
Three electrons in laterally coupled quantum dots: Tunnel vs electrostatic coupling,
ground-state symmetry, and interdot correlations

B. Szafran1,2 and F. M. Peeters1

1Departement Fysica, Universiteit Antwerpen (Campus Drie Eiken), B-2610 Antwerpen, Belgium
2Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. Mickiewicza 30,

30-059 Kraków, Poland
sReceived 16 November 2004; published 21 June 2005d

The phase diagram for the ground-state symmetry of three electrons confined in a pair of laterally coupled
dots is determined as function of the interdot distance and the magnetic field. With a few exceptions the
ground-state spin and parity symmetry sequence of a circular harmonic quantum dot is conserved. Reentrant
behavior of some energy levels as ground states is found as a function of the magnetic field. The disappearance
of interdot tunnelling due to a strong magnetic field leads to ground-state degeneracy of the even and odd
parity energy levels. It is shown that at a high magnetic field the system can be closely approximated by a
two-electron system confined in one dot and a spectator electron localized in the other. Broken-parity eigen-
states with a classical charge distribution are constructed and used to discuss the interdot electron-electron
correlations.
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I. INTRODUCTION

Electrons confined in coupled quantum dots1–25 form sys-
tems commonly referred to as artificial molecules with
single-electron wave functions forming bonding and anti-
bonding orbitals similar to those known from the quantum
chemistry of covalent molecules. Artificial molecules are
formed by vertically1–11 coupled dots or by dots coupled
laterally.12–25 The electronic properties of two-electron sys-
tems in vertically4–7 as well as laterally12–16 coupled dots
have been extensively studied by exact methods that for two
electrons are particularly convenient due to the separation of
the spatial and spin degrees of freedom. The two-electron
studies were mainly motivated by the proposed26 realization
of a quantum gate based on the spins of the electrons con-
fined in coupled dots. For larger electron numbers the mean
field methods1–3,18–21are more commonly used. The mean
field approaches give reliable estimates for the ground-state
energy and are useful in simulations2,3,18,19,27of devices but
they possess several shortcomings28 due to an approximate
treatment of the electron-electron correlations, which results
in artifactal symmetry-breaking effects leading to an over-
simplified picture of Wigner crystallization, to the appear-
ance of spin-density waves, etc.

The exact solution of the few-electron Schrödinger equa-
tion possesses a rich literature for circular two-dimensional
quantum dots.28–39 Less work has been done in
noncircular40–42 and vertically coupled quantum dots.8–11 In
this paper we present the exact diagonalization results for the
three-electron system in quantum dots coupled laterally. We
are unaware of any previous exact diagonalization calcula-
tions for a pair of laterally coupled dots with more than two
electrons. While in vertically coupled dots the interdot tun-
nelling makes the problem intrinsically three dimensional,
but with conserved axial symmetry, in the laterally coupled
dots the physical interestsand technical implementation dif-
ficultiesd are related to the two-center nature of the electron
localization.

The three-electron system in laterally coupled dots is
more interesting than the extensively discussed two-electron
problem12–16 for at least two reasons:s1d In the two-electron
system the electron charge localized in each of the identical
dots is exactly equal toe.16 On the other hand, the three-
electron system possesses two equivalent classical configu-
rations with two electrons in the left or right dot. We show
that the three-electron parity operator eigenstates can be con-
structed as superpositions of the states corresponding to both
classical configurations. The charge density distribution in
the parity eigenstates is nonclassical; with one and one-half
electron charge confined in each of the dots. Due to tunnel-
ling each attempt to localize two electrons in one of the dots
will result in the formation of a nonstationary state. The clas-
sical charge distribution can only be obtained when the tun-
nel coupling between the dots disappears. The previous mean
field analysis of the charge distribution and symmetries dealt
mostly with an even number of electrons20–22 for which the
problem of nonclassical charge distribution, likely to result
in an artifactal spatial symmetry breaking, is absent.s2d The
evolution of the two-electron ground state ends in the
singlet-triplet degeneracy12–16 when the tunnel coupling is
removed by an external magnetic field. On the other hand, in
the three-electron system at high-magnetic field, spin oscil-
lations should be expected to continue in the two-electron
subsystem perturbed by the Coulomb potential of the elec-
tron confined in the other dot and the electrostatic interdot
coupling should pin43–45 the magnetic-field induced two-
electron Wigner molecules, extracting them from the internal
coordinates of the two-electron system to the laboratory
frame of reference.

In this paper we study the spin and parity symmetry of the
three-electron ground state, the electron-electron correlation,
the Wigner crystallization, and the extinction of tunnel cou-
pling in the limit of high magnetic field. The high-magnetic
field spectra are explained using a single-dot two-electron
model, including the Coulomb potential of an electron local-
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ized in the other dot. The interdot electron-electron correla-
tions accompanying the electrostatic interdot coupling, are
studied using broken-parity eigenstates. The results pre-
sented in this paper have been obtained by the multicenter
configuration interaction method described in detail in Ref.
41. This method was previously applied to problems of
Wigner crystallization in low-symmetry quantum dots,41 to
pinning of Wigner molecules by an external Coulomb
defect,45 and to the effect of the asymmetry on the exchange
energy in two-electron laterally coupled dots.16

The present paper is organized as follows. In Sec. II we
present the theory, Sec. III contains the results, summary and
conclusions are given in Sec. IV.

