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We have seen that the sums of rearrangements of the alternating harmonic series depend only 
on the asymptotic density a. This behavior is in some sense specific to series like the harmonic 
series, as Theorem 2 indicates. Readers are invited to construct proofs for themselves or to 
consult Pringsheim's paper [3]. 

THEOREM 2 [3]. Suppose {a,, 1is a sequence of real numbers such that IaII > Ia21 > Ia31 > ... 

limn-ooan -= O, and a2k - I > 0 > a2k for k = 1, 2,3,.... 
(i) If limn n Ian I = oo, and if S is a real number, there is a simple rearrangement of the series 

X%'" lak with asymptotic density 2 whose sum is S. 
(ii) If limn~ pnan = 0, if I lbk is a simple rearrangement of the series X% ... lak for which the 

asymntotic density a exists, and if 0<a <1, then S'.I bk= %'0.Iak. 
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A STRONG CONVERSE TO GAUSS'S MEAN-VALUE THEOREM 

R. B. BURCKBL 

Departnent of Mathematics, Kansas State University, Manhattan, KS 66506 

The theorem of Gauss in the title affirms that 

h(a) = 2| h(a + re')d (1) 

holds for all a in a region Q, all r >0 such that the closure of the disc D(a,r)= {z EC: Iz - al Kr} 
lies in Q, and all functions h that are harmonic throughout U. Most books on function theory or 
potential theory prove this elementary result as well as the following converse due to Koebe [4]: 
If h is continuous in the region Q and (1) holds for all a and r such that D(a, r) cQ2, then h is 
harmonic in U. In fact, the somewhat stronger version in which the equality is required to hold 
only at each a for some sequence r,(a)-*0 is often proved. What does not seem to be well known 
is that, when h is continuous on Q, one radius suffices. This strong converse of Gauss's theorem 
is due to Kellogg [31 and is not trivial. However, for Dirichlet regions this strong converse is as 
easy to prove as Koebe's theorem and should be presented in elementary texts. The theorem for 
Dirichlet regions is due to Volterra [7] (with a supplemental hypothesis) and to Vitali [61 Twhere 
the supplemental hypothesis is removed). Here is their proof in modem dress, presented in 
dimension two, though the reader will see that it is valid in any dimension. 

LEMMA. Let U be a bounded open subset of the complex plane C and let f: U--R be continuous 
and for each a EG U have the following restricted mean-value property: 

f(a) = 2L f2(a + re'))dO for some r = r(a) > 0 such that D (a, r) C U. (2) 

Then maxf( U) = maxf(a U). 

Proof. (Cf. Cimmino [1]) Let M=maxf(U). It suffices to see that the closed subsetf `(M) of 
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U meets a U. If this is not the case, then by compactness there is a point a ef ` (M) c U that is 
nearest to a U. From 

M =f(a) = 2 f2f(a + r(a)e'9)dO 

and the maximality of M we see that f(a + r(a)e'I) = M for each 0 E [0, 2']. That is, the circle 
(z E C: Iz - aI = r(a)} lies wholly in f `(M). Since, obviously, some point of this circle is closer 
to a U than a, we have a contradiction to the choice of a. 

THEOREM. Let U be a bounded open subset of C for which the Dirichlet problem is solvable. 
Then any continuous real-valued function on U that has the restricted mean-value property is 
harmonic in U. 

Proof. Let g be such a function. Since the Dirichlet problem is solvable for U, there exists a 
continuous function h on U that is harmonic in U and coincides with g on a U. Since h has the 
(unrestricted) mean-value property (by Gauss's theorem), the functions fi = g - h, f2 = h - g each 
satisfy the hypotheses of the lemma. Since f1 =f2 = 0 on aU, we infer from the lemma thatfi < 0, 

f2 < 0 throughout U. That is, g-h. 

FINAL REMARKs. A version of this proof occurs in Courant and Hilbert [2, pp. 279-281]. 
There the reader will also find elementary examples showing that both the boundedness of U 
and the continuity of h on U are essential to the validity of the theorem. There are, however, 
some fascinating versions of the theorem for the cases U= C or h only continuous on U. For 
discussions of these results and extensive references to the literature see Netuka [5] and Zalcman 
[8], [9]. The latter paper is especially readable. 
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