far one
cannot tell in which of the dots the two electrons are local-
ized. Let us now consider constructfdrof the stationary

states with a classical charge density distribution with two
0 @) (b) electrons confined in a specified left or right dot.
008074020 0 20 40 60 40 20 0 20 40 -60 40 20 0 20 40 60 In single quantum dots the classical degenefacg., the
X [nm] x [nm] x [nm] existence of more than one classical lowest-energy configu-
ation of electrons, is accompanied by crossings of levels of
ifferent symmetries. Superpositions of the two states corre-
sponding to the crossing levels allows us to exffache of
the classical configurations. Here we use a similar manipu-
This is the reason why this symmetry is replaced byf@ lation, constructing a superposition of odd) and even(E)

y [nm]

FIG. 4. Charge density contours for the lowest-energy state o
320 symmetry for various values of the magnetic field ahd
=26.736 nm.

symmetry[cf. Figs. 1c) and 2 in the ground state. parity wave functions,
Increasing the magnetic field leads to an increased elec- —
tron localization in each of the states. For a given magnetic X=(E+expip)O)/\2. (7)

field the subsequent states in the ground-state symmetry se-
guence correspond to weaker electron localization. In ordeFhe state described by the wave functris not an eigen-
to keep the interelectron distances approximately constant &ate of the parity operator but at the even-odd degeneracy
the magnetic field increases, the system has to change tp®ints appearing at the level crossings, or for negligible tun-
symmetry of the ground state. The mechanism for groundrnel coupling, it is still stationary, i.e., it is still the energy
state symmetry transformations is therefore the same as tlegenstate.
one in circular quantum dotsee Sec. Il B. Between the Ford=26.736 nm neaB=8.75 T, level crossings of odd
avoided level crossings, the increased localization in each aind even parity energy levels appéef:. Fig. 1(d)] for both
the states induced by increasing the magnetic field is usuall$=1/2 andS=3/2 states. We use this degeneracy to illus-
not accompanied by any pronounced quantitative change dfate the properties of the broken-parity Hamiltonian eigen-
the shape of the charge density droplet. An exception to thistates. Figure 6 shows the charge accumulated on the right-
rule is observed for th&?0 state. Figure 4 shows the charge hand side of thg=0 axis as a function of the phagein Eq.
density of this state for magnetic field values for which this(7). Notice that in the singlet broken-parity state the right dot
state is no longer the ground state. For 4 T a “bridge” of arcan contain up to 1.64 of the elementary charge. For the
increased density along theaxis appearfcompare Fig. &)  triplet the maximum value is 1.89The maximum value of
and Fig. 4a)]. Just before the narrow avoided crossing neatthe charge localized in the right dot reacheg%ee the curve
5.1 T [cf. Fig. 1d)], a third charge density maximum is for d=80 nm) only when the tunnel coupling is completely
formed in the barrier around the origisee Fig. 4b)]. Inthis ~ removed by the application of a high magnetic field and/or
way the system forms a quasi-one-dimensional Wignefor a large barrier thickness.
molecul&®5L54with all charge maxima situated along tke The charge density of the degenerate-energy spin-
axis. Recently, it was provéhthat the spatial parity of the polarized states a8=8.75 T is displayed in Fig. (@ (the
spin polarized three-electron state must be odd in order teven parity stateand Fig. Tb) (the odd parity staje Figure
allow the state to form such a one-dimensional Wigner mol-7(c) shows the broken-parity state constructed of the two
ecule. After the anticrossing of spin polarized odd parity en-spin-polarized parity eigenstates for the phase in(Egfor
ergy levels near 5.1 T, the lowest state of this symmetrywhich the charge localized at tixe>0 semiplane is maximal
possesses a central charge density ficleFig. 4(c)]. The [cf. Fig. 6]. Figure 7c) shows that in spite of the leakage of
shape of the charge density of this state, when it becomes thibe two-electron charge through the barrier to the region of
ground state, is displayed in Fig(3. negativex, the charge of the third electron is distinctly sepa-
Let us now look at the magnetic-field dependence of theated. Such a separation is not visible in the singlet state
electron-electron correlations. Figure 5 shows the contouplotted in Fig. 7d). According to Eq(7) both odd and even
plots for the pair correlation functidhwhen the position of parity states can be reconstructed from two broken-parity
one of the electrons is fixed at the poit28 nm,(Q. For  states with two electrons localized in the right and left dot.
B<6 T the two other electrons are simply shifted to theThis is visible in the pair-correlation function plots presented
right-hand side of the double quantum dot potential. Only forin Figs. de) and 7f) for the odd-parity spin-polarized state.
B>6 T the two distinct centers of electron localization in the Depending on the choice of the fixed-electron position a con-
right quantum dot appear. Wigner localization around thesdiguration with two electrons in the leftf. Fig. 7(e)] or right
centers, which coincide with the position of classicaldot [cf. Fig. 7f)] appears in the pair-correlation function
electron8® in the lowest-energy configuratidh, becomes plots. This property of the parity eigenstates makes it diffi-
more pronounced at higher magnetic fields. Fi@) Shows cult to visualize the interdot correlations between the elec-
the excited®?E energy level. Besides a larger central chargeron positions: instead of the reaction of the charge localized
density holg/see Fig. 8)] this state exhibits also a stronger in one dot to the position of an electron in the other, switch-
electron-electron correlation than the ground sfafeFigs. ing between configurations is observed. However, the effect
5(e) and 5f)] in this magnetic field range. of interdot correlations can be conveniently visualized using
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FIG. 5. Pair correlation functions fod=26.736 nm and various magnetic fields. One of the electrons is fixed at the position
(=28 nm, Q (indicated by the cro3sAll the plots(a—kK with the exception of the pldt) for the state’’E atB=5T correspond to the ground
state.