II. THEORY

We consider three electrons bound in a two-dimensional
system of laterally coupled dots that is described by the
Hamiltonian,

H = o
i=1

3

hi + o
i=1

3

o
j.i

3
e2

4pee0r ij
, s1d

with the single-electron energy operatorh defined as

h =
1

2m* s− i" = + eAd2 + Vsx,yd, s2d

where m* is the electron effective band mass ande is the
dielectric constant. We apply the model potential for laterally
coupled dots used previously by several authors,14,15,20,22

Vsx,yd =
m*v0

2

2
„minhsx − d/2d2,sx + d/2d2j + y2

…, s3d

where"v0 is the confinement energy andd is the distance
between the centers of the two dots. Ford=0 this model
potential reduces to a single circular quantum dot with a
harmonic oscillator confinement potential.

We use the Landau gaugeA =s−By,0 ,0d, GaAs material
parameters14 m* /m0=0.067, e=12.4, and choose"v0
=3 meV for the confinement potential energy. We include
only the orbital effects for the ground-state spin and spatial
symmetries, but we neglect the spin Zeeman effect. The lat-
ter can be trivially taken into account as a shift linear inB to
the calculated energy levels. At a high magnetic field the spin
Zeeman effect removes the nonpolarized states from the
ground-state symmetry sequence, as discussed
previously.28,37,38

We first solve the single-electron Schrödinger equation in
a basis of displaced lowest Landau level
eigenfunctions41,45–48

Cmsr d = o
i=1

M

ci
mcRi

sr d, s4d

where

cRi
sr d = Îa exph− asr − Rid2/4 + ieB

3sx − Xidsy + Yid/2"j/Î2p, s5d

and Ri =sXi ,Yid is the center of localization of theith basis

element. For a single quantum dot the multicenter basiss4d
reproduces41 also the Fock-Darwin eigenfunctions of the
higher Fock-Darwin bands that tend to excited Landau levels
at a high magnetic field. Therefore, for a single quantum dot
the present scheme works as efficient as the ones employing
the Fock-Darwin single electron basis.29–38,48Since the cen-
ters can be chosen quite arbitrarily the multicenter method is
suitable to treat any low-symmetry smooth confinement
potential.41 In the present calculations we use 14 centerss7
per dotd. The set of centers corresponding to the right quan-
tum dot is chosen in the following way. A single center is
localized in the pointsa,0d. Six additional centers are put
around this point on a circle of radiusR. The position of the
centers for the left dot are obtained from the set associated
with the right dot by a change of the sign of thex coordi-
nates. The basis is optimized by takingR, a, anda as varia-
tional parameters that are chosen to minimize the energy of
the three-electron system.

The three-electron Hamiltonians1d is diagonalized on the
basis of Slater determinants constructed from the single-
electron spin orbitals obtained as products of the spatial
wave functions expanded in the basiss4d and the eigenfunc-
tions of thez component of the single-electron spin. Eigen-
states of Hamiltonians1d are also eigenstates of the parity
operator as well as of the operators of thez component of the
total spinswith eigenvalueSz"d and of the square of the total
spin (SsS+1d"2). Of all 3276 three-electron Slater determi-
nants that can be constructed of the 28 spin orbitals we retain
only those with the requiredSz and parity eigenvalues, which
gives a basis of 182 basis elements forSz= ±3/2 and 637
basis elements forSz= ±1/2. The quantum number of the
total spinS is identified for each energy level by its multi-
plicity s2S+1—the degeneracy of the given energy level
with respect toSzd. In the following the evensoddd symmetry
states are denoted bySE sSOd.

III. RESULTS

A. Energy spectra

Figures 1sad and 1sbd show the low-energy spectrum of
the three-electron single quantum dotsd=0d. We display en-
ergies calculated with respect to the lowest Fock-Darwin en-
ergy level, i.e., we subtract 3ED=33"Îv0

2+vc
2/4 from the

eigenvalues of Hamiltonians1d. In the absence of the mag-
netic field the ground state corresponds to −1 angular mo-
mentumsin " unitsd. The ground-state angular momentum
takes subsequent negative integer valuessthe absolute value
of the angular momentum of the states is given in the figured
as the magnetic field increases. Ground states with angular
momentum quantum numbers being multiples of 3 are real-
ized by the spin-polarized states.28,34,37,49At lower magnetic
field the intervals corresponding to subsequent ground state
symmetries have distinctly different lengthsfsee Fig. 1sadg.
In particular, a larger stability of the ground state with odd
angular momentum quantum numbers up to −7 is observed.
The results of Fig. 1sad are in perfect agreement with the
results of Mikhailov and Savostianova37 scf. Figs. 1sad and
2sad of Ref. 37,"v0=3 meV corresponds to the interaction
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parameterl=1.988d. At higher fieldsfcf. Fig. 1sbdg the states
with increasing angular momentum become the ground state
in intervals of nearly constant length in magnetic field. A
similar feature has previously been observed in the spin-
polarized three-electron system in the Wigner crystallization
regime.48

Figures 1scd and 1sdd present the spectrum for coupled
dots with centers separated by a distance ofd=26.736 nm. In
a single circular dot energy levels of the same spin and parity

symmetry differ by their angular momentum and cross. No-
tice that in the coupled dots these crossings are replaced by
anticrossings. Apparent crossings of3/2O and 1/2O energy
levels around 5.5 and 7.5 T visible in Fig. 1scd are in fact
anticrossings of width 2meV. The spectrum conserves the
same sequence of the ground-state spin and parity symme-
tries of the single dot casefcf. Figs. 1sad and 1sbdg. The only
difference is that the3/2E statesthe ground state ford=0
around 5.6Td is replaced by the1/2O energy level stemming

FIG. 1. sColor onlined Magnetic field depen-
dence of the three electron spectra for different
values of the interdot distanced. Energy levels of
1/2O, 3/2O, 1/2E, and 3/2E symmetry states are
plotted in blue, black, green, and red, respec-
tively. Numbers in the energy levels labels given
in sad and sbd stand for the absolute value of the
angular momentum in" units. Dotted and dashed
lines in se–gd show the singlet and triplet energy
levels in a reference two-electron system con-
fined in the potential given by Eq.s6d. Crosses
and squares insgd andshd mark the energy levels
of spin-polarized states of even and odd parity,
respectively. Numbers 0, 1, 1/2, and 3/2 in Figs.
1sed–1shd give the spin quantum number of the
plotted energy levels. For clarity, the two-electron
spectrum insgd and shd was shifted by +0.1 and
+0.25 meV, respectively.
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from the mixture of states which in circular quantum dots
possess −5 and −7 angular momenta. The1/2O energy level
is particularly stable as the ground statefcf. Fig. 1sadg and
exhibits reentrant behavior. At higher magnetic fieldfsee Fig.
1sddg the ground-state changes almost periodically withB
like in the single dot case presented in Fig. 1sbd, only the
length of the magnetic field corresponding to subsequent
states of the sequence becomes shortened from about
1.1 to 0.9 T. At high magnetic field the energy differences
between the energy levels of different parity becomes
smaller with respect to the single dot case presented in Fig.
1sbd. For bothd=0 andd=26.736 nm the energy difference
between the lowest even and odd spin-polarized energy lev-
els possesses a local maximum nearB=12 T. Ford=0 this
difference is around 0.25 meVfcf. Fig. 1sbdg while for d
=26.736 nm it is only 0.05 meVfcf. Fig. 1sddg.

Figure 1sed shows the spectrum ford=40 nm. For B
,10 T the ground-state-symmetry sequence of thed
=26.736 nm case is reproduced. Near 8.5 T both the spin-
polarized and spin-nonpolarized energy levels become de-
generate. For larger barrier thickness the ground state be-
comes degenerate with respect to parity around 7, 6 and 4 T,
for d=50, 60, and 60 nm, respectively,fsee Figs. 1sfd–1shdg.
The magnetic field leads to an increase of the electron local-
ization in each of the dots, enhancing the effective barrier
height and leading finally to vanishing interdot tunnel cou-
pling. This is at the origin of the even-odd degeneracy, simi-
larly as in the single electron problem.

For an interdot separation ofd=40 nm, the low-energy
spectrum collapses into a narrow energy range for large mag-
netic fields. ForB.12 T the difference between the lowest
energy levels becomes smaller than 0.02 meVfsee Fig. 1sedg.
But, for a larger interdot distance we notice, e.g., ford
=50 nm fcf. Fig. 1sfdg above 8 T distinct spin-related oscil-
lations of the ground-state energy. Up to 10.5 T and between
13.5 and 17 T the two spin-polarized ground states of odd
and even symmetry are degenerate with two nonpolarized
states of both spatial symmetries. Between 10.5 and 13.5 T
the ground state is nonpolarized. The amplitude of these spin
oscillations decreases with magnetic field but increases with
interdot distance. For instance, the local maximum of the
energy splitting between the lowest spin-polarized and non-
polarized energy levels near 12 T is 0.03, 0.04, and
0.06 meV ford=50, 60,fsee Fig. 1sgdg and 80 nmfsee Fig.
1shdg, respectively.

B. Two-electron subsystem and a spectator electron
in the other dot

One may expect that in the absence of a tunnel effect, i.e.,
for larger d and high magnetic field, the system can be re-
duced to a spectator electron sitting in one dot and two elec-
trons confined in the other dot. In order to verify this hypoth-
esis, we have performed two-electron calculations for a
single dot with harmonic oscillator confinement potential
perturbed by the Coulomb potential of the electron sitting in
the othersleftd dot, namely, for the external potential we took