the pair correlation plots for the broken-parity stafet Let us now look at a spin-polarized broken-parity state for
Figs. 7g) and 7h)]. For the electron position fixed in the d=40 nm andB=8.4 T, i.e., in the neighborhood of the bor-
center of the left dofsee Fig. t)], the two other electrons der of the phase diagram of Fig. 2, beyond which tunnel
are more firmly localized in the right dot than in the odd coupling is negligible. This specific value of the magnetic
parity statgFig. 7(f)]. In the broken-parity state, a displace- fie!d has been chosen because it corresponds to a crossing of
ment of the fixed position electron to the position of one ofSPin polarized even and odd energy levels. Although the tun-
the two charge maxima occupied in the configuration withn€lling of the electrons from the right to the left dot is not
two electrons in the left dot induces a rotation of the elec-ViSible in the charge density plgFig. 8(2)] the pair correla-
trons in the right dofcf. Fig. 7(g)]. Note that due to this tion plot [Fig. 8c)] shows that it is not totally absent. Fig.
rotation the electron charge localized in the lower part of theg(b) shows the _Iowes_t triplet state for the refe_rence two-
right dot tunnels through the barrier to the left of the0 electron calculation with potenti#6). The separation of the

. _ _ . _ charges of the two electrons occupying the right quantum dot
axis. Ford—26.?36 gncB—8.75_ T the tur)nel coupling be in the reference calculation is stronger than in the three-
tween the dots is still not negligiblesee Fig. 2.

electron plot of Fig. &).

Figure 9 shows the results fa=60 nm andB=8.5T
20 T s T T deep inside the region of vanishing tunnel coupling on the
[ B=B75T / N\(5a phase diagram presented in Fig. 2. The ellipsoidal deforma-

] tion of the charge confined in the left dot is visibly smaller
than in the preceding plotssee Figs. ) and 8a)]. The
charge density confined in the right quantum geig. 9a)]
is more similar to the reference two-electron calculations
[Fig. 9b)] than for d=40 nm. No tunnel coupling is ob-
served either in the charge density or in the pair correlation
plots. After the disappearance of the tunnel effect, the Cou-
. R lomb coupling of the charge in both dots is still accompanied

2 ¢ 4 6 by quantum interdot correlations in the electron positions
[compare Figs. @) and 9d)].

FIG. 6. Charge accumulated in the right quantum dot for the For d=80 nm andB=8.5T, the charge density in the
broken-parity Hamiltonian eigenstates as function of the phase ofight quantum dofFig. 10@ ] becomes identical to the two-
the superpositiofEq. (7)] for S=1/2 (dashed ling and S=3/2  electron quantum dot perturbed by an external Coulomb po-
(solid line) at d=26.736 nm and for the spin-polarized statedat tential[Fig. 1Qb)]. The same shape is also reproduced by the
=80 nm(dotted ling. pair correlation function for an electron placed in the left dot

iy
[e2]
T T

a
»
T T

" 426736 nm

N
~

charge at x>0 [e]