Vssx,yd =
m*v0

2

2
sx − d/2d2 +

e2

4pee0

1
Îsx + d/2d2 + y2

. s6d

Obviously, in the presence of the Coulomb interdot coupling
the spectator electron will be shifted off the center of the left

quantum dot, but we neglect this shift for simplicity. Two
electron calculations were performed with the multicenter
configuration interaction method with eight centers put on a
circumference of an ellipse and the ninth one in its center.
Position of the ellipse center as well as itsx andy sizes are
optimized variationally. In Figs. 1sed–1shd the lowest singlet
energy level and the two lowest triplet energy levels are plot-
ted with dotted and dashed lines, respectively. The width of
the presented avoided crossings of the spin polarized energy
levels can be considered as a measure of the potential devia-
tion from circularity; as discussed in Ref. 45. In the circular
quantum dot limit of infinited, the avoided crossings are
replaced by crossings of the magic angular momenta eigen-
states corresponding to the semiclassical Wigner distribution
of electrons in the inner coordinates. The larger the deviation
of the potential from circularity the stronger is the mixing of
the states corresponding to neighbor angular momenta from
the magic sequence, and, consequently, the wider the
anticrossing.45 The width of the anticrossing appearing near
6 T decreases from 0.7 meV ford=40 nm to 0.3 meV for
d=60 nm and to 0.2 meV ford=80 nm. A comparison of
Figs. 1sed–1shd shows that the singlet-triplet oscillations in
the two-electron system have the smallest amplitude for the
smallestd for which the perturbation of the harmonic poten-
tial is the largest. This finding is consistent with the recent
study52 of the magnetic field effect on the two-electron an-
isotropic quantum dots showing that the amplitude of the
singlet-triplet oscillations53 disappears with increasing de-
gree of asymmetry and is finally replaced by the singlet-
triplet degeneracy in the quasi one-dimensional limitf50,51g
of the extreme anisotropy. In circular quantum dots the states
of higher angular momentum are less strongly localized.
Magnetic field increases the electron localization and conse-
quently the electron-electron interaction in each of the states.
This leads to the ground-state angular momentum transitions.
For two electrons the ground-state of the center-of-mass cor-
responds to zero angular momentum so that the entire angu-
lar momentum is carried by the relative electron-electron
motion. The relative-motion states with oddsevend parity
angular momentum quantum numbers are spin tripletsssin-
gletsd. Therefore, the increase of the angular momentum is
accompanied by singlet-triplet oscillations.53 Magnetic field
evolution is different for strongly anisotropic quantum dots
in which the two electrons occupy the opposite extremities of
the quantum dot potential and the external magnetic field
simply increases the localization of each of the electrons
leading eventually to the disappearance of the overlap of
their wave functions which results in the singlet-triplet
degeneracy54 svanishing exchange energyd. As the interdot
distanced increases, the potential becomes more circular
which is the reason why the amplitude of the singlet-triplet
energy oscillations becomes larger.52

The three-electron spectra presented in Figs. 1sed–1shd
display a striking similarity to the reference two-electron cal-
culations at a high magnetic field. Therefore, at high mag-
netic field the system is indeed separable into two sub-
systems confined in different dots. The single electron
confined in one of the dots does not participate in the mag-
netic field evolution of the spectrum and its only role is to
perturb the circular symmetry of the confinement potential
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felt by the two electrons in the other dot. Obviously the
three-electron system can be spin polarized only if the two-
electron subsystem is spin polarized, which explains the spin
dependence of the three-electron low-energy spectrum at a
high fieldfcf. Fig. 1sed–1shdg. The discussed spin oscillations
in the three-electron system have a somewhat larger ampli-
tude that is due to an exaggerated anisotropy of the external
potential in the two-electron reference calculation. The point
charge assumed in potentials6d deforms the quantum dot
circular potential more strongly than the real charge of the
spectator electron, which is in fact diffuse and displaced to
the left ssee belowd from the center of the left dot.

C. Phase diagram for the ground-state symmetry

Our results for the ground-state symmetry and the extinc-
tion of the interdot tunnel coupling is summarized in ad-B
phase diagram presented in Fig. 2. The3/2E ground state
around 6 T disappears ford.14 nm. Similarly, the ground
state of1/2E symmetry around 2 T located between the1/2O
and3/2O ground states disappears aboved.70 nm. The bor-
der of the white region of the phase diagram corresponds to
negligible tunnel interdot coupling and was determined as
the line beyond which the energy difference between the
ground state and the lowest excited state of the same spin but
opposite spatial parity is smaller than 0.02 meV.

D. Charge density evolution

The evolution of the ground-state charge density as a
function of the external magnetic field is presented in Fig. 3
for d=26.736 nm. The charge density exhibits two maxima
near x= ±28 nm. In each of the subsequent ground states,
localization of electrons in the left and right dots becomes
stronger. For low magnetic fields the shape of the charge
density is similar to the one of the three-electron ellipsoidal
quantum dotscf. Fig. 4 in Ref. 41d. Nevertheless, at higher
magnetic field the three-electron charge density in the ellip-
soidal dot develops two maxima along they axis41 related to
the position of one of the electrons in the two classically
degenerate configurations. Figure 3 shows a different behav-
ior: the electron charge density is removed from they axis at
which the barrier potential energy is maximal. Note that in
the state3/2E at 5 T fcf. Fig. 3sldg the central hole in the
charge density is larger than in the ground states for the
neighboring range of magnetic fieldsfcf. Figs. 3sed–3shdg.

FIG. 2. sColor onlined Magnetic field-interdot distance phase
diagram for the ground-state symmetry. Blue, green, black, and red
regions correspond to a ground state with1/2O, 1/2E, 3/2O, and3/2E
symmetry, respectively. The white region corresponds to a negli-
gible interdot tunnel coupling and a near degeneracy of the ground
state with respect to spatial parity symmetry.

FIG. 3. Contour plots of the charge density ford=26.736 nm and various magnetic fields. The plotssa–kd correspond to the ground state.
Plot sld at B=5 T corresponds to an excited state of3/2E symmetry.
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This is the reason why this symmetry is replaced by the1/2O
symmetryfcf. Figs. 1scd and 2g in the ground state.

Increasing the magnetic field leads to an increased elec-
tron localization in each of the states. For a given magnetic
field the subsequent states in the ground-state symmetry se-
quence correspond to weaker electron localization. In order
to keep the interelectron distances approximately constant as
the magnetic field increases, the system has to change the
symmetry of the ground state. The mechanism for ground-
state symmetry transformations is therefore the same as the
one in circular quantum dotsssee Sec. III Bd. Between the
avoided level crossings, the increased localization in each of
the states induced by increasing the magnetic field is usually
not accompanied by any pronounced quantitative change of
the shape of the charge density droplet. An exception to this
rule is observed for the3/2O state. Figure 4 shows the charge
density of this state for magnetic field values for which this
state is no longer the ground state. For 4 T a “bridge” of an
increased density along thex axis appearsfcompare Fig. 3scd
and Fig. 4sadg. Just before the narrow avoided crossing near
5.1 T fcf. Fig. 1sddg, a third charge density maximum is
formed in the barrier around the originfsee Fig. 4sbdg. In this
way the system forms a quasi-one-dimensional Wigner
molecule50,51,54with all charge maxima situated along thex
axis. Recently, it was proven54 that the spatial parity of the
spin polarized three-electron state must be odd in order to
allow the state to form such a one-dimensional Wigner mol-
ecule. After the anticrossing of spin polarized odd parity en-
ergy levels near 5.1 T, the lowest state of this symmetry
possesses a central charge density holefcf. Fig. 4scdg. The
shape of the charge density of this state, when it becomes the
ground state, is displayed in Fig. 3shd.

Let us now look at the magnetic-field dependence of the
electron-electron correlations. Figure 5 shows the contour
plots for the pair correlation function39 when the position of
one of the electrons is fixed at the points−28 nm,0d. For
B,6 T the two other electrons are simply shifted to the
right-hand side of the double quantum dot potential. Only for
B.6 T the two distinct centers of electron localization in the
right quantum dot appear. Wigner localization around these
centers, which coincide with the position of classical
electrons55 in the lowest-energy configuration,41 becomes
more pronounced at higher magnetic fields. Fig. 5sld shows
the excited3/2E energy level. Besides a larger central charge
density holefsee Fig. 3sldg this state exhibits also a stronger
electron-electron correlation than the ground statefcf. Figs.
5sed and 5sfdg in this magnetic field range.

E. Broken-parity solutions and interdot correlations

For the parity operator eigenstates discussed so far one
cannot tell in which of the dots the two electrons are local-
ized. Let us now consider construction41 of the stationary
states with a classical charge density distribution with two
electrons confined in a specified left or right dot.

In single quantum dots the classical degeneracy,41 i.e., the
existence of more than one classical lowest-energy configu-
ration of electrons, is accompanied by crossings of levels of
different symmetries. Superpositions of the two states corre-
sponding to the crossing levels allows us to extract41 one of
the classical configurations. Here we use a similar manipu-
lation, constructing a superposition of oddsOd and evensEd
parity wave functions,

X = „E + expsifdO…/Î2. s7d

The state described by the wave functionX is not an eigen-
state of the parity operator but at the even-odd degeneracy
points appearing at the level crossings, or for negligible tun-
nel coupling, it is still stationary, i.e., it is still the energy
eigenstate.

For d=26.736 nm nearB=8.75 T, level crossings of odd
and even parity energy levels appearfcf. Fig. 1sddg for both
S=1/2 andS=3/2 states. We use this degeneracy to illus-
trate the properties of the broken-parity Hamiltonian eigen-
states. Figure 6 shows the charge accumulated on the right-
hand side of they=0 axis as a function of the phasef in Eq.
s7d. Notice that in the singlet broken-parity state the right dot
can contain up to 1.64 of the elementary charge. For the
triplet the maximum value is 1.89e. The maximum value of
the charge localized in the right dot reaches 2e ssee the curve
for d=80 nmd only when the tunnel coupling is completely
removed by the application of a high magnetic field and/or
for a large barrier thickness.

The charge density of the degenerate-energy spin-
polarized states atB=8.75 T is displayed in Fig. 7sad sthe
even parity stated and Fig. 7sbd sthe odd parity stated. Figure
7scd shows the broken-parity state constructed of the two
spin-polarized parity eigenstates for the phase in Eq.s7d for
which the charge localized at thex.0 semiplane is maximal
fcf. Fig. 6g. Figure 7scd shows that in spite of the leakage of
the two-electron charge through the barrier to the region of
negativex, the charge of the third electron is distinctly sepa-
rated. Such a separation is not visible in the singlet state
plotted in Fig. 7sdd. According to Eq.s7d both odd and even
parity states can be reconstructed from two broken-parity
states with two electrons localized in the right and left dot.
This is visible in the pair-correlation function plots presented
in Figs. 7sed and 7sfd for the odd-parity spin-polarized state.
Depending on the choice of the fixed-electron position a con-
figuration with two electrons in the leftfcf. Fig. 7sedg or right
dot fcf. Fig. 7sfdg appears in the pair-correlation function
plots. This property of the parity eigenstates makes it diffi-
cult to visualize the interdot correlations between the elec-
tron positions: instead of the reaction of the charge localized
in one dot to the position of an electron in the other, switch-
ing between configurations is observed. However, the effect
of interdot correlations can be conveniently visualized using

FIG. 4. Charge density contours for the lowest-energy state of
3/2O symmetry for various values of the magnetic field andd
=26.736 nm.