-
o

.
(=)
o T
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60 —————
40 2e triplet
20
E o B
> =
-20 >
-40
60
40
20
E o 20 R
= =
20 E o
>
-40 -20
60 -40
40 5 () (@)
20 %0 -40 20 0 20 40 -60 40 20 O 20 40 60
= x [nm] X [nm]
K
= 20 FIG. 8. Charge density@) and pair correlation function&, d)
plots ford=40 nm atB=8.4 T. Charge density of the two-electron
40 spin polarized state in a single dot with a point repulsive center at
60 = 40 nm from the center of the dot plotted (h). In (c) and (d) an
40 e X electron is fixed(indicated by the dogtat (-23 nm, 16 nm and at
(=31 nm,Q, respectively.
20
_E, 0 L] IV. SUMMARY AND CONCLUSIONS
>
-20 We have studied the three-electron system confined in lat-
40 erally coupled dots in an external perpendicular magnetic
(9 (h)
60 -40 20 0 20 40 -60 -40 20 0 20 40 60 .
x [nm] X [nm] 60} 32y 2e triplet
40
FIG. 7. Charge densitia—d and pair correlation functiote-h _ 20
plots for d=26.736 nm at8=8.75 T. Plots(a), (b), (e), (f) corre- E 0
spond to parity eigenstates aiid), (d), (g), (h) to Hamiltonian -
eigenstates of a broken parity. (@ and(g) [(f) and(h)] an electron 20
is fixed at(-=28 nm,Q, [(-=19 nm, 19 nm. The fixed electron po- -40
sition in (e-h is marked by a dot. -60 (a) (b)
. o . . . 60 a2y 32y
[Fig. 10(c)]. The distribution of the pair correlation function 40
is now independent of the position of the electron in the left
dot, which signifies that the interdot electron-electron corre- T 20 o
lations are nonexistent. The electrons in different dots does £ 0 °
not react any longer on their actual positions, so that the > .29
wave function of the system can be exactly separated into a 40
product of wave functions for each of the dots like in the
o ; . 60 (©
Hartree approximation. Figure 10 shows that the potential of T 50 40 60 20903 50406
the charge confined in the left dot pins the Wigner molecule 604D+ i[gm] 0 0 60 60 =40~ i[gm] 0 40 &9

induced by the external magnetic field in the right quantum
dot. Perturbation of the two-electron spectra for the Coulomb £, 9. charge densitje) and pair correlation function&, d)
center in the left dot is still stronjgcf. the wide anticrossings plots of the spin-polarized broken-parity state fbxr60 nm atB

of the triplet energy levels in Fig.(th)]. For larger values of =85 T. Charge density of the two-electron spin-polarized state in a
d the Wigner molecule pinning acquires reentfasharacter single dot with a point repulsive center at 60 nm from the center of
for which the laboratory-frame electron separation is disthe dot plotted in(b). In (c) and (d) an electron is fixed at-32,
tinctly more pronounced for magnetic fields corresponding tal5 nm and at(-36 nm,Q, respectively. The electron position is
the level anticrossings. marked by a dot.

245314-8
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solar 26 triolet 32 circular quantum dots has angular momentum# -&nd

X p X .

40 which in laterally coupled dots turns out to be overcorre-
T2 lated, i.e., correlated more strongly than the ground state.
£ 0 . After the disappearance of tunnel coupling the spectrum ex-
> .20 e . . . . .

40 hibits spin oscillations that can be described using a model of

50 @) (b) ©) a two-electron quantum dot perturbed by the Coulomb po-

040550 BoA0ED BO4050 0 BI4050 E04020 0 2040 60 tential of a spectat_or electron localized in the other dot. We
x [nm] x [nm] X [nm] have shown that interdot electron correlations are present

after the extinction of the tunnel coupling. For larger interdot

FIG. 10. Charge densitya) and pair correlation function&)  distances quantum interdot correlation disappears although
plots for the spin-polarized broken-parity state t+80 nm atB  electrostatic interdot coupling is still significant. The effect
=8.5T. Charge density of the two-electron spin polarized state in &f the Coulomb interdot coupling for the singly occupied dot
single dot with a point repulsive center at 80 nm from the center ofs trivial, leading to a shift of the single-electron charge off
the dot plotted in(b). In (c) an electron is fixed at-44,  the dot's center. On the other hand the Coulomb coupling
0 nm—marked by a dot. induces pinning of the magnetic-field induced two-electron
i, The phase cigra fo he spaal and spin pares oS0 ORCIes, e, er extacton fom e e o
the ground state as function of the interdot distance and . y y
ternal magnetic field was determined. Near degeneracy of thg reference.
ground state with respect to parity was used as a criterion for
the disappearance of the tunnel coupling between the dots
occurring for large interdot distances and/or at high magnetic
fields. The three-electron system in laterally coupled dots This paper was partly supported by the Flemish Science
reproduces the ground-state spin and parity symmetries dfoundation(FWO-VI), the Belgian Science Policy, the Uni-
circular quantum dots. The exception to this rule is the abversity of Antwerpen(VIS and GOA. BS is supported by
sence of the spin-polarized even parity ground state which ithe EC Marie Curie IEF Project No. MEIF-CT-2004-500157.
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