B. SZAFRAN AND F. M. PEETERS PHYSICAL REVIEW B71, 245314s2005d

245314-6



the pair correlation plots for the broken-parity statesfcf.
Figs. 7sgd and 7shdg. For the electron position fixed in the
center of the left dotfsee Fig. 7shdg, the two other electrons
are more firmly localized in the right dot than in the odd
parity statefFig. 7sfdg. In the broken-parity state, a displace-
ment of the fixed position electron to the position of one of
the two charge maxima occupied in the configuration with
two electrons in the left dot induces a rotation of the elec-
trons in the right dotfcf. Fig. 7sgdg. Note that due to this
rotation the electron charge localized in the lower part of the
right dot tunnels through the barrier to the left of they=0
axis. Ford=26.736 andB=8.75 T the tunnel coupling be-
tween the dots is still not negligiblessee Fig. 2d.

Let us now look at a spin-polarized broken-parity state for
d=40 nm andB=8.4 T, i.e., in the neighborhood of the bor-
der of the phase diagram of Fig. 2, beyond which tunnel
coupling is negligible. This specific value of the magnetic
field has been chosen because it corresponds to a crossing of
spin polarized even and odd energy levels. Although the tun-
nelling of the electrons from the right to the left dot is not
visible in the charge density plotfFig. 8sadg the pair correla-
tion plot fFig. 8scdg shows that it is not totally absent. Fig.
8sbd shows the lowest triplet state for the reference two-
electron calculation with potentials6d. The separation of the
charges of the two electrons occupying the right quantum dot
in the reference calculation is stronger than in the three-
electron plot of Fig. 8sad.

Figure 9 shows the results ford=60 nm andB=8.5 T
deep inside the region of vanishing tunnel coupling on the
phase diagram presented in Fig. 2. The ellipsoidal deforma-
tion of the charge confined in the left dot is visibly smaller
than in the preceding plotsfsee Figs. 7scd and 8sadg. The
charge density confined in the right quantum dotfFig. 9sadg
is more similar to the reference two-electron calculations
fFig. 9sbdg than for d=40 nm. No tunnel coupling is ob-
served either in the charge density or in the pair correlation
plots. After the disappearance of the tunnel effect, the Cou-
lomb coupling of the charge in both dots is still accompanied
by quantum interdot correlations in the electron positions
fcompare Figs. 9scd and 9sddg.

For d=80 nm andB=8.5 T, the charge density in the
right quantum dotfFig. 10sadg becomes identical to the two-
electron quantum dot perturbed by an external Coulomb po-
tentialfFig. 10sbdg. The same shape is also reproduced by the
pair correlation function for an electron placed in the left dot

FIG. 5. Pair correlation functions ford=26.736 nm and various magnetic fields. One of the electrons is fixed at the position
s−28 nm,0d sindicated by the crossd. All the plotssa–kd with the exception of the plotsld for the state3/2E atB=5 T correspond to the ground
state.

FIG. 6. Charge accumulated in the right quantum dot for the
broken-parity Hamiltonian eigenstates as function of the phase of
the superpositionfEq. s7dg for S=1/2 sdashed lined and S=3/2
ssolid lined at d=26.736 nm and for the spin-polarized state atd
=80 nmsdotted lined.
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fFig. 10scdg. The distribution of the pair correlation function
is now independent of the position of the electron in the left
dot, which signifies that the interdot electron-electron corre-
lations are nonexistent. The electrons in different dots does
not react any longer on their actual positions, so that the
wave function of the system can be exactly separated into a
product of wave functions for each of the dots like in the
Hartree approximation. Figure 10 shows that the potential of
the charge confined in the left dot pins the Wigner molecule
induced by the external magnetic field in the right quantum
dot. Perturbation of the two-electron spectra for the Coulomb
center in the left dot is still strongfcf. the wide anticrossings
of the triplet energy levels in Fig. 1shdg. For larger values of
d the Wigner molecule pinning acquires reentrant45 character
for which the laboratory-frame electron separation is dis-
tinctly more pronounced for magnetic fields corresponding to
the level anticrossings.

IV. SUMMARY AND CONCLUSIONS

We have studied the three-electron system confined in lat-
erally coupled dots in an external perpendicular magnetic

FIG. 7. Charge densitysa–dd and pair correlation functionse–hd
plots for d=26.736 nm atB=8.75 T. Plotssad, sbd, sed, sfd corre-
spond to parity eigenstates andscd, sdd, sgd, shd to Hamiltonian
eigenstates of a broken parity. Insed andsgd fsfd andshdg an electron
is fixed ats−28 nm,0d, fs−19 nm, 19 nmdg. The fixed electron po-
sition in se–hd is marked by a dot.

FIG. 8. Charge densitysad and pair correlation functionssc, dd
plots for d=40 nm atB=8.4 T. Charge density of the two-electron
spin polarized state in a single dot with a point repulsive center at
40 nm from the center of the dot plotted insbd. In scd and sdd an
electron is fixedsindicated by the dotd at s−23 nm, 16 nmd and at
s−31 nm,0d, respectively.

FIG. 9. Charge densitysad and pair correlation functionssc, dd
plots of the spin-polarized broken-parity state ford=60 nm atB
=8.5 T. Charge density of the two-electron spin-polarized state in a
single dot with a point repulsive center at 60 nm from the center of
the dot plotted insbd. In scd and sdd an electron is fixed ats−32,
15 nmd and ats−36 nm,0d, respectively. The electron position is
marked by a dot.
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field. The phase diagram for the spatial and spin parities of
the ground state as function of the interdot distance and ex-
ternal magnetic field was determined. Near degeneracy of the
ground state with respect to parity was used as a criterion for
the disappearance of the tunnel coupling between the dots
occurring for large interdot distances and/or at high magnetic
fields. The three-electron system in laterally coupled dots
reproduces the ground-state spin and parity symmetries of
circular quantum dots. The exception to this rule is the ab-
sence of the spin-polarized even parity ground state which in

circular quantum dots has angular momentum −6" and
which in laterally coupled dots turns out to be overcorre-
lated, i.e., correlated more strongly than the ground state.
After the disappearance of tunnel coupling the spectrum ex-
hibits spin oscillations that can be described using a model of
a two-electron quantum dot perturbed by the Coulomb po-
tential of a spectator electron localized in the other dot. We
have shown that interdot electron correlations are present
after the extinction of the tunnel coupling. For larger interdot
distances quantum interdot correlation disappears although
electrostatic interdot coupling is still significant. The effect
of the Coulomb interdot coupling for the singly occupied dot
is trivial, leading to a shift of the single-electron charge off
the dot’s center. On the other hand the Coulomb coupling
induces pinning of the magnetic-field induced two-electron
Wigner molecules, i.e., their extraction from the internal co-
ordinates of the two-electron system to the laboratory frame
of reference.

ACKNOWLEDGMENTS

This paper was partly supported by the Flemish Science
FoundationsFWO-Vld, the Belgian Science Policy, the Uni-
versity of AntwerpensVIS and GOAd. BS is supported by
the EC Marie Curie IEF Project No. MEIF-CT-2004-500157.

1B. Partoens and F. M. Peeters, Phys. Rev. Lett.84, 4433s2000d.
2M. Pi, A. Emperador, M. Barranco, F. Garcias, K. Muraki, S.

Tarucha, and D. G. Austing, Phys. Rev. Lett.87, 066801s2001d.
3D. G. Austing, S. Tarucha, H. Tamura, K. Muraki, F. Ancilotto,

M. Barranco, A. Emperador, R. Mayol, and M. Pi, Phys. Rev. B
70, 045324s2004d.

4G. Burkard, G. Seelig, and D. Loss, Phys. Rev. B62, 2581
s2000d.

5S. Bednarek, T. Chwiej, J. Adamowski, and B. Szafran, Phys.
Rev. B 67, 205316s2003d.

6D. Bellucci, M. Rontani, F. Troiani, G. Goldoni, and E. Molinari,
Phys. Rev. B69, 201308sRd s2004d.

7B. Partoens, A. Matulis, and F. M. Peeters, Phys. Rev. B59, 1617
s1999d.

8J. J. Palacios and P. Hawrylak, Phys. Rev. B51, 1769s1995d.
9S. C. Benjamin and N. F. Johnson, Phys. Rev. B51, 14 733

s1995d.
10H. Imamura, P. A. Maksym, and H. Aoki, Phys. Rev. B53,

12 613s1996d.
11M. Rontani, S. Amaha, K. Muraki, F. Manghi, E. Molinari, S.

Tarucha, and D. G. Austing, Phys. Rev. B69, 085327s2004d.
12G. Burkard, D. Loss, and D. P. DiVincenzo, Phys. Rev. B59,

2070 s1999d.
13X. Hu and S. Das Sarma, Phys. Rev. A61, 062301s2000d.
14A. Harju, S. Siljamäki, and R. M. Nieminen, Phys. Rev. Lett.88,

226804s2002d.
15M. Marlo, A. Harju, and R. M. Nieminen, Phys. Rev. Lett.91,

187401s2003d.
16B. Szafran, F. M. Peeters, and S. Bednarek, Phys. Rev. B70,

205318s2004d.
17C. Yannouleas and U. Landman, Phys. Rev. Lett.82, 5325

s1999d.
18S. Nagaraja, J.-P. Leburton, and R. M. Martin, Phys. Rev. B60,

8759 s1999d.
19R. Ravishankar, P. Matagne, J. P. Leburton, R. M. Martin, and S.

Tarucha, Phys. Rev. B69, 035326s2004d.
20A. Wensauer, O. Steffens, M. Suhrke, and U. Rössler, Phys. Rev.

B 62, 2605s2000d.
21J. Kolehmainen, S. M. Reimann, M. Koskinen, and M. Manninen,

Eur. Phys. J. B13, 731 s2000d.
22C. Yannouleas and U. Landman, Eur. Phys. J. D16, 373 s2001d.
23F. R. Waugh, M. J. Berry, D. J. Mar, R. M. Westervelt, K. L.

Campman, and A. C. Gossard, Phys. Rev. Lett.75, 705 s1995d.
24A. W. Holleitner, C. R. Decker, H. Qin, K. Eberl, and R. H. Blick,

Phys. Rev. Lett.87, 256802s2001d.
25J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van

Beveren, S. De. Franceschi, L. M. K. Vandersypen, S. Tarucha,
and L. P. Kouwenhoven, Phys. Rev. B67, 161308sRd s2003d.

26D. Loss and D. P. DiVincenzo, Phys. Rev. A57, 120 s1998d.
27S. Bednarek, B. Szafran, and J. Adamowski, Phys. Rev. B65,

035316s2001d.
28S. M. Reimann and M. Manninen, Rev. Mod. Phys.74, 1283

s2002d.
29P. A. Maksym and T. Chakraborty, Phys. Rev. B45, R1947

s1992d.
30P. Hawrylak, and D. Pfannkuche, Phys. Rev. Lett.70, 485s1993d.
31S. R. Eric Yang, A. H. MacDonald, and M. D. Johnson, Phys.

Rev. Lett. 71, 3194s1993d.

FIG. 10. Charge densitysad and pair correlation functionsscd
plots for the spin-polarized broken-parity state ford=80 nm atB
=8.5 T. Charge density of the two-electron spin polarized state in a
single dot with a point repulsive center at 80 nm from the center of
the dot plotted in sbd. In scd an electron is fixed ats−44,
0 nmd—marked by a dot.

THREE ELECTRONS IN LATERALLY COUPLED… PHYSICAL REVIEW B 71, 245314s2005d

245314-9



32J. J. Palacios, L. Martin-Moreno, G. Chiappe, E. Louis, and C.
Tejedor, Phys. Rev. B50, R5760s1994d.

33M. Eto, Jpn. J. Appl. Phys., Part 136, 3924s1997d.
34P. A. Maksym, Phys. Rev. B53, 10 871s1996d.
35A. Wójs and P. Hawrylak, Phys. Rev. B56, 13 227s1997d.
36M. Manninen, S. Viefers, M. Koskinen, and S. M. Reimann,

Phys. Rev. B64, 245322s2001d.
37S. A. Mikhailov and N. A. Savostianova, Phys. Rev. B66,

033307s2002d.
38M. B. Tavernier, E. Anisimovas, F. M. Peeters, B. Szafran, J.

Adamowski, and S. Bednarek, Phys. Rev. B68, 205305s2003d.
39P. A. Maksym, H. Immamura, G. P. Mallon, and H. Aoki, J.

Phys.: Condens. Matter12, R299s2000d.
40M. Manninen, M. Koskinen, S. M. Reimann, and B. Mottelson,

Eur. Phys. J. D16, 381 s2001d.
41B. Szafran, F. M. Peeters, S. Bednarek, and J. Adamowski, Phys.

Rev. B 69, 125344s2004d.
42A. Harju, E. Räsanen, H. Saarikoski, M. J. Puska, R. M. Niem-

inen, and K. Niemelä, Phys. Rev. B69, 153101s2004d.
43B. Reusch and R. Egger, Europhys. Lett.64, 84 s2003d.

44A. D. Güçlü, J.-S. Wang, and H. Guo, Phys. Rev. B68, 035304
s2003d.

45B. Szafran and F. M. Peeters, Europhys. Lett.66, 701 s2004d.
46C. Yannouleas and U. Landman, Phys. Rev. B66, 115315s2002d.
47J. Kainz, S. A. Mikhailov, A. Wensauer, and U. Rösser, Phys.

Rev. B 65, 115305s2002d.
48B. Szafran, S. Bednarek, J. Adamowski, M. B. Tavernier, E.

Anisimovas, and F. M. Peeters, Eur. Phys. J. D28, 373 s2004d.
49C. G. Bao, W. Y. Ruan, and Y. Y. Liu, Phys. Rev. B53, 10 820

s1996d.
50K. Jauregui, W. Häusler, and B. Kramer, Europhys. Lett.24, 581

s1993d.
51W. Häusler and B. Kramer, Phys. Rev. B47, 16 353s1993d.
52P. S. Drouvelis, P. Schmelcher, and F. K. Diakonos, Phys. Rev. B

69, 155312s2004d.
53M. Wagner, U. Merkt, and A. V. Chaplik, Phys. Rev. B45,

R1951s1992d.
54B. Szafran, F. M. Peeters, S. Bednarek, T. Chwiej, and J. Ad-

amowski, Phys. Rev. B70, 035401s2004d.
55V. M. Bedanov and F. M. Peeters, Phys. Rev. B49, 2667s1994d.

B. SZAFRAN AND F. M. PEETERS PHYSICAL REVIEW B71, 245314s2005d

245314-10